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The depletion of conventional energy sources has led to an increase in interest in
renewable energy across the globe. The usage of renewable energy has lowered
economic risk in the electricity markets. This study presents an approach to utilize
solar photovoltaic as a renewable energy source, fuel cells as the energy storage
system, and Flexible AC Transmission networks (FACTS) to reduce system risk in
deregulated networks. The difference between real and expected renewable energy
data is the primary cause of disequilibrium pricing (DP) in the renewable energy-
integrated system. Integration of the FCs with a Unified Power Flow Controller
(UPFC) can play an important role in coping with the disequilibrium pricing,
emphasizing optimizing profitability and societal welfare in a deregulated
environment. The paper also evaluates the system voltage outline and LBMP
(location-based marginal pricing) scenarios, both with and without the integration
of solar power. Two distinct factors, i.e., Bus Sensitivity Index (BSI) and Line
Congestion Factor (LCF), have been proposed to identify the key buses and lines
for solar power and Unified Power Flow Controller installation in the system. The
study also employs conditional-value-at-risk (CVaR) and value-at-risk (VaR) to assess
the system’s risk. Using a real-time IEEE 39-bus New England system, multiple
optimization algorithms including Sequential Quadratic Programming and the Slime
Mould Algorithm (SMA) are employed to estimate the financial risk of the considered
system. This analysis demonstrates that the risk coefficient values improve with the
placement of UPFC and fuel cells in the renewable incorporated system.
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1 Introduction

The improvements in the electrical industry have a considerable impact on the economy
of a country. The power industry includes power generation, transmission, and distribution.
These responsibilities were often managed by a single corporation, which was frequently
subject to government oversight. Critics argue that this monopolistic structure restricts
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competition, service quality, and pricing. Customers have little
options due to monopolies, necessitating government control.
Regulations seek to encourage competition, maintain standards,
and include stakeholders. Deregulation eliminates government
control of the power sector, intending to lower prices and
increase competition. Governments utilize deregulation to
encourage investment and competitiveness. The success of
deregulation is determined by elements like as rules, market
structure, and competition levels. Nowadays, the majority of
electricity is generated by thermal power plants. Due to the
paucity of non-renewable sources, there is a shift toward
renewable throughout the globe. Solar electricity is trendy but
difficult to implement. Increasing the use of renewables reduces
the requirement for thermal systems. The storage system stores the
excess energy for use during peak demand periods. Including
renewables increases economic profit. Furthermore, the
introduction of a deregulated system in the renewable-associated
electricity industry has resulted in increased competition among
market stakeholders, which increases system revenues.

In recent years, there have been many studies carried out on
renewable sources, and energy storage systems in deregulated
environments. Saranyaa et al. (Shri Saranyaa and Peer Fathima,
2023) have conducted a comprehensive study that explores the latest
drifts and approaches in estimating the levelised cost and balancing
the supply-demand ratio in renewable energy sources. The paper
(Huang et al., 2018) explores different uses of energy storage
systems, including lowering the total expenses of power making
from sporadic renewable resources, managing the deployment of
numerous batteries in electrical networks, and optimizing earnings
through capitalizing on temporal price variations. The innovative
collaborative planning framework outlined in (Tian et al., 2020)
aims to coordinate the mixing of renewable sources and ESS (energy
storage systems) in the energy industries. Paper (Shree Das et al.,
2023) provides an extensive examination of various components
within renewable combined deregulated systems. The research (Tian
et al., 2022) utilizes the Stackelberg game model to propose an
integrated investment strategy for renewable energy, transmission
networks, and energy storage within deregulated electricity markets.
To maximize results, Shreya et al. (Shree Das and Kumar, 2024)
provide a professional analysis of an effective bidding strategy for
power networks that incorporate wind farms and maximize social
welfare (SW) by using the Monte Carlo simulation algorithm. A new
method “nested sampling with exploration chains” for Bayesian
model evaluation has been depicted in (Kumar et al., 2023).

Paper (Kumar et al., 2016) focuses on solving the unit
commitment (UC) problem with ramp rate and prohibited zone
constraints using ‘Gaussian Harmony Search’ (GHS) and ‘Jumping
Gene Transposition’ (JGT) algorithm (GHS-JGT). Huang et al.
(Huang et al., 2019) present a concise summary of the variables
and coefficients employed in the optimization problem concerning
the economic dispatch of power systems incorporating battery
storage. The study outlined in reference (Wang et al., 2023)
introduces a framework proposing a strategy for stakeholders to
apportion BESSs (battery energy storage systems) in deregulated
distribution networks. A new and innovative approach has been
developed in (Huang et al., 2020) for expansion planning problem
that focuses on coordination and robustness. The main objective is
to enhance both systematic flexibility and market efficiency. Kaneko

(Kaneko et al., 2020) introduces a method to determine the prime
radial-loop arrangement for a delivery grid incorporating solar
photovoltaic (PV), to diminish power losses. The study (Huang
et al., 2021) outlines a control approach for energy storage systems
employing Deep Reinforcement Learning (DRL) to mitigate the
growing unpredictability stemming from renewable sources.

Zhaoyuan (Wu et al., 2020) presents an effective approach for
combining wind power and CSP (Concentrated Solar Power) in a
two-price balancing market. A single-phase single-stage topology for
grid-connected solar photovoltaic (PV) systems is emphasized in
(Kumar et al., 2020). The most effective economic dispatch is
investigated using dynamic programming theory in (Liu et al.,
2021), taking into account the physical properties of storage
systems as well as the impact of the market. To maximize system
economics, a technique for estimating the appropriate size of an ESS
for wind turbine (WT) and PV generators in South Korea is proposed
in (Kong et al., 2019). The study (Kun Ren et al., 2023) presents a new
method for determining the amount of energy storage required in
microgrid systems. To maximize storage use, the storage is sized
according to the highest cumulative charge or discharge in the stored
energy’s temporal profile. Biggins et al. (Biggins et al., 2023) look into
the financial implications of putting a solar facility with ESS in various
parts of the United Kingdom. The study (Jabbari Ghadi et al., 2020)
looks at the usage of CAES (compressed air energy storage) in
advanced distribution systems (ADSs) and how it helps the grid.

The use of optimization-based approaches in power market
bidding is investigated in the research (Li et al., 2023) to
synchronize wind energy with battery energy storage devices. A
reconfigurable wireless power transfer system with constant current
for charging multiple batteries is discussed by (Liang et al., 2024), but it
does not extensively elaborate on the scalability of the system for larger
numbers of batteries. The study in (Dawn et al., 2019) offers a risk
assessment technique for evaluating the financial stability of power
systems in the face of erratic wind power. A coordinated bidding
approach in power markets and reserve capacity and frequency control
bidding in ancillary service markets is proposed in Paper (Aldaadi et al.,
2021) for a combined wind farm (WF) and CAES system. To lower
system risks in a power network, Das et al. (Das Arup et al., 2022)
recommend combining renewable energy sources with FACTS devices.
The impact ofWF and FACTS devices on system economics and risk is
investigated using different optimization techniques. To optimize
system profit and minimize system risk, the study (Bhusan Basu
et al., 2023) examines the challenges associated with integrating
wind energy into current electrical systems and offers the best
operating strategy for an FC and TCSC (thyristor-controlled series
compensator) in a wind-associated system. In (Ranganathan and
Rajkumar, 2021), a self-adaptive firefly algorithm-based method for
determining the ideal locations and configurations for UPFC placement
in transmission networks has been presented. A technological and
financial strategy for the best location of FACTS devices in transmission
networks is suggested in Ref (Zadehbagheri et al., 2023). to lower power
losses and increase network load capacity. A new active-disturbance-
rejection-controller optimized using magnetotactic bacteria
optimization and further improved with artificial neural networks is
used for power quality improvement in (Safiullah et al., 2022). Electric
vehicles (EVs) require recharging, which can be challenging in remote
areas, therefore solar panels are being considered for EV charging in
emergencies (Hussain et al., 2020). The paper (Xiang et al., 2018) gives a
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thorough review of techniques utilized to stabilized hybrid AC DC
distributed renewable energy systems. Different control strategies
utilized to stabilize isolated and interconnected multi-area hybrid
power systems are presented in detail in (Ranjan et al., 2021).

Following a thorough review of the literature, it was discovered that
there are several research gaps that are being addressed in the current
study. The research gaps identified in the literature are as follows.

• Saranyaa et al. (Shri Saranyaa and Peer Fathima, 2023) and
Shreya et al. (Shree Das and Kumar, 2024) highlight cost
estimation and bidding strategies, primarily from the
perspective of individual components or market
participants but there is a need for complete models that
integrate various system components and market participants
to maximize overall system profit while considering
interactions and dependencies.

• The existing research, such as the collaborative planning
framework in (Tian et al., 2020) and the Stackelberg game
model in (Tian et al., 2022) assumes static market conditions
but more studies are required to develop adaptive models that
can dynamically respond to market changes and technological
advancements, ensuring sustained economic profitability.

• While papers (Dawn et al., 2019) and (Das Arup et al., 2022)
discuss risk assessment and mitigation for specific elements
like wind power and FACTS devices, but comprehensive
system-wide risk mitigation strategies are limited.

• Studies such as (Kumar et al., 2016), (Liu et al., 2021), and
(Ranganathan and Rajkumar, 2021) utilize various optimization
techniques to address specific issues like unit commitment and
FACTS device placement but there is room for further
exploration of advanced optimization algorithms that can
simultaneously address multiple objectives in a deregulated
environment with high renewable energy penetration.

• Research (Huang et al., 2018), (Shree Das et al., 2023), and
(Wang et al., 2023) explores different uses and impacts of
energy storage and renewable energy but often within a
specific regulatory framework. More studies are needed to
understand how different regulatory policies affect economic
outcomes and risk profiles, and how market participants can
optimize their strategies in varying regulatory environments.

By addressing these gaps, future research can provide more
robust, adaptable, and comprehensive solutions for economic profit
maximization and system risk mitigation in deregulated power
systems which has been performed in the present work. The
chief objective of this work is to minimize the adverse effect of
disequilibrium pricing while optimizing the social welfare of a solar-
associated deregulated electrical network. A hybrid scheduling
method has been proposed in this work to maximize the cost-
effective functioning of FACTS devices in conjunction with solar PV
and energy storage systems to accomplish this goal.

• In a deregulated solar energy system, GENCOs and DISCOs
(Generation and distribution companies) establish power
supply agreements before power scheduling operation day,
depending on irradiance and temperature of solar PV. If real
solar radiation and temperature differ from predicted,
GENCOs may face price imbalances. The Independent

System Operator (ISO) has the authority to either penalize
or reward GENCOs based on these discrepancies.

• GENCOs are using energy storage devices tomanage this power
shortage issue and minimize the difference between actual and
forecast solar power output. Using storage devices can reduce
power fluctuations, reduce stress on thermal plants, and
increase economic benefits. A thermal-solar-fuel cell hybrid
system has been implemented in this work to reduce cost
imbalances and provide additional electricity to the grid.

• This study also looks into how combining a UPFC and FC
might assist minimize the effects of price imbalances. The
study examines the impact of solar power integration on
system voltage profiles and Locational Based Marginal
Prices (LBMP) in a deregulated context.

• The system risks were evaluated using VaR and CVaR, with
the addition of FC and UPFC leading to risk reduction.
Economic risks were assessed using SQP and SMA
optimization techniques. The study stresses the relationship
between VaR, CVaR, social welfare, and generation costs.

• SQP is based on linear programming, while SMA is a meta-
heuristic optimization method. To confirm and demonstrate
the universal applicability of the proposed technique, both
linear and meta-heuristic optimization approaches were
investigated. Instead of SMA, different optimization
approaches can be utilized, but the proposed strategy will
still provide the same moderated output pattern.

• The work was completed using the IEEE 39-Bus New England
system, however, other big and small systems will produce the
same output situations, demonstrating the usefulness of the
proposed work.

This work incorporates the FC and UPFC, as well as solar
electricity, to increase societal welfare while minimizing system risk.
The fundamental novelty of this study is the introduction of SMA
optimization techniques to tackle the considered problem. The
structure of the paper is as follows:

Section 1: The key target of this section is to explore the
difficulties of the background investigation, as well as the key
components that underpin this work.

Section 2: Within this portion of the paper, the mathematical
strategy that has been employed to authenticate the work being
presented is comprehensively expounded.

Section 3: This section aims to offer a comprehensive summary
of the objective functions and the associated constraints that exist
within the power systems.

Section 4: This section provides a detailed explanation of the
recommended approach for evaluating the socio-economic impact
of the deregulated electricity system.

Segment V: In this concluding section, a comprehensive
demonstration is provided for the outcomes of the previously
mentioned segments, which encompass the integration of solar
PV, UPFC, and FCs.

2 System modeling

This section introduced the components of the study systems.
Here, all the related mathematical models that are essential to
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organize the presented work are discussed with accompanying
constraints. This part also includes a brief explanation of several
optimization approaches.

2.1 Solar power

The following mathematical formula determines how much
power (P) a solar photovoltaic (PV) array produces:

P � Ipv × V (1)

where V is the supply voltage and Ipv is the photovoltaic current.

Ipv � npIph − npIsat e
qF

AikT − 1[ ] − npF

rsh
(2)

F � Vpv

ns
+ Ipvrs

np
(3)

Iph � S
1000

Isc + ki T − Tr{ }[ ] (4)

Isat � Irr
T
Tr

[ ]
3

e
qEg
Aik

1
Tr

− 1
T

[ ] (5)

The number of parallel and series-connected PV cells is
represented by np and ns. Iph and Isat are the notation for the
photocurrent and reverse saturation current. Ai, T, k, and q
represent the ideality factor, absolute solar cell temperature,
Boltzmann constant, and electron charge. Vpv stands for
photovoltaic voltage. F is a derived variable from Vpv, Ipv, ns, np,
and rs (PV cell series internal resistance). In Equations 2, 3, ηpIph
shows the current generated by all the PV cells connected in parallel
due to incident sunlight, whereas e(

qF
AikT

) − 1 describes the exponential
increase in current with the voltage (F) across the cell. This
exponential behavior is characteristic of a diode and npF

rsh
denotes

the current loss due to shunt resistance, which accounts for leakage
currents through alternative paths other than the intended circuit.
This current is proportional to the voltage (F) and inversely
proportional to the shunt resistance rsh. Equation 4 calculates Iph
using incident solar power (S), short-circuit current (Isc), and cell
temperature. ki is the short-circuit current temperature coefficient,
Tr is the reference temperature, and Irr is the rated saturation
current. The energy band gap is denoted as Eg.

2.2 Risk analysis tools

Risk assessment tools utilized in this study encompass VaR and
CVaR. These assessment techniques are performed based on
probabilistic lessons and assurance confidence stages (α). VaR
quantifies the minimum loss at the (1-α) percentile, whereas
CVaR illustrates the average loss mechanisms.

The expression f(X,Y) represents the loss components associated
with the judgment vector X, drawn from a specific subset X of R, and
the arbitrary vector Y in R. The probability p(Y) represents the
likelihood of loss of components f(X,Y), which is constrained by a
maximum threshold (ξ) (Biggins et al., 2023). Equations 6, 7 shows
mathematical formulation of VaR and CVaR:

VaR � Max ξϵR: ψ X, ξ( )≥ α{ } (6)

CVaR � Max
1

1 − α∫f X,Y( )≥ ξ
f X,Y( )p Y( )dY (7)

Figure 1 illustrates the visual representation of the risk
assessment parameters. The highest level of risk within the
system is indicated by the maximum negative VaR and CVaR
values. To minimize both system loss and system risk, it is
advisable to move towards the right side.

2.3 LBMP

The LBMP is the price that benefits both product providers
and purchasers. In other terms, the LBMP is the price at which
the market becomes balanced. LBMP is often referred to as the
MCP (market clearing price). In addition, the MCP is the price
where the demand and supply curves connect, as shown
in Figure 2.

The demand curve defines the quantity of a product or item
that buyers are willing to purchase, whereas the supply curve
describes the quantity of a product or commodity that is made
and provided to the market at various prices. The quantity of a
product in the market decreases when its price is higher, while
the quantity of that product grows when its price is lower. The
relationship between the price and quantity of a product is
inversely related to a demand curve, meaning that the
demand curve slopes downward. On the supply curve,
however, the quantity of a product gradually grows when its

FIGURE 1
Graphical representation of VaR and CVaR.

FIGURE 2
Graphical representation of MCP.
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price is higher, and swiftly declines when its price is lower. The
MCP is the point at which the demand and supply curves cross.
There will be no surpluses or shortages in the market at the MCP
point. As a result, the product’s price becomes equal to
its quantity.

2.4 UPFC

The UPFC is a commonly used device for managing power
and voltage flow in electrical transmission systems. It can adjust
the series reactance of the transmission line and inject or extract
shunt reactive power at the connected bus. It improves power
system stability and reliability and promotes efficient energy use.
The UPFC is crucial for power utilities and grid operators to
connect and integrate different power systems and grids globally.
The UPFC’s reactance value is determined by the transmission
line’s reactance at its installation location as shown in Equations
8, 9.

XLine � Xij + XUPFC (8)
XUPFC � KUPFCpXLine (9)

The reactance of a transmission line (XLine) is determined by
combining the reactance of the line (Xij) and the reactance of the
connected UPFC (XUPFC). The equation includes a variable
representing the UPFC’s compensation level (KUPFC) (Dawn and
Tiwari, 2016).

2.5 FC modeling

The FC model has two parts: an electrolyzer and an FC. The
electrolyzer turns water into hydrogen. The FC converts
hydrogen into electricity. The chemical interaction between
hydrogen and oxygen is important for the FC. It makes
electricity, heat, and water. Hydrogen is stored in tanks for
short and long-term use. Hydrogen storage is better than
other storage options. The FC system works during low and
high-demand periods (Bhusan Basu et al., 2022).

During low-demand phases, hydrogen is produced by
the electrolyzer and stored for later use. The energy
absorbed by the electrolyzer (Eelz) is calculated as in
Equation 10 below:

Eelz � hvlH2
× Ep

H2

ηelz
(10)

In this equation, Ep
H2

represents the hydrogen generated
by the electrolyzer, ηelz indicates the electrolyzer’s efficiency,
and hvlH2

specifies the minor heating rate of hydrogen.
In peak demand, the FC uses the kept hydrogen to
generate energy. The FC’s energy (Efc) is expressed by
the equation:

Efc � ηfc × fcconH2
× hvlH2

(11)

In Equation 11, fcconH2
indicates hydrogen intake in the FC,

whereas ηfc reflects FC efficiency.

2.6 SMA

Shimin Li, in the year 2020, was the mastermind behind the
groundbreaking development of the SMA (Das A. et al., 2022). This
revolutionary strategy is based on a population-centric approach,
harnessing the innate swinging motion of the
Physarumpolycephalum, commonly known as the slime mould. The
term “slimemould” itself is derived from the concept of fungus, and it is
under this umbrella that some fundamental processes are executed to
yield the most optimal results, just like other heuristic optimization
methods. It is worth noting that slime moulds exhibit a fascinating
behavior of selecting the food source with the highest concentration,
taking into account factors such as weight, speed, and accuracy.
Furthermore, these peculiar biological attributes of slime moulds
enable them to simultaneously consume multiple sources of
nourishment, truly showcasing their exceptional capabilities.

2.7 Parameter setting for SQP and SMA

Sequential Quadratic Programming (SQP) is an iterative
method for nonlinear optimization. The key parameters to
set include.

• Initial Guess: An initial feasible solution for the power
flow problem.

• Tolerance Levels: Criteria for convergence, typically for objective
function value change and constraint satisfaction.

• Maximum Iterations: The maximum number of
iterations allowed.

• Line Search Parameters: Parameters for the line search
algorithm used within SQP.

• Penalty Parameters: Penalty factors for handling constraints.

Slime Mould Algorithm (SMA) is a nature-inspired algorithm,
and the key parameters include.

• Population Size:Number of candidate solutions (slime molds).
• Maximum Iterations: The total number of generations the
algorithm will run.

• Weighting Coefficients: Parameters that control the influence
of attraction, repulsion, and diffusion behaviors in SMA.

• Convergence Criteria: Threshold for stopping the algorithm
based on changes in the best solution.

2.7.1 Sensitivity analysis
Performing a sensitivity analysis involves systematically varying

these parameters to observe their impact on the performance of the
algorithms. Here’s a step-by-step process.

• Identify Key Parameters: Select a few critical parameters from
both SQP and SMA (e.g., population size, maximum
iterations, tolerance levels).

• Vary One Parameter at a Time: Change one parameter while
keeping others constant to isolate its effect.

• Measure Performance: Evaluate the performance using metrics
such as convergence rate, solution quality (e.g., total
generation cost), and computational time.
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• Analyze Results: Plot the results to visualize how changes in
each parameter affect the performance. Look for patterns or
thresholds where performance significantly improves
or degrades.

• Iterate: Based on the findings, refine the parameter settings
and repeat the process if necessary to find the optimal
combination.

3 Objectives

In a regulated power system, there is no clearness between the
GENCOS and the consumers regarding the economic aspect.
This scenario may be advantageous for the GENCOS but creates
huge trouble for the consumers. To mitigate this issue the
deregulated system is been introduced to boost the profit of
the consumers by creating perfect rivalry among the market
companies. Customers benefited from the deregulated market
(i.e., received a social benefit) as a result of enhanced
transparency and competitiveness. ISO (Independent System
Operator) performs a significant function in this scenario by
regulating the power market. The LBMP is fixed through the
optimization technique after the ISO gathers the quotes from
GENCOS and DISCOS. The competitive electricity market is
considered to be a crucial part of the day-ahead market that
supports society economically. In a renewable integrated system,
ISO must receive information from GENCOS on upcoming
power generation in the day-ahead market. If there is a
mismatch between projected and actual solar power output,
ISO may impose fines or incentives to the solar plant to make
up the gap, which is known as the disequilibrium price.

3.1 Objective function 1

The purpose of this work is to maximize the profit of a solar-
integrated deregulated electric system, despite the negative
consequences of a price disequilibrium may reduce it. To mitigate
the negative consequences of disequilibrium pricing, a solution for
improving the performance of solar PV systems in combination with
FCs and UPFC has been developed. The FC serves as an additional
source of energy, reducing the strain caused by both predicted and
actual solar energy. The FC strives to uphold the agreements reached
between GENCOS and ISO by seeking to limit the amount of power
difference generated by the solar plant. The recommended solution was
implemented using SQP. A test system is taken into account using the
NBUS number of buses, NPTL power transmission lines, NLD loads, and
NG generators. To exploit social value and income while diminishing
generation costs and system financial risk in the framework of
disequilibrium pricing, the study attempts to successfully incorporate
UPFC and FC across a renewable combined system. The operational
research including a renewable integrated system must take the
disequilibrium pricing into account. The system earns more
benefit from a positive disequilibrium price than it does from a
negative disequilibrium price. Such an outcome is seen as a result
of the grid operators applying incentives and punishments to
GENCOs at the same time. The goal of this research is to

increase system profit while lowering the risk to the economy.
Equation 12 shows the objective functions:

PMAX x, t( ) � RT x, t( ) + DP x, t( ) − GCT x, t( ) (12)
Here, the goal is to exploit overall system profit, represented by

PMAX (x,t), at a time ‘t’. The earning profit belongs to the generating
company. Therefore, these values will be maximized after the
renewable integration. However, as the system transitions from
regulated to deregulated, these values will fall. Three factors
interact to determine the overall profit: total revenue (RT(x,t),
disequilibrium pricing (DP(i,t), and total generation price
(GCT(i,t), which includes both thermal and solar generation).

RT x, t( ) � ∑N

x�1PR x, t( ). LBMP x, t( ) (13)

DP x, t( ) � ∑N

x�1 EC x, t( ) + SC x, t( ) PE x, t( )
PR x, t( )( ).2( ). (PR x, t( )

− PE x, t( ) (14)

Equations 13, 14 demonstrate the total income and disequilibrium
price computation, where PR signifies the real power provided by the
solar power plant at the stated time ‘t’ and PE represents the predicted
power generated at the same time. SC represents the shortfall charge
rate, whereas EC shows the excess charge rate. The disequilibrium
price is calculated by adding the difference between the real and
predicted power, as well as the product of the charge rates. In a solar-
integrated system, the discrepancy between predicted and actual sun
irradiation and temperature is used to calculate disequilibrium
pricing. In a competitive power system, the disequilibrium price
has a direct impact on the system’s economics.

GCT x, t( ) � GCTher x, t( ) + GCsolar x, t( ) + ICUPFC (15)
Equation 15 calculates the system’s overall generation cost by

combining the generating cost of conventional and solar power
plants of a certain bus at a particular time and also the cost of UPFC
employed in the system. Here, GCT(x,t) stands for the system’s overall
generation cost at bus-n and time ‘t’. GCTher(x,t) represents the
generation cost of conventional power sources like thermal energy.
The cost of solar energy generation is denoted by GCsolar(x,t). ICUPFC

represents the investment cost of the system’s UPFC.

GC x, t( ) � ∑N

x�1 ax + bxPR x, t( ) + cxP
2
R x, t( )( ) (16)

The coefficients of the quadratic cost function for the nth
generator are ax, bx, and cx, which are utilized in Equation 16 to
express GC(x,t). The FC may be used to reduce power disparities
and compensate for discrepancies between real solar power (RSP)
and expected solar power (ESP).

SC x, t( ) � 1 + γ( ).LBMP x, t( ),EC � 0; if PE x, t( )> PR x, t( ) (17)
EC x, t( ) � 1 − γ( ).LBMP x, t( ), SC � 0; if PE x, t( )< PR x, t( ) (18)

EC x, t( ) � SC x, t( ) � 0; if PE x, t( ) � PR x, t( ) (19)
Here ‘γ’ is the price disequilibrium coefficient. Equations 17–19

illustrate the link between excessive and insufficient charge rates by
accounting for the real and expected temperature and solar
irradiance. It ranges from 0 to 1. In this study, a value of 0.9 is
taken into account.
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The social benefit is inversely proportional to the power
producers’ benefit. So, the social benefit will be more when the
power generator’s profit is less and vice versa.

3.2 Objective function 2

Min . VaR � Max{ ξϵ _R: ψ X, ξ( )≥ α} (20)

Min . CVaR � Max
1

1 − α∫f X,Y( )≥ ξ
f X,Y( )p Y( )dY (21)

Equations 20, 21 show the roles of VaR and cVaR, respectively.
The system risk has an inverse connection with VaR and CVaR. This
implies that the system risk level is determined by the lowest or
highest negative VaR and CvaR values, respectively.

Therefore, risk can be decreased by shifting towards the
right side from the left side tail of the system risk feature
(illustrated in Figure 1), implying an upward trend in the
values of VaR and CVaR. One of the primary aims of
the present effort is to lower the generation cost. Social
welfare is maximized when VaR and cVaR values lie on the
rightmost tail of the curve, suggesting the generation cost is the
lowest. Thus, there is an apparent connection between social
wellbeing, VaR, and cVaR. The numerous limitations identified
in the references allowed the optimal power flow (OPF) solution
to be achieved.

3.2.1 Operating constraints of FC
An FC generates reliable and clean power. The electrolyzer uses

excess electricity during the power demand period to produce
energy that may be kept in a hydrogen reservoir. And the stored
electricity may be used to meet the demand when the grid is running
low on power. Equation 22 shows the lowest and highest limitations
for the electrolyzer’s power usage:

PCELZ
Min ≤PCELZ ≤ PCELZ

Max (22)
The limitation of the electrolyzer’s hydrogen output is also given

by Equation 23:

HMin
2 ELZ ≤H

.
2ELZ ≤HMax

2 ELZ (23)

In addition, while the system is in FCmode, the stored hydrogen
creates electricity to satisfy peak demand. As a result, the constraints
are defined as in Equations 24, 25:

PFC Min
Gen ≤PFC

Gen ≤P
FC Max
Gen (24)

HMin
2 FC CONS ≤H.

2FC CONS ≤H
Max
2 FC CONS (25)

B. Optimal power flow constraints.
The real power balance equation is shown in Equation 26:

∑NG

i�1Pgi − Ploss − PL � 0 (26)

Pgi denotes the real power generation, Ploss and PL is the system’s real
power exported to the grid and real power utilized by the
system’s loads.

Ploss � ∑NPTL

j�1 GJ Vi| |2 + Vj

∣∣∣∣ ∣∣∣∣2 − 2 Vi| | Vj

∣∣∣∣ ∣∣∣∣ cos δi − δj( )[ ] (27)

The power losses in the system are calculated using Equation
27. Here, Ploss is the system’s power loss, GJ is the conductance
in the transmission line jth in the system, Vi and Vj are
the voltage magnitudes at the receiving and transmitting
points. The voltage phase angles at the transmitting and
receiving ends of the jth transmission line are denoted by δi
and δj respectively.

Pi –∑NBUS

K�1 Vi VKYik| | cos θiK − δi − δk( ) � 0 (28)
Qi +∑NBUS

K�1 Vi VKYik| | sin θiK − δi − δk( ) � 0 (29)

The active power flow from bus-i to all other buses in
the system is computed using Equation 28 while reactive
power is computed using Equation 29. Vi is the magnitude
of the voltage at bus i; Vk is the magnitude of the voltage
at bus k; and Yik is the admittance between buses i and k.
The phase angle difference between buses i and k is
represented by θiK. The voltage phase angles at buses i and k
are represented by δi and δk.

3.2.1.1 In-equality constraints

Pgi
min ≤ Pgi ≤Pgi

max i � 1, 2, 3 . . . . . .NBUS (30)
Qgi

min ≤Qgi ≤Qgi
max i � 1, 2, 3 . . . . . .NBUS (31)

Vi
min ≤Vi ≤Vi

max i � 1, 2, 3 . . . . . .NBUS (32)
ϕi
min ≤ϕi ≤ϕi

max i � 1, 2, 3 . . . . . .NBUS (33)
TLl ≤TLl

max i � 1, 2, 3 . . . . . .NPTL (34)
Pgi
min and Pgi

max are the smallest and most extreme actual power
generated at the PV bus. Qgi

min and Qgi
max are the least and supreme

reactive power values. Pgi and Qgi indicate actual and reactive
power. Equations 30, 31 confirm that the PV bus’s actual
and reactive power generated remains within the required
limitations as shown in Equation 32. The lowest and extreme
voltage magnitudes are represented by Vi

min and Vi
max. The

inequality Vi
min ≤Vi ≤Vi

max assures that the magnitude of the
voltage at the PQ bus stays within the parameters indicated in
Equation 33. ϕi

min and ϕi
max are the lowest and extreme phase

angles that are capable of being maintained at the PQ bus,
respectively. The optimum possible transmission of the
associated line that links the line TLl is represented by TLlmax

as shown in Equation 34.

3.2.2 UPFC constraints

KUPFC
min ≤KUPFC ≤KUPFC

max (35)
QUPFC

min ≤QUPFC ≤QUPFC
max (36)

Equations 35, 36 relates to value constraints on a variable named
KUPFC and QUPFC. The given value indicates the UPFC’s control
parameter. ‘min’ and ‘max’ are the symbols that represent the least
and supreme values of KUPFC and QUPFC.
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4 Flow chart of the proposed method

The flow charts for the proposed method are shown in
this section.

The steps involved in the approach that is being provided are
as follows.

• Scenario generation by considering different abnormal
conditions in the power system.

• Measurement of VaR and CVaR for all scenarios.
• Choose the most risky scenarios based on the VaR and
CVaR values.

• Optimal placement of solar plant based on BSI values and
check the system economy and risk improvement.

• UPFC placement based on LCF values and check the system
economy and risk improvement.

• Compare the LBMP and voltage profile with and without
considering the solar plant.

• FC placement in the system and verify the profit
improvement scenario.

The process for calculating the system profit and
disequilibrium pricing is shown in Figure 3. UPFC is a
device that modifies the impedance of the transmission line
and injects or absorbs reactive power from the bus to regulate
the flow of power in power systems. An ideal method for
allocating UPFCs in a power system is shown in Figure 4.
The procedure computes the objective for each case and
inserts a UPFC into the system’s specified line. The goal of
the optimization problem is expressed mathematically by the
objective function. Lowering the cost of power generation in the
power system is the goal function in this instance. Lastly, using

FIGURE 3
Flow-chart for DP calculation.
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the smallest goal function, the algorithm chooses the best UPFC
configuration.

5 Results and discussions

The proposed technique is put to the test using the IEEE
39-bus New England practical system. The New England
practical system, which consists of 39 buses, is a real-world
power system used for study and analysis. It is made up of
39 buses, ten generators, and 25 loads (Biggins et al., 2023).
Figure 5 displays the connection diagram of the considered
system. The proposed technique is being evaluated for its
efficacy in solving a specific problem or accomplishing a
specific objective. The outcomes of these tests will assist in

determining whether the proposed technique is a feasible
solution to the problem at hand.

The complete implementation and validation of the suggested
technique took five separate case studies on the system into
account. The steps to accomplish the proposed work are
outlined here.

Case 1. Create scenarios and investigate the connection between
VaR and CVaR along with system objectives.

Case 2. Choosing the maximum critical circumstances and the
utmost complex buses (for solar power installation).

Case 3. Identifying the system’s most congested line and placing the
UPFC at that point.

FIGURE 4
Flow-chart for placement of UPFC.
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Case 4. Investigate the influence of real and expected solar power
on system economics and hazards.

Case 5. Place the FC in the examined system and calculate its profit.
Case 1: It involves generating several scenarios (120 in total)

based on different factors such as generator outages, transmission
line outages, and load increments. Out of these 120 possibilities,
40 are rated as having the highest risks. The degree of risk for these
selected scenarios is calculated using VaR and CVaR. Table 1
displays the 40 scenarios studied, as well as the objective function
value (i.e., system generation cost). The ‘Scenario (Line Outage)’ in
Table 1 represents the chosen cases in which different line outages
have been considered. The power system operation is very uncertain
due to the chances of abnormalities in the system. Given this
premise, many situations were chosen to test the effectiveness of
the suggested technique. VaR is a statistical term that calculates the
greatest possible loss that an investment or portfolio might incur
over a certain period with a particular level of confidence. It is
determined using the probabilistic distribution of the portfolio’s
returns. CVaR, also known as Expected Shortfall, is a risk metric that
calculates the expected loss above the VaR threshold. It gives a more
thorough risk assessment than VaR alone. In this scenario, the VaR
and CVaR values are calculated using the LBMP of each bus in the
system. The application of VaR and CVaR in this situation aids in
identifying the scenarios with the largest risks, which can then be
further evaluated to find the ideal location of solar plants and
FACTS devices to reduce risks and increase societal welfare.

To make the research more efficient and well-represented, the
40 scenarios selected were divided into two-halves, each including
20 scenarios. Figures 6, 7 illustrate the link between VaR, CVaR, SW,

and the objective function. VaR and CVaR are risk value estimates
that are inversely proportional to system risk. The objective function
is a measure of multiple system costs, and its smallest value is
desirable to reduce total system costs. Figures 6A, C demonstrate
that the objective function is inversely related to VaR and CVaR.
This indicates that the smallest value of the objective function
corresponds to the greatest value of VaR and CVaR, and vice versa.

Figures 6B, D show that social wellbeing has a direct relationship
with VaR and CVaR. Because the considered objective function (F)
reflects numerous system expenses, its smallest value is wanted to
achieve the lowest total system cost. As a result, the risk is reduced to
the minimum value of the goal function, which is also desirable.

Case 2: Because of the negative-maximum (or minimum) values
of VaR and CVaR, scenario no. 27 is the most catastrophic situation
(i.e., outage of transmission lines linked between buses 1–2, 3–18,
10–13, and 12–11) among all created scenarios in the system (shown
in Figures 6, 7). The increased risks lead to lower social welfare and
profit because increased system risk needs additional security
measures for system stability, necessitating more economic
consideration. To minimize the objective function, the values of
VaR and CVaR must be maximized (or negative-minimized).
Scenario 27 is chosen to maximize societal welfare while
reducing system hazards through appropriate solar plant
locations. Considering the variability in solar power generation
due to the different environmental parameters, six different solar
power capacities have been considered i.e. 1, 1.5, 2, 2.5, 3, and 5MW.
The objective is to determine the best location for these solar power
sources in the system. Solar plants must be placed on the system’s
most vulnerable buses. To appropriately situate the solar plant in the
system, the Bus Sensitivity Index (BSI) was introduced in this work.

FIGURE 5
Single-line illustration of considered new england system (Biggins et al., 2023).
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This algorithm determines the most sensitive bus in the system and
where solar plants should be located to enhance total value across
the network. A priority list is created by grouping the BSI values in
decreasing order (as seen in Table 2). The bus with the highest BSI
rating is the most sensitive one in the system. BSI is mathematically
defined as in Equation 37:

BSIm � LBMPm,Base − LBMPm,LO( )∣∣∣∣ ∣∣∣∣
LBMPMax ,LO

(37)

Where, BSIm denotes the bus sensitivity index at bus-m.
LBMPm,Base and LBMPm,LO are the values of bus-m’s LBMP in
the base conditions and with a line outage situation. LBMPMax ,LO is
the extreme value of LBMP in the system after all contingency
requirements have been met.

The top six buses with the highest BSI values (excluding
generator buses) are chosen for solar plant deployment. Bus
number 32 is also among the top six buses in terms of BSI
values, but it is omitted since it has a conventional generator. So,
solar plants are placed on buses no. 5, 6, 7, 8, 10 and
11 respectively. All conceivable combinations of selected six
values of solar power have been installed in the system and
the values of VaR, CVaR, as well as the overall system
generating price, have been measured.

Table 3 shows the top ten finest solar plant site alternatives in the
system, along with their VaR, CVaR, and system generation price
(including SGC). Scenario 9 has the lowest values for VaR, CVaR,

and overall cost. When solar plants are added to the system, the
lowest cost (55933.34 $/h) is achieved, as opposed to the base case
cost (56109.55 $/h). Table 1, Table 3, Figure 6, and Figure 7 show
that the establishment of a solar power plant in the analyzed system
reduces system risk and generating costs. Figure 8 show a
comparison of VaR, CvaR, and system total generating costs
before and after solar installation. The comparison of the top
10 solar power location combinations (given in Table 3) is
displayed in these graphs.

In this instance, the worst conditions (i.e., combination no. 19)
were chosen to test the efficiency of the provided strategy in the
following phase (i.e., employing the optimal UPFC installation).

Case 3: This phase provided an approach for reducing a power
system’s economic risk by optimizing the location of solar plants
and FACTS devices. The previous stage in this work revealed that
putting solar power plants in certain places can help to reduce
economic risk by increasing the value of risk assessment criteria.
The purpose of this scenario is to determine the optimal position
for FACTS devices in the system. The optimal placement of FACTS
devices can contribute to the power system’s stability and
efficiency. In this study, a new factor, the Line Congestion
Factor (LCF) shown in Table 4, was developed to identify the
most crowded transmission line in the system and where FACTS
devices should be placed to reduce the negative impact of system
congestion on the customer.

The mathematical formulation of LCF is shown in Equation 38:

TABLE 1 Objective function value for considered scenarios.

Sl Scenario (line outage) Obj. Func. ($/h) Sl Scenario (line Outage) Obj. Func. ($/h)

1 Base 55682.67 21 15_16 55720.93

2 1_39 55784.6 22 12_13, 15_16 55721.04

3 1_2 55776.26 23 9_39, 12_11, 15_16 55724.53

4 2_3 56062.95 24 1_2, 12_11, 15_16 55945.72

5 2_25 55739.51 25 1_2, 3_18, 12_11 55750.08

6 3_4 55695.96 26 1_2, 3_18, 12_11, 14_15 55854.71

7 4_5 55710.79 27 1_2, 3_18, 10_13, 12_11 57152.71

8 4_14 55750.56 28 1_2, 3_18, 10_13, 13_14 57066.59

9 5_8 55715.28 29 1_2, 3_18, 10_13, 12_13 57060.19

10 6_7 55753.40 30 1_2, 2_25, 3_18, 10_13 57009.78

11 6_11 56108.01 31 1_2, 3_4, 3_18, 10_13 56670.63

12 7_8 55696.81 32 1_2, 4_5, 3_18, 10_13 56498.90

13 8_9 55686.32 33 1_2, 5_8, 3_18, 10_13 56413.19

14 9_39 55681.67 34 1_2, 3_18, 16_17 55954.52

15 10_11 56109.55 35 1_2, 3_18, 16_21 55924.14

16 10_13 56201.74 36 1_2, 3_18, 14_15, 16_21 56103.60

17 12_11 55682.66 37 1_2, 3_18, 14_15, 28_29 55876.51

18 12_13 55682.66 38 1_2, 3_18, 14_15, 26_28 55876.70

19 13_14 56883.21 39 1_2, 3_18, 14_15, 23_24 56101.94

20 14_15 55718.36 40 1_2, 3_18, 14_15, 22_23 55857.74
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LCFmn � LPFmn,Max − LPFmn( )∣∣∣∣ ∣∣∣∣
LPFmn

(38)

Here, LCFmn is the LCF for the transmission line connecting
between buses m and n. LPFmn,Max signifies the maximum line flow
in the system, and LPFmn represents the actual line rating of the line
joining buses m and n. As in the last cases, other factors LCF were
used here to detect the supreme congested lines to place UPFC
optimally. Table 10 displays the significant list of congested lines
present in the considered system in increasing order of LCF values.
Lines 20, 5, 37, 35, and 14 have been identified as the most crowded

lines with the lowest LCF values. Now, UPFCs have been installed on
particular transmission lines i.e. 5, 14, 20, 35, and 37 across the
system. The results for the best location of UPFC devices are
presented in Table 5.

In Table 5, QUPFC is the reactive power injected or withdrawn
from the ‘to bus’ to which the UPFC is attached. KUPFC and QUPFC

operating ranges have vacillated from −0.7 to 0.2 and −100 to 100,
respectively. To determine the ideal UPFC range, the UPFC was put
on a specific transmission line, and the values of KUPFC and
QUPFC were changed concurrently within the given range while
measuring the values of the objective function for all cases. Finally,

FIGURE 6
Relationship between VaR, CVaR, SW, and objective function
(A–D) for scenarios 1–20.

FIGURE 7
Relationship between VaR, CVaR, SW, and objective function
(A–D) for scenarios 21–40.
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the optimum range was calculated using the lower values of the
target function (where the aim function is to reduce the cost of
system generation).

The total generating cost for various UPFC deployments in the
system is shown in Table 5. When UPFC is installed on line no. 20,
the total generating cost is the lowest. After the deployment of UPFC
at line no. 20, the total associated generating cost is 55881.352 $/h.
This cost is less than the base scenario total generation cost of
56109.53 $/h. The use of UPFC in the system helps to reduce system
risk, as seen in Figure 9. The system risk and generation cost are
reduced at a higher rate with the installation of FACTS devices and a
solar plant in the system.

Case 4: Solar energy is a versatile energy source as it differs in
intensity based on location and timing. A specific location in
India, Vijayawada, was analyzed to address current issues. Data
on solar irradiance and temperature was gathered for 24 h with a
time difference of 3 h. The solar irradiance and temperature data

of 5 time spans in a day (i.e. 7 a.m., 10 a.m., 1 p.m., 4 p.m., and
7 p.m.) have been considered. At night, solar irradiance is zero.
So, that period was not considered for the study. By applying
Equations 1–5, the amount of solar power generated per hour was
calculated and presented in Table 6. Till date, only a small
number of researchers have recognized the significance of the
fluctuations in solar power generation when it comes to system
economics. However, it is essential to acknowledge this factor
when attempting to optimize the operation of the system within a
deregulated system, as it cannot be disregarded. In deregulated
systems, it is imperative to consider the concept of disequilibrium
price, which arises from the disparity between the actual and
expected solar power generation, to ensure the welfare of society.
Solar plants are required to furnish the ISO with their estimated
power generation scenario before the date of operation in a
deregulated electricity system. The ISO oversees electricity
generation from various stations based on this data. However,

TABLE 3 Optimal placement of solar plant.

Combination no. Solar plant placement (in MW) VaR CVaR Total cost including SGC ($/h)

Bus5 Bus6 Bus7 Bus8 Bus 10 Bus 11

3 2 2.5 3 5 1 1.5 −0.243 −0.2673 55942.66

8 2 2.5 3 5 1.5 1 −0.2437 −0.2681 55945.18

9 2.5 3 5 1.5 1 2 −0.2429 −0.2672 55933.34

13 1 2.5 3 5 1.5 2 −0.2437 −0.2681 55945.24

15 3 5 1.5 2 1 2.5 −0.2430 −0.2673 55943.15

19 1 3 5 1.5 2 2.5 −0.2444 −0.2688 55942.28

21 5 1.5 2 2.5 1 3 −0.2430 −0.2673 55943.01

24 2.5 1 3 5 1.5 2 −0.2437 −0.2681 55945.2

27 1.5 2 2.5 3 1 5 −0.243 −0.2673 55943.06

29 2.5 3 1 5 1.5 2 −0.2437 −0.2681 55945.38

TABLE 2 Bus sensitivity Index (BSI) priority list.

Bus no. LBMP Bus sensitivity index (BSI) Rank

Base case (1) After line outage (2) Difference (1–2)

10 18.37 13.97 4.4 0.2294415 1

32 18.37 14.108 4.262 0.2222454 2

11 18.417 19.031 0.614 0.0320175 3

7 18.592 19.153 0.561 0.0292538 4

8 18.621 19.177 0.556 0.0289931 5

5 18.535 19.088 0.553 0.0288366 6

6 18.51 19.062 0.552 0.0287845 7

31 18.494 19.046 0.552 0.0287845 8

12 18.419 18.943 0.524 0.0273244 9

9 18.589 19.109 0.52 0.0271158 10
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FIGURE 8
Comparison of value-at-risk (VaR), conditional value-at-risk (CVaR), and system total generating costs before and after solar placement.

TABLE 4 Line congestion factor (LCF) priority list.

Transmission line no. From bus (FB) To bus (TB) Line congestion factor (LCFmn) Priority rank

20 10 32 0 1

5 2 30 0.035 2

37 22 35 0.119 3

35 21 22 0.191 4

14 6 31 0.205 5

39 23 36 0.274 6

33 19 33 0.363 7

10 5 6 0.395 8

34 20 34 0.534 9

3 2 3 0.617 10
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because of the unpredictability of solar irradiance and
temperature, solar plants may fail to provide the anticipated
energy, breaching market contracts and imposing an economic
cost on generating enterprises, a situation known as

disequilibrium pricing. The disequilibrium price, which
measures the discrepancy between predicted and real solar
data, takes into account all differences in expected and actual
solar irradiance and temperature. When the difference between
predicted and actual solar data is biggest, the disequilibrium price
is highest. When the expected solar power exceeds the actual
solar power, the shortfall charge rate is applied; when the real
solar power surpasses the projected solar power, the excess
charge rate is applied. If the projected and actual solar power
are identical, the shortfall and excess charge rates are zero.
Shortfall and excess charge rates can be used to compute the
electrical system’s total disequilibrium price. The disequilibrium
price is negative if the ISO penalizes the producing station for a
lack of renewable energy supply, and positive if the ISO
compensates the generating station for having an excess
supply of renewable energy.

Table 6 compares the expected and actual levels of solar
power for considered 5 situations. There are times when the
predicted solar power surpasses the real, and vice versa.
Furthermore, there are times when the predicted and actual
numbers are the same. Because of these changes, the system
may experience positive, negative, or zero disequilibrium pricing,
which can affect the system’s total profit. Table 7 and Figure 10
show the profits earned by the deregulated system for all

TABLE 5 Optimal UPFC placement.

Line no. From bus (FB) KUPFC QUPFC Inv. Cost of UPFC ($/h) Total generation cost ($/h)

5 2 0.2 2 3.436 55886.604

14 6 −0.7 2 3.281 55886.006

20 10 0.2 2 3.837 55881.352

35 21 −0.25 2 2.387 55886.595

37 22 −0.1 2 3.949 55888.501

FIGURE 9
Comparison of VaR, CVaR and system generation cost before
and after UPFC placement.

TABLE 6 Real-time expected (esp) and actual (asp)solar power data (InMW).

Time 7 a.m. 10 a.m. 1 p.m. 4 p.m. 7 p.m.

ESP 0.065 0.72 1.75 1.7 0.01

ASP 0.09 0.67 1.63 1.7 0.02

TABLE 7 System profit with and without DP.

Case/Hour Profit without
DP ($/h)

Profit with
DP ($/h)

Base case 3229.568 3229.568

7 a.m. 3251.235 3262.247

10 a.m. 3290.261 3272.921

1 p.m. 3356.328 3340.834

4 p.m. 3362.429 3362.429

7 p.m. 3235.63 3239.683
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5 scenarios along with the base case, taking into consideration the
disequilibrium pricing at selected locations. The base case is
considered when there is no solar power available in the grid
(i.e., nighttime). The findings show that the unpredictability of
renewable energy sources has hurt system profit in a few
circumstances. This is not a desirable consequence for
electricity producers. To increase total system profit, it is
critical to reduce the cost of disequilibrium. This can be

accomplished by deploying an adequate renewable energy
forecasting technique or energy storage device to prevent
power system disequilibrium.

Case 5: The UPFC is used to maximize profit in deregulated
systems while also improving the power system’s efficiency and
economic performance. UPFC installation requires establishing the
best cost-effective position and capacity for these devices in the
power system, which may be done by mathematical programming.
Reduced transmission losses, increased transmission capacity, and
enhanced voltage stability can all lead to cheaper operating costs and
higher profits for market participants such as generators and
transmission companies. Furthermore, UPFC adoption can help
to relieve congestion in the transmission network, allowing for better
utilization of existing infrastructure and reduced consumer rates.
Overall, UPFC placement is a useful device for maximizing profit in
deregulated systems since it improves the economic performance
and efficiency of the power system for both market participants
and consumers.

It has been observed through the analysis of Table 7 and
Figure 10 that the presence of disequilibrium prices has had a
detrimental effect on the overall profit of the system in numerous
instances. To address this issue, a methodology has been put forth

FIGURE 10
Comparison of system profit with and without DP

TABLE 8 System profit with DP and FC (In $/h).

Case/
Hour

System profit with DP
and without FC

System profit with
DP and with FC

Base case 3229.568 3231.038

7 a.m. 3262.247 3264.168

10 a.m. 3272.921 3274.561

1 p.m. 3340.834 3343.129

4 p.m. 3362.429 3364.782

7 p.m. 3239.683 3241.962

TABLE 9 System profit with DP after installation of FC and UPFC(In $/h).

Case/
Hour

System profit with DP and
without FC

System profit with DP
&installation of FC

System profit with DP and installation of
FC and UPFC

Base case 3229.568 3231.038 3233.254

7 a.m. 3262.247 3264.168 3266.387

10 a.m. 3272.921 3274.561 3276.627

1 p.m. 3340.834 3343.129 3345.269

4 p.m. 3362.429 3364.782 3366.814

7 p.m. 3239.683 3241.962 3244.268
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in this section which aims to optimize the system profit by
strategically placing FC and UPFC components in the presence
of DP. The utilization of FC-integrated systems is required to
mitigate the detrimental impact of disequilibrium pricing on
system profitability. When there is excess solar power during

off-peak load hours, the FC system employs an electrolyzer to
produce hydrogen, which is subsequently used to create electricity
at other times. Furthermore, FC technology covers the gap between
expected and real solar power schedules, therefore increasing
overall power generation. To maximize the system’s profit, a

TABLE 10 System profit with DP, FC, and UPFC with different optimization methods (IN $/H).

Case/Hour Profit with DP and installation of FC and UPFC
using SQP

Profit with DP and installation of FC and UPFC
using SMA

Base case 3233.254 3238.367

7 a.m. 3266.387 3271.624

10 a.m. 3276.627 3281.238

1 p.m. 3345.269 3350.128

4 p.m. 3366.814 3371.974

7 p.m. 3244.268 3249.438

FIGURE 11
Voltage Comparison With And Without Solar Power (In p. u.).

FIGURE 12
LBMP comparison with and without solar power (in $/h).
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fixed energy capacity with a 2 MW FC system was installed on bus
number 8, which has the highest demand (excluding the
generator bus).

The results demonstrate that installing the FC system enhanced
the system’s profit greatly since FCs are employed as energy storage
to lessen the gap between expected and actual solar output. Table 8
depicts the profit for the deregulated system after accounting for
disequilibrium pricing and the use of FCs. The UPFC installation
can increase system profit by lowering system congestion costs.
Table 9 shows the system profit once the FC and UPFC are installed.
As a consequence, it is possible to deduce that the FC location is
sufficient to optimize system profit while minimizing the influence
of disequilibrium pricing in the system. UPFC increases system
profit by cutting transmission line congestion while increasing
power flow capacity through the current transmission channel.

The solar power installation adds to the system’s safety and
security. Figures 11, 12 compare the system voltage profile and
location-based marginal price profile with and without the presence
of a solar facility. It can be observed that the voltage profile is
attempting to get the maintain closer to 1 p. u., which will increase
the system’s safety. The lower LBMP pricing gives a greater
economic advantage to society as a result of the installation of
solar electricity in the deregulated system.

To assess the capabilities and usefulness of this presented
strategy, several optimization methods, like Slime Mould
Algorithm (SMA), have been used in combination with
Sequential Quadratic Programming (SQP). Table 10 and
Figure 13 show the system’s profitability using various
optimization methodologies. According to the study,
integrating a solar plant with an FC system increased system
profitability above doing so without. The use of the SMA
optimization technique in a solar-FC hybrid system to
reduce disequilibrium pricing and system economic risk is a
significant advancement in this work. In all analyzed cases of
system profit maximization, SMA algorithms beat other
optimization methods.

All prior examples (from Step 1 to Step 4) have employed the
SQP. The SMA optimization approach, together with SQP, has been
implemented in this part of the work. Based on the findings, it is
possible to infer that combining UPFC and FC with the action of
SMA can give improved economic safety to the power network.

6 Conclusions and future work

This work introduces a novel technique for reducing economic
risks and determining the best site and parameter settings for UPFC
and solar facilities in a deregulated environment. The proposed
approach employs two novel indices based on location-based
marginal pricing and transmission line flows to identify critical
buses and lines in the system. These variables are then used to
optimize the location of solar plants and UPFC to reduce economic
risk. To assess the approach’s efficacy, a realistic IEEE 39-bus New
England system was tested. The results show that the suggested
technique efficiently decreases risk, optimizes system profit,
improves social welfare, and lowers overall generating costs. The
addition of solar power with UPFC reduces system risk, resulting in
higher system revenues and less congestion. Furthermore, the
addition of UPFC to the solar-powered system increases the
LBMPs of buses across the network, helping customers by
lowering energy costs. The study’s findings give useful insights
for power sector professionals, allowing them to make educated
decisions that maximize income while guaranteeing the energy
system’s stability and efficiency. The paper discusses the
utilization of an FC storage system to offset deviations in the
real-time power market caused by the integration of solar power.
The SMA algorithm is identified as the most effective optimization
technique in terms of improving the system’s economic
performance. There is a lot of potential for future study in this
area, and some of it is mentioned in this paper, such as extended
testing on bigger and more varied networks that may be
undertaken. The study in this paper focuses on solar PV,

FIGURE 13
System profit comparison with DP, FC and UPFCWIth different optimization methods.
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however, it may also be undertaken with other renewable sources
such as wind energy, etc. Assessing the environmental benefits of
the suggested approach, particularly in terms of emission reduction
and sustainability, can offer a comprehensive picture of its benefits.

The study proposes a promising approach to mitigating system
risk and improving the location of UPFC and solar power plants in a
deregulated system. But, some limitations can be considered for
future research such as the extensive consideration of the economic
and policy situation in different regions, which could affect the
applicability and effectiveness.
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