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Digital twins play an ever-increasing role in maximising the value of
measurement and synthetic data by providing real-time monitoring of physical
systems, integrating predictive models and creating actionable insights. This
paper presents the development and implementation of the Aerosense digital
twin for aerodynamic monitoring of wind turbine rotor blades. Employing low-
cost, easy-to-install microelectromechanical (MEMS) sensors, the Aerosense
system collects aerodynamic and acoustic data from rotor blades. This data
is analysed through a cloud-based system that enables real-time analytics
and predictive modelling. Our methodological approach frames digital twin
development as a systems engineering problem and utilises design patterns,
design thinking, and a co-design framework from applied category theory to
aid in the development process. The paper details the architecture, deployment,
and validation of a ‘Digital Shadow’-type twin with simulation/prediction
functionalities. The solution pattern is discussed in terms of its implementation
challenges and broader applicability. By providing a practical solution to
integrating all the digital twin components into a holistic system, we aim to help
wind energy specialists learn how to transform a conceptual idea of a digital twin
into a functional implementation for any application.
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1 Introduction

1.1 Rotor blade aerodynamic monitoring

Due to the increasing size and flexibility of wind turbine rotor blades, it is
becoming more and more important to measure and monitor their aerodynamic
and acoustic behaviour operation (Schepers and Schreck, 2019). This can help wind
turbine manufacturers (OEMs) to improve their aerodynamic models and blade designs,
owner/operators to optimise operation and researchers to understand complex aerodynamic
phenomena. The complexity of the installation and use of such measurement systems
means that there have not yet been a large number of publications on the topic, despite
the increasing demand. For example, the DanAERO project from 2013–2016 investigated
the aerodynamic and acoustic properties of wind turbine blades in wind tunnel and field
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tests (Madsen et al., 2016; Troldborg et al., 2013). The field tests
included instrumenting a 2 MW wind turbine rotor blade with 50
flush-mounted microphones. It was shown that such aero-acoustic
field measurements have the potential to provide a high added value
to the wind industry through furthered understanding of three-
dimensional effects. Furthermore, the international collaboration
IEA Wind Task 47 aims to cooperate and share experiences in
aerodynamic measurements on Megawatt-scale wind turbines1. A
more detailed study of previous literature can be found in the
introduction of a recent paper by the current authors (Barber et al.,
2022). It can be summarised that there is a large unmet need for
easy-to-install and affordable rotor blade aerodynamic monitoring
systems in the sector.

1.2 Digital twins

Digital twins are a promising technology for creating value
from wind turbine monitoring, such as rotor blade aerodynamic
monitoring, particularly when a scale-up of a single measurement
campaign is desired. A “digital twin” is a top-level conceptualisation
based on two fundamental principles: “duality” and “strong
similarity” (Grieves, 2022). The digital twin paradigm thus
spans such a broad range of applications that two particular
implementations may share few - or no - technological solutions
between them. Recently, the current authors proposed a digital twin
classification system based on a Simple Knowledge Organisation
System (SKOS) (W3C, 2009) data model, to act as a starting point
for the development of digital twins by allowing comparison or
solution re-use between implementations (Marykovskiy et al.,
2023a). An excerpt from the classification system is presented in
Figure 1, referencing some digital twin types that have previously
been described in literature, such as DigitalTwinPrototype
and DigitalTwinInstance described by Grieves and Vickers
(2017), DigitalModel, DigitalShadow, DigitalTwin

described by Kritzinger et al. (2018), and various types categorised
by their functionalities as described by Wagg et al. (2020).

When classified based on their functional capabilities
(Wagg et al., 2020), digital twins can range from ‘Supervisory’, in
which data from measurements is simply ingested and stored, to
‘Operational’, inwhich analysis of the operational data is undertaken,
to ‘Simulation/Prediction’, in which models, simulations, validation,
and verification and uncertainty quantification enhance the
measurements, to ‘Intelligent/Learning’, which includes Decision
Support Systems (DSS), and finally to ‘Autonomous/Management’,
in which autonomous asset control is implemented. According
to Wagg et al. (2020), the main transformative aspect of a digital
twin is to improve the predictive capability of a system by
augmenting computational models with data to create a virtual
prediction tool that can evolve over time. ‘Intelligent/Learning’
digital twins have recently been shown to allow accelerated
and informed decision-making related to physical systems
by representing them virtually and including a continuous
feedback loop between the virtual representation and a physical

1 https://iea-wind.org/task47/, last access: 01 March 2024.

FIGURE 1
Excerpt from Digital Twin Conceptual Model (DTCM)
SKOS taxonomy (Marykovskiy et al., 2023a).

system (Arista et al., 2023; D’Amico et al., 2022; Grieves, 2022;
Wagg et al., 2020; Zheng et al., 2021).

1.3 Developing digital twins in the wind
energy context

Recently, publications related to digital twins and DSS in
wind energy were reviewed by Marykovskiy et al. (2024) in
the broader context of artificial intelligence systems and domain
semantics. Most digital twin implementations in wind energy were
found to belong to the functional levels ‘Supervisory’ (26 out of
111), ‘Operational’ (22) or ‘Simulation-Prediction’ (60). Only three
papers belong to the functional levels ‘Intelligent-Learning’ (2)
and ‘Autonomous-Management’ (1). For wind energy Operations
and Management (O&M), previous ‘Supervisory’ or ‘Operational’
digital twins included continuous structural monitoring of a wind
farm (Hines et al., 2023). ‘Simulation/Prediction’ digital twins
included an augmented Kalman filter with a reduced mechanical
model to estimate tower wind turbine loads (Branlard et al., 2020),
integration of degradation processes in a strategic offshore wind
farm O&M simulation model using a Markov process for blade
degradation (Welte et al., 2017), and modelling the probabilistic
characteristics of mooring line fatigue stresses for the purpose
of risk-based inspection (Lone et al., 2022). ‘Intelligent/Learning’

Frontiers in Energy Research 02 frontiersin.org

https://doi.org/10.3389/fenrg.2024.1428387
https://iea-wind.org/task47/
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org


Marykovskiy et al. 10.3389/fenrg.2024.1428387

digital twins include a probabilistic framework for updating the
structural reliability of offshore wind turbine substructures based on
digital twin information (Augustyn et al., 2021).

This distinction based on functional capabilities, however, is not
the only possible classification of digital twin implementations. As
we can see from Section 1.2, it is also possible to distinguish and
group digital twins based on the manner in which the connection
between the physical object and its digital representation is achieved
or based on the fidelity levels of simulations employed. Here,
the specific technological solutions used in composing the system
into the one whole will highly depend on the use case and its
requirements.

The sheer variety of different types and applications of digital
twins has left many wind energy domain specialists struggling
to clarify development processes that suit their specific needs:
the passage from the conceptual idea of a digital twin to
a functional implementation is often unclear. There exist a
myriad of technology stacks, modelling and simulation tools,
algorithms and system integration requirements, the selection of
which is nuanced and made more complex by technical and
specialised jargon. This is not helped by the focus of previous
literature on the physical models, rather than on the system
architecture.

In its core, the digital twin conceptual model does not
necessarily imply an introduction or development of new modelling
techniques or simulation applications. However, practical solutions
to integrate all the digital twin components into a holistic system,
with all of its constituents interconnected and valorised, remain
obscure. For instance, one possibility to enable system orchestration
is through the use of semantic artefacts. The term ‘semantic
artefact’ is used to denote conceptualisations with various degree
of expressiveness, such as controlled vocabularies, taxonomies,
schemas and ontologies (Le Franc et al., 2020). However, in the
aforementioned review by Marykovskiy et al. (2024), a lack of
adoption of semantic artefacts in the research of digital twin and
DSS was found, reflected by the low number of publications that
refer to them (35 out of 181). This can be attributed to multitude
of factors that plague multi- and interdisciplinary developments
such as a natural tendency towards knowledge siloing within
organisations and communities (wind energy from information
technology professionals, industry from academia, etc.) as well as
to the overall digitalisation challenges in the areas of data, culture
and coopetition (Clifton et al., 2023). There is therefore a high value
for the wind energy community to present developed digital twin
instances from system architecture and technology implementation
points of view.

1.4 The Aerosense system

The Aerosense system was developed to address the high
demand for easy-to-use and cost effective rotor blade aerodynamic
monitoring systems combined with a high potential of digital twin
applications in this field, as mentioned in the previous two sections.
Aerosense is a cost-effective microelectromechanical systems
(MEMS)-based aerodynamic and acoustic wireless measurement
system that is thin, non-intrusive, easy to install, low power, and
self-sustaining, which was previously introduced by the authors of

this present paper (Barber et al., 2022). The hardware is composed
of sensor nodes installed on the blade and a base station receiving
and sending the data to the cloud (Figure 2A). Figure 2B shows a
sensor node of the Aerosense measurement system installed on a
wind turbine blade.

Previous publications related to this work have focused
strongly on the hardware development, showing that the sensors
are capable of delivering relevant results continuously in the
wind tunnel (Barber et al., 2022; Polonelli et al., 2023a).
Additionally, various methods for using the measurements to
provide added value to the wind energy industry have been
introduced, including Leading Edge Erosion (LEE) detection
and classification (Duthé et al., 2021), inferring angle of attack
and wind speed (Marykovskiy et al., 2023c), detecting structural
damage (Abdallah et al., 2022) and flow-field reconstruction (Duthé
et al., 2023). The overall design of the digital twin, including
software integration and the cloud data storage design, has not yet
been discussed.

1.5 This contribution

In this paper, we present and demonstrate the top-level system
design of a digital twin for wind turbine rotor blade aerodynamic
monitoring, which was developed as part of the Aerosense project.
By providing a practical solution to integrating all the digital twin
components into a holistic system, we aim to help wind energy
specialists learn how to transform a conceptual idea of a digital twin
into a functional implementation for any application. In Section 2
we present the system architecture of the Aerosense digital twin
from a conceptual point of view. Then, we discuss the system
design in Section 3, with a focus on the cloud data storage solution
and the software integration. In Section 4 we present the results
of a field test case, including the test set-up, the measurement
results, and the demonstration of added value. In Section 5 we
discuss its wider application, and in Section 5.3 we present the
conclusions.

2 Architecture of the Aerosense digital
twin

A multitude of design methodologies, decision support tools,
and optimisation algorithms exist for facilitating design and
architecting processes in general. Here we used several well-
establishedmethodologies including design thinking (Pearce, 2020),
design patterns (Gamma et al., 1994; Tekinerdogan and Verdouw,
2020), decision trees and applied category theory (Censi, 2016;
Zardini et al., 2021). According to the design patterns approach,
before developing a concrete realisation of a digital twin, it is
opportune to establish the desired digital twin type. Type selection
is guided by the context in which the development of the digital
twin is occurring. Adopting the design thinking methodology, the
use case for the Aerosense digital twin is therefore first presented
(Section 2.1), followed by digital twin type selection (Section 2.2),
which served as a starting point in establishing the overall system
architecture (Section 2.3).
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FIGURE 2
Aerosense system sensor hardware and its placement on a wind turbine blade. (A) General concept of the Aerosense system. (B) View of an Aerosense
measurement system installed on a 6 m long wind turbine blade.

2.1 The use case

In order to define the priority use case for the Aerosense
project, a design thinking strategy was applied. Design thinking
is an iterative methodology for framing problems and co-
creating implementable solutions using visual thinking and
prototyping (Pearce, 2020). It consists of the phases “Empathise”,
“Define”, “Ideate”, “Prototype”, “Test” and “Implement”. For the
“Empathise” phase, extensive “user story” interviews were carried
out with potential customers from both industry and academia
at the beginning of the project, in which several imagined but
realistic “user stories” were presented and discussed. The results
were used to define and prioritise the most important use cases
for the “Define” phase. Through this process, we discovered that
the Aerosense system has a high potential to provide OEMs,
owner/operators and researchers with added value, including to
improve aero-elastic models, detect and classify surface damage,
and even detect structural damage. For the remaining phases,
we applied a design pattern methodology, as discussed in the
next sections.

Analysing a variety of use cases revealed one foundational
application. Since wind turbines have grown larger andmore flexible
in recent years, established 2D assumptions used for aerodynamic
tools have become less likely to hold valid (Bangga et al., 2017).Thus,
one of the use cases, “improving aerodynamic models”, was seen as
most important, underpinning further analysis or damage detection
methods. The beneficiaries, value statements and required outputs
of this use case are given in Table 1. This information was used as a
design basis for the system, and will be revisited in Section 4.

The required outputs from Table 1 can be summarised as
functionality requirements for interactive dashboards (required
outputs indicated by letter ‘a’) and Colab notebooks, which is a

cloud-hosted Jupyter notebooks service (required outputs indicated
by letters ‘b’ through ‘e’). For dashboards, these functionalities
include visualisation, exploration, and inspection of sensors’ time
series data and pressure coefficient distributions through interactive
plots. Colab notebooks, on the other hand, allow for more flexible
and custom uses, more accommodating of the defined user stories.
Here, the main functionality to ensure is access to the sensor
data, data processing algorithms, and simulations for further
data transformation and analysis. The data processed in Colab
notebooks can also be visualised, explored, and inspected through
interactive plots.

2.2 Type classification

Comparing the digital twin classifications of Figure 1 to
the required outputs from the use case exercise in Table 1,
the DigitalTwinType of the Aerosense digital twin was
classified as follows:

• PhysicalSystemLifetimeStageType:
DigitalTwinInstance

(because the intention is to work with an existing instance of
a wind turbine, not, say, a prototype of a turbine not yet in
existence)
• ConnectionSystemAutomationType:
Digital Shadow

(because there is a one-way automated connection from
physical to digital system, as opposed to two-way, which would
enable control or other adaptive behaviour)
• SystemFunctionalityType:
SimulationPredictionDigitalTwin
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TABLE 1 Description of the use case “improving aerodynamic models” for this work.

Beneficiary Value added Required output

1. OEM
measurement
and data science
teams

1a. Allow initial data inspection and download of measurement data
for further analysis or comparison by the customer

1a. Corrected and calibrated time series data for each sensor,
classified based on operating conditions, available on a dashboard

1b. Allow detailed analyses such as extracting data and plotting
pressure distributions to be carried out based on the time series and
averaged data according to the needs of the customer or partner,
without having to write a new code that works with the downloaded
data

1b. Colab notebook for analysis of time series and averaged data

2. OEM
aerodynamic
modelling teams

2a. Enable data exploration for improved understanding of the
aerodynamic behaviour

2a. Pressure coefficient distribution plots for specific time instances
available on a dashboard

2b. Enable pressure distributions to be plotted, examined and
compared

2b. Installed sensor placement obtained via photogrammetry
available through an API and accessible via a Colab notebook

2c. Enable direct comparisons with data from the customer, e.g.,
measured or simulated 2D pressure coefficient distributions

2c. Phase-averaged pressure and pressure coefficient distributions at
different operating conditions available in a Colab notebook

2d. Enable inference of the angle of attack at the sensor location,
which allows measured pressure distributions to be compared with
measured or simulated 2D pressure distributions at different angles
of attack

2d. Aerofoil inflow inference model with uncertainty quantification
available in a Colab notebook

2e. Allow direct comparison of observed pressure distributions with
2D simulation results, leading to an improved understanding of the
aerodynamic behaviour of the wind turbine in the field, validation of
the fundamental assumptions adopted during modelling, as well as
to recommendations for the improvement of aerodynamic models

2e. Simulated vs. measured phase-averaged pressure distributions at
different angles of attack available in a Colab notebook

(because the extent of the use case outputs include simulation
and prediction applications, incorporating operational and
supervisory aspects like visualisation of system state)

Each of the aforementioned types is accompanied by a
specific design pattern (Tekinerdogan and Verdouw, 2020) reflected
in the overall digital twin architecture and system hardware
implementations as discussed in the following section.

2.3 Aerosense digital twin conceptual
model and related hardware

Generally, a digital twin system can be conceptually divided
into three main sub-systems: physical system, digital system, and
connection system. Sensors, in general, are considered to be a
part of the physical system (Singh et al., 2021; Tao et al., 2018)
or its interface. However, this conceptual division may not always
coincide with the boundaries of the actual physical hardware (a
more convenient division) requiring some pragmatism in classifying
system components.2 A conceptual diagram of the Aerosense digital
twin system and its hardware is shown in Figure 3. It comprises

2 For example, each of the subsystems mentioned contains elements that

conceptually would be considered a connection system, but a coarser

classification based on the purpose of each subsystem results in a clearer

discussion.

sensor node, base station, and cloud infrastructure sub-systems,
which are classified and described below.

2.3.1 Physical system: wind turbine and sensors
As a DigitalTwinInstance the Aerosense system

provides a digital twin for a wide range of generic turbines - from
small test platforms to massive, multi-Megawatt scale devices. The
latter impose demanding design requirements, especially in terms
of wireless transmission ranges. Aerosense prototypes were tested
on the Aventa AV-7 wind turbine3, a small 6 kW device, located in
Taggenberg (CH),with a rotor diameter of 12.8 m: this is the physical
instance that is “twinned” here. However, the design specifications
enable use with much larger devices.

The Aerosense sensor node pictured in Figure 2 contains a
suite of sensors to provide the measurements necessary for the
outputs defined by the “improving aerodynamics models” use
case. The sensors included in the suite are: absolute pressure
senors, differential pressure sensors, acoustic sensors, a 9 Degrees
of Freedom (DOF) Inertial Measurement Unit (IMU), and
microphones. These sensors are controlled by an in-house
data processing and transfer unit equipped with a Bluetooth
Low Emission (BLE) wireless interface for data transmission
(Polonelli et al., 2023a). Up to five sensor nodes can potentially
be installed to allow for measurements at different locations on the

3 More information about the Aventa AV-7 wind turbine can be found at

https://doi.org/10.5281/zenodo.8192149
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FIGURE 3
Conceptual model of the Aerosense digital twin including the Physical System Interface.

rotor (Polonelli et al., 2023b). Section 3.2 discusses the design of the
sensor nodes. External data sources such as Supervisory Control
and Data Acquisition (SCADA) system data from turbines, weather
forecasts, etc., could also be considered part of the physical system
interface.

2.3.2 Connection system
The connection system4 forms the infrastructure for data

retrieval from the sensor(s) through to the cloud infrastructure. The
data flow from physical to digital system in a DigitalShadow
is typically unidirectional, as can be seen from Figure 3. The main
physical element of this connection system is the base station
(see Figure 2), which acts as a gateway and a buffer for sensor
data on its way from the node(s) to the data ingress of the
cloud infrastructure. It orchestrates sessions of sampling and data
download from the node(s), and allows sessions to be controlled
remotely (see Section 3.3). The Application Programming Interface
(API) serves as a “connecting tissue” between different applications
within the digital system. Additionally it serves as an entry point
for the sensor data arriving from the gateway (running on the
base station) as well as from external sensors including SCADA
and other data describing physical system quasi-static properties
(e.g., geometry). For the Aerosense system, a project-specific API

4 According to Tao et al. (2019), connections within the digital system

- such as messaging queues and data pipelines within the cloud

infrastructure - would be part of the “Connection System”. However,

since these are such fundamental components of the data system and

services architecture, their design is discussed as a part of the cloud

infrastructure and digital system for the purposes of this work.

was developed. The design of the API and software integration is
discussed in detail in Section 3.4.

2.3.3 Digital system (data, services and models)
As can be seen in Figure 3, the digital system can be

conceptually divided into three sub-systems: Data (for data
storage and retrieval), Models (which are the virtual entities
representing the physical system) and Services (which run Models
for analysis, provide data transformation and support applications
like dashboards or other monitoring tools). This classification
maps ontologically to the “five-dimension” digital twin model
proposed by Tao et al. (2019) and used in the development
of a prognostics and health management wind turbine digital
twin (Tao et al., 2018). For the specific implementation of this
SimulationPredictionDigitalTwin, the Services include
forward solvers to provide the simulation capabilities, inverse solvers
to infer non-measured quantities, data processing algorithms and
Colab notebooks to perform data transformation and analysis,
and dashboards for immediate data visualisation, exploration and
inspection. The Models include Computer Aided Design (CAD)
geometries of the blades, as well as sectional models for the
aforementioned forward solvers. TheData sub-system provides data
storage through two modalities: file storage (for long term data
persistence) and BigQuery tables (for when the data needs to be
queried by a user or a service). The design of the digital system is
discussed in detail in Section 3.4.

3 Hardware and digital system design

A concrete realisation of the chosen digital twin type requires
an implementation of hardware and digital system solutions,
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which provide the end users with a desired set of functionalities
(e.g., supervisory through to intelligent learning functions, fidelity
levels, twin synchronisation times, etc.) within the bounds of
available resources (e.g., production and operational costs, etc.).
Furthermore, when creating complex multi-scale systems such as
wind turbine digital twins, it is common for the development process
to occur in different teams. In this case, a team may work on a
system component that has certain functionalities, which in turn
satisfy resource requirements for the other team. For example, an
electronics team working on a measurement system development
chooses sensors that capture certain data with certain accuracy and
precision. This data is later used by a cloud services development
team as an input to their solvers. The changes adopted by one
team will affect the performance of other, yet the final digital twin
should still satisfy the user-defined constraints. This can be seen
as an applied category theory collaborative design (or co-design)
problem as defined by Censi (2016) and Fong and Spivak (2018).
The co-design problem in general, and specifically for the entire
Aerosense digital twin system, is presented in Section 3.1, followed
by a system-level overview of sensor(s) design in Section 3.2.
The base station design is touched upon in Section 3.3, and the
cloud infrastructure and digital system implementation is discussed
in detail in Section 3.4.

3.1 Co-design problem

Before formally defining a co-design problem, it is necessary to
formalise a single design problem with implementation (DPI):

DPI = (F ,R,I ,prov,req)

where:

• F ,R,I are posets, called Functionality, Resources, and
Implementation spaces respectively;
• prov: I → F is a mapping from an implementation to the

functionality it provides;
• req: I →R is a mapping from an implementation to the

resources it requires;

A co-design problem, then, is defined as a multigraph of design
problems. This allows to treat an overall design of the system in a
compositional manner (i.e., divide the system into its components)
and to introduce different levels of abstraction.

In the case of the Aerosense digital twin, the constraints on
the Functionality and Requirement spaces are presented in Table 2.
These are specific quantitative (when possible) and qualitative top-
level constraints resulting from the use-story studies, described
previously in Section 2.1. The overall system co-design problem can
be visually represented using the graphical language as in Figure 4,
with an abstraction on the hardware components and digital system
levels. In these type of figures, the co-design graph is presented,
allowing for an immediate overview of various interdependences
in the system. Each labeled node represents an Implementation
of a component or an assembly, while the edges can be of either
Functionality or Recourse type. Towhich degree an assembly should
be split to sub-assemblies and sub-sub-assemblies is arbitrary,
enabling various levels of abstraction. For example, it is possible to

consider the senor node(s) as a whole or, as an assembly of sensors,
power, housing, compute, and transmission assemblies. In the next
three sections, the design of the three main components, senor
node(s), base station, and cloud infrastructure and digital system is
presented.

3.2 Sensor node design

The development of the sensor node is the most complex
part of the Aerosense system design. From a system point of
view, it requires a close collaboration between teams of diverse
backgrounds and expertise such as development of integrated
circuit boards and relative firmware (Center for Project Based
Learning at ETH Zurich), experimental and computational fluid
dynamics (Institute for Energy Technology at OST), structural
health monitoring and machine learning (Structural Mechanics
and Monitoring at ETH Zurich), data engineering (Octue), and
additive manufacturing (Institute of Materials Engineering and
Plastics Processing at OST). Hence, here we describe the design
constraints and implementation characteristics on a system level. A
detailed description of the sensor node design from an electronics
point of view is available in the relevant preceding publications
(Polonelli et al., 2023a).

The functionality and resources graph defined by each team
during sensor node design is visualised in Figure 5. In addition
to the overall design constraints already defined in Table 2 it
illustrates the interdependence between various components within
the sensor node design problem. For instance, a change to the
desired measurement data characteristics inevitably updates the
constraints on compute, power, and transmission systems. This, in
turn, may influence the housing design, for example, by requiring
it to provide more useable volume for a bigger battery. In terms of
actual implementations, which provide the desired functionalities
within the bounds of available required resources, the sensor node
components have the characteristics described hereinafter.

Measurement data is the key functionality of the sensor node
component, as it also constitutes a required resource for the digital
system and its services. The types of sensors utilised, measurement
characteristics (precision, accuracy, sampling frequency), and
measurement session periods are all ultimately driven by necessity to
capture the physical system state in sufficient resolution to describe
the underlying phenomena. This process is at the core of the digital
twin concept in that of the physical system being twinned to its
digital representation. The fidelity and the resolution of this digital
representation, in the end, should provide the functionalities and the
added value desired by the digital twin users. The reader may refer
directly to Section 3.4.3, which discusses digital system services, for
more information on the intended use of the measurement data.

In terms of the sensor suite, the hardware implementation is
the following. An array of 40 MEMS absolute pressure sensors
(ST LPS27HHW) are distributed along the chord of the blade,
sampling at 100 Hz. Following thorough calibration, an absolute
accuracy of 11 Pa is achieved. Given the expected dynamic
pressure of 1,000 Pa on a 5 MW wind turbine, (Deparday et al.,
2022), it suggests that a precision of 1% can be reached in
pressure measurements. Five differential pressure sensors measure
differences of pressure around the leading-edge. The sensors have
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TABLE 2 Functionality and requirements constraints for the Aerosense digital twin system.

Digital twin component Functionality/Resources Constraint

Sensor Node

Functionality

Pressure data ⊗ IMU data ⊗
Differential pressure data ⊗Microphone data ⊗

Precision ⊗Accuracy ⊗
Sampling frequency ⊗Session duration

≥resources required for the Services

Housing flexibility ≥minimum curvature radius of 10 mm

Housing durability ≥withstand weather conditions defined in IEC
61400–1

Housing adhesion ≥withstand peeling and not cause blade
degradation

Housing water resistance ≥IP55

Resources

Node cost ≤5′000€ to 10′000€

Node size housing thickness ≤4 mm

Installation time ≤4 h

Base Station

Functionality

Connectivity = mobile network

Placement = tower base

Resources

Installation time ≤1 h

Base station cost ≤500€ to 1′000€

Operational cost ≤100€ per month

Cloud Infrastructure and Digital System

Functionalities

Dashboard and Colab notebook functionalities as per use case required output

Long-term data storage ≥wind turbine life-time

Twin synchronisation time ≤1 h

Resources

Physical system geometry ∼1 mm accuracy

Operational cost ≤500€ per month

an accuracy of 0.25% Full Scale, +1 Last Significant Bit, at 25°C
and a sampling frequency of 1.2 kHz, sufficient to resolve fast
dynamics of the turbulent inflow. Ten acoustic sensors (Vesper
VM2020) sampling at 16 kHz are installed at the trailing edge.
An Inertial Measurement Unit (IMU) is included, comprising an
accelerometer, a gyroscope and a magnetometer (Bosch BMX160).
The IMU data is sampled at 100 Hz.

On-board compute, sensor controls, and data transmission are
provided by a CC2652P microcontroller by Texas Instruments. It
embeds a 48 MHz ARM Cortex-M4 processor, and a Bluetooth
Low Emission (BLE) wireless interface to capture data from the
individual sensors and communicate with the base station. This
solution provides a low power consumption for sensor readout,
and a long-range transmission with a range up to 400 m at a
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FIGURE 4
Aerosense digital twin co-design problem Functionalities (blue solid) and Resources (red dashed).

FIGURE 5
Sensor node co-design problem Functionalities (blue solid) and Resources (red dashed).

rate up to 2 Mbps (Fischer et al., 2021). This allows for a flexible
base station placement even on a large-scale wind turbines. The
implementation of the BLE is a result of the power consumption
requirement. However, this implementation results in a significant
data throughput limitation. This design problem does not have a

data streaming solutionwith the current technology. Instead, a batch
processing approach was adopted, in which sampling periods (i.e.,
measurement sessions) are intermittent with data transfer periods.
The manner in which this conditioned the development of the
Aerosense system is further described in Section 3.3 and Section 3.4.

Frontiers in Energy Research 09 frontiersin.org

https://doi.org/10.3389/fenrg.2024.1428387
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org


Marykovskiy et al. 10.3389/fenrg.2024.1428387

The housing for the sensors, integrated circuits, and power
module is implemented with a custom-made PolyJet 3D-printed
sleeve, which is flexible enough to bend around airfoil section
where the system may be potentially installed. To provide necessary
adhesion characteristics, the sleeve is fixed onto the blade with the
same type of adhesion tape that is used for leading edge protection of
wind turbine blades. This solution also ensures an easy installation
by a technician even on mounted blades, and the possibility of the
system removal without damaging the blade.

3.3 Base station design

The design of the base station is less complex compared to the
other parts of the Aerosense system. The constraints imposed (see
Figure 4) are also less restrictive, with multiple possible solutions
in terms of hardware and software implementations. Hence, in
the case of the Aerosense digital twin, there is no necessity
to formalise the design of individual components of the base
station as a co-design problem, maintaining a higher abstraction
level. The base station hardware comprises a BLE transceiver, a
local computing unit running the gateway software (on a Linux
distribution), and a mobile network modem which provides a
connection to cloud resources. The open-source gateway software5

was implemented as a Command Line Interface (CLI) in python,
with a multi-threaded implementation (to stream packets from
the node whilst simultaneously caching, batching and uploading
their data contents). Software was deployed using balena.io, which
allowed automated update across multiple prototypes as well as
facilitating remote connection via Secure Shell Protocol (SSH). The
gateway uploads data files (containing batches of sensor values)
to the Data Ingress area (see Figure 7), and interfaces with the
API to retrieve and update installation configurations (containing
information related to equipped sensors, geolocation of the site,
sensor geometry and so on) (Clark and Lugg, 2022).

3.4 Cloud infrastructure and digital system
design

The cloud infrastructure provides the necessary resources for
the digital system implementation (see Figure 6). From the top level
point of view, the required functionalities of the cloud infrastructure
include data storage, management and querying for the data system.
At the same time, cloud infrastructure provides necessary compute
and orchestration capabilities for digital system services. Lastly,
for models, there is a requirement of management solutions. In
terms of resources required by the cloud infrastructure itself, the
main limitation is imposed by the operational costs, as modern
cloud solutions are capable of managing Big Data type datasets and
providing high performance computing (HPC).

For the Aerosense digital twin, Figure 7 shows a more detailed
view of the cloud infrastructure supporting the implementation of
the digital system, highlighting the data storage, retrieval and data

5 https://github.com/aerosense-ai/data-gateway, last access: 01

March 2024.

processing services that comprise the digital twin. This architecture
was determined from a bottom-up analysis of the data requirements
discussed in Section 3.4.1, and is described in more details in the
following sub-sections.

3.4.1 Data
The design of an efficient Data sub-system is fundamental for a

sustainable and scalable digital twin solution. The design decisions
include data ingress organisation (such as communication protocols,
endpoints, and APIs), data management and storage solutions
(such as database types and databases management systems
(DBMS) selection), data modelling and querying implementations
(such as data conceptual models and database schemas), as
discussed below.

3.4.1.1 Data ingress
The data ingress area of Figure 7 represents the final step in

connection of the physical to the digital system. Data ingress has
two aspects:

• Gateway API. A very limited set of endpoints6 is exposed,
allowing the gateway CLI to register new installations and
update node configuration data. Because the set of endpoints
is so limited and tightly scoped, serverless Cloud Functions are
used to avoid the creation and maintenance of server-related
infrastructure.
• Gateway Batch Ingress. A write-only cloud storage bucket is

configured to accept authenticated uploads of files containing
raw sensor data. A serverless Cloud Function is triggered
on upload, its sole purpose being to read batched data
from the files and stream values into long term storage
(Tier 1 in Figure 7). In addition to the above advantages, using
serverless functions in this case facilitates massive scalability:
with data rates being extremely substantial when multiple
nodes are downloading, but intermittent for much of the time,
maintaining statically-resourcing servers presents either a
choke-point on data ingress or a high cost for over-provisioned
capacity most of the time.

The Cloud Functions for data ingress are developed in the same
repository as the rest of the data gateway code, and deployed in
the same Continuous Deployment process. This ensures that edge
gateway code running on the base stations is always compatible with
its counterpart cloud-side.

3.4.1.2 Data management and storage
The architecture of the tiered data lakehouse shown in Figure 7

was not developed in a top-down approach, but the opposite:
its design emerged from a bottom-up consideration of 1) what
data sources would have to be stored/retrieved, 2) why end
users (researchers) would access them and 3) how they would
do that. To start this process, a decision tree was built, not
considering Aerosense in particular but governing an entirely
general problem of what kinds of data storage are suitable for
what kinds of data. This is shown in Figure 8. Next, each different

6 The endpoints are designed with a RESTful pattern of GET, POST,

PUT requests.
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FIGURE 6
Cloud infrastructure and digital system co-design problem Functionalities (blue solid) and Resources (red dashed).

FIGURE 7
Cloud infrastructure for the digital twin and its underlying data lakehouse.

kind of data that the Aerosense project would produce was
listed and the volume of that data kind was estimated.7 Drawing

7 Whilst exact specifications of sensors and related equipment were not

known a priori, the stated initial objectives of the project allowed good

estimation of the type and volume of data early in the project.

on the user profiles and journeys discussed in Section 2.1, a
process was followed for each data kind to choose the ultimate
storage decision. One example for the pressure sensor data
(the kind requiring the most sophisticated approach) is shown
in the Figure 9.

The recommended solution was to use a data warehouse for the
following data sources:
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FIGURE 8
Decision tree for determining cloud data storage options based on data type and volume.

FIGURE 9
Annotated tree showing the decision-making process for pressure sensor event data.

• Unsteady pressure and accelerometer measurements,
with timeseries of individual data points batched into a
stream of events.
• Intermittent events stored on the same time basis, allowing

efficient and easy extraction of data records corresponding to,
for example, system alerts or commands issued.
• Fetched data from third party systems (e.g., wind speed,

weather metrics etc.), fetched and cleaned by one or more
digital twins, resolved onto the time basis of the warehouse.

• ‘Materialised views’ of same (in which raw data in a
root master table, or derived/cleaned representations of the
same, is recorded in a table having a more efficient access
pattern (working like a cache for fast fetching and reduced
query cost).
• Records of all file-like object entries (see below), time-synced

and labeled where appropriate, enabling user to query for a
manifest of the file objects relevant to a given period of time
or experiment.
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Columns in the warehouse tables were defined to include
associated system metadata and timestamps, allowing filtering of
results by experimental session, by time, or by other tag values. The
recommended solution was to store the following as file-like objects
(‘blobs’) in a store:

• Microphone recordings (being high bandwidth and efficiently
compressible, treating their sensor data as a series of audio files
was most appropriate).
• Trained Models used for classification, feature detection, etc.

These data blobs (typically binary) never need to be queried
internally so simple blob storage is ideal.
• Geometry Files such as aerofoil shapes.
• Legacy input/output files for simulations. For example,

software for aerodynamic simulation such as XFOIL and
OpenFAST (see Section 3.4.3) require particular format
text/ASCII files for definition of simulation variables,
geometry, etc., which are best retained in their original forms
for the service layer.

The outstanding data kind is system metadata, which included:

• Geometrical details of the installed sensor locations.
• Installation records of the particular combinations of hardware

installed on each turbine
• Session records of the sequences of commands issued

in sequence
• Low-level configuration metadata (e.g., buffering and cache

settings, communication port configuration, etc.

Thismetadata would ideally be stored in a relational database, to
facilitate development of improved workflows and more interactive
update of the data (e.g., via a web application). However, since
metadata is tightly coupled to the data itself and the volume is
extremely small, it was stored in tables in thewarehouse 1) to support
a simpler querying and permissions system, 2) to reduce cost by
avoiding the need for maintaining a highly available relational
database instance to store only a few kilobytes of data and 3) to avoid
distribution of tightly coupled data into two different stores.

Positioning of the sensors (in a frame of reference local to
the installed strip) is included in configuration data for each
installation, which is registered (along with other metadata like
session details) using the Gateway API (see Section 3.4.1). This
type of metadata is serialised as JavaScript Object Notation (JSON),
validated against a schema8 and stored for future uses such
as plotting pressure distributions. Additional measurements (the
radius of the node from the rotation axis, the geolocation of the
turbine and the shape of the blade section at that radius) are included
to enable later conversion of coordinates to blade-local, turbine-local
and world coordinate systems as required.

3.4.1.3 Data querying
A python based client was developed, along with a process

to supply the user with credentials (a ‘service account’) sufficient
for querying the warehouse and object store. The python client
encapsulates the more challenging SQL statements required for

8 https://jsonschema.registry.octue.com/aerosense/sensor-

coordinates/0.1.4.json, last access: 01 March 2024.

querying tables in the warehouse - this step is important,
because different query implementations can have significant cost
implications.9 The python client can be installed on researchers’
personal laptops, within a Colab notebook, and in applications
like dashboards to facilitate a universal access to data. To enable
working with raw file-like objects, the python client leveraged the
file manifesting capability of the Octue SDK (Octue, 2022), enabling
the warehouse to be queried for a list of relevant files (e.g., for a
time period or experiment session) which can then be opened or
downloaded directly (with the mechanics of managing cloud file
storage abstracted away from the user).

3.4.2 Models
Physical system models is one of the required resources for

the digital system services (see Figure 6). To satisfy the required
output 2e, in which measured pressure distributions are compared
to the ones obtained from the simulations, the 2D aerofoil sectional
models are needed by the forward solvers (see Section 3.4.3).
These models can be created by utilising data from several sources
external to the Aerosense digital twin such as wind turbine technical
documentation, drawings or CAD models. In practice, there are
several obstacles for model creation:

• Data is not available for discontinued and legacy equipment or
due to legal limitations.
• Variations from the original design specifications during

manufacturing process or due to in-operation degradation.
• Difficulties in precise collocation of the sensors during the

node installation on the blade.

To overcome these obstacles in the Aerosense digital twin,
a photogrammetry process has been developed to evaluate the
position of the sensors and the shape of the blade. The process
involves taking videos and photos of the sensor nodes and wind
turbine blade from different positions, and reconstructing the 3D
shape of the wind turbine blade and obtaining the position of
the sensors using triangulation. Detailed drawings or patterns
on the housings and some additional speckled tapes make this
photogrammetry process more accurate. The requirement on the
accuracy was evaluated through the uncertainty quantification
procedure described by Marykovskiy et al. (2023c), specifically for
the inflow inference problem.

The reconstructed blade shape is further processed by extracting
a point-cloud relative to the section of interest, approximating
the aerofoil geometry with Bèzier curves, for smoothing and re-
sampling. The resulting ordered lists of aerofoil section coordinates
can be used directly as inputs to panel-code type forward solvers.
As for finite volume method solvers, a Construct 2D Meshing
utility was integrated into the model creation pipeline. This software
creates structured, high-quality 2D aerofoil meshes. The modified
version of the software developed by Fraunhofer IWES10 was

9 In practice, an iterative process revealed which queries were most cost-

intensive then either the queries modified or the database re-clustered to

perform more efficiently.

10 https://gitlab.cc-asp.fraunhofer.de/iwes-cfsd-public/wtrb-

aerodynamics/c2d-ext, last access: 01 March 2024.

Frontiers in Energy Research 13 frontiersin.org

https://doi.org/10.3389/fenrg.2024.1428387
https://jsonschema.registry.octue.com/aerosense/sensor-coordinates/0.1.4.json
https://jsonschema.registry.octue.com/aerosense/sensor-coordinates/0.1.4.json
https://gitlab.cc-asp.fraunhofer.de/iwes-cfsd-public/wtrb-aerodynamics/c2d-ext
https://gitlab.cc-asp.fraunhofer.de/iwes-cfsd-public/wtrb-aerodynamics/c2d-ext
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org


Marykovskiy et al. 10.3389/fenrg.2024.1428387

FIGURE 10
Overview of the services design problem, in terms of data resources.

wrapped with Octue SDK and implemented as a child-process for
the OpenFOAM service.

Additionally to blade sectional models, full wind turbinemodels
for the solvers based on Blade Element Momentum (BEM) method
were created during the Aerosense project. The integration of
these models and solvers in the Aerosense digital twin was not
required by the use case presented in this work. However, these
developments were considered for further digital twin developments
and improvements to satisfy the use cases discovered during the
user-story interviews.

3.4.3 Services
As described in Section 2.3.3, Services, run Models for analysis,

provide intermediate data transformation or processing (e.g., from
Tier 1 to Tier 2 in Figure 7), or provide applications like dashboards
or other monitoring tools. In essence, the services convert ingressed
and stored raw data (Section 3.4.1) into the requisite outputs of
the use case (Table 1).

Figure 10 presents this process as a co-design problem
where for each service its inputs are viewed as resources and its
outputs as functionalities. For the sake of clarity, the diagram
omits other design parameters such as computational cost
(resource), parallelisation possibilities (functionality), and fidelity
(functionality). Nevertheless, these aspects should be considered
when approaching digital twin design, especially for a digital
twin with functionality level of SimulationPrediction

and above (see Section 2.2). These considerations in the context
of wind turbine twinning often necessitate introduction of
surrogate and reduced order models, multi-fidelity and hybrid
modeling techniques (Li et al., 2022; Quick et al., 2019;
Quick et al., 2022; Renganathan et al., 2020).

3.4.3.1 Service wrappers
To implement a model or a data processor in a digital twin, the

code or application must be “wrapped”, enabling it to be deployed
to cloud infrastructure and invoked as part of a data pipeline.
Commonly, legacy software applications or libraries must be either
re-implemented entirely or adapted to meet these requirements.
The Octue SDK (Octue, 2022), which embodies Octue’s ‘twined’
framework, was developed for this purpose (with significant
work on the framework inspired by the needs of the Aerosense
project).

The premise of the framework is as follows:

• Any new or legacy scientific analysis app/code is possible to
wrap for use in an automated data processing pipeline.
• A system of communication called a question is the basis of the

wrapper. Services can be asked a question and should answer
with a series of updates culminating in a result.
• Any service can ask one ormore questions of any other service.
• A service is bounded by its ‘Data API’:

– inputs (data that will change on a per-analysis basis),
– outputs (data returned as a result),
– configuration (input settings, constants or static data that

change on a per-service basis),
– logs (semi-structured textual data reporting progress,

warnings and errors)
– monitors (structured numeric data for reporting progress,

such as residual values in aCFD calculation or an estimated
time remaining)
• The inputs, outputs and configuration may be supplied
in the form of ‘files’ (a manifest of file-like objects in
cloud storage with associated metadata) or ‘values’ (raw
JSON data).
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• A service has a set of JSONSchema11 defining the expected
inputs, configuration, outputs and monitors.
• All services have an identical ‘Calling API’ (the mechanics
of asking a question as an http request and receiving an
event stream of responses). This is encapsulated meaning that
researchers developing services need no expertise of web APIs,
servers, message queues or deployment infrastructure.

This system was implemented for each of the models
discussed in Section 3.4.2, with an automated deployment process
set up so that each subsequent release of code resulted in a new
service revision (with corresponding version tag, allowing questions
to be routed to specific versions).

3.4.3.2 Service implementations
The digital system Services required by the Aerosense use case

for the realisation of the digital twin are the following:

• Data processing algorithms compute derived quantities such
as static pressure, pressure coefficient distributions or blade
azimuth angle. As shown in Figure 10, to compute pressure
coefficient distribution on the aerofoils, measurements from
absolute pressure sensors are corrected for sensor drift.
Additionally it is necessary to account for the contribution of
the atmospheric pressure and hydrostatic pressure variations
(Deparday et al., 2023). While atmospheric pressure at the
base of the wind turbine is provided by the sensors installed
on the base station, the hydrostatic pressure component
varies with height. IMU data is proceeded by in-house fusion
algorithm (Trummer et al., 2023), to compute the largest
deflections of the blade as well as its azimuthal position when
rotating, enabling the estimation of hydrostatic pressure.

• Inverse problem solvers infer quantities including the angle
of attack and farfield wind speed. Differential pressure
measurements, once processed, are used by the inference
service as input for the hybrid model, based on the inviscid
flow theory (Marykovskiy et al., 2023c). Farfield wind speed
is used to estimate dynamic pressure contribution in pressure
coefficient calculations and along with angle of attack is used
as an input to forward solvers.

• Forward problem solvers allow for comparisons between
measurements and simulations, and can predict non-measured
quantities such as the structural deformation of the blade.
– OpenFOAM12 and XFOIL13 produce simulated data for

the purpose of comparison with measured quantities, as
required by the use case. To integrate these solvers with
Octue SDK, xfoil-python14 and pyFoam15 python-based
software wrapers were used. Additionally these solvers,

11 https://json-schema.org/last access: 01 March 2024.

12 https://openfoam.org/, last access: 01 March 2024.

13 https://web.mit.edu/drela/Public/web/xfoil/, last access: 01March 2024.

14 https://github.com/DARcorporation/xfoil-python, last access: 01

March 2024.

15 http://openfoamwiki.net/index.php/Contrib_PyFoam, last access: 01

March 2024.

along with their automated workflow and data pipelines
can be dual-purposed to also generate large synthetic
data sets. These are then used to train machine learning
algorithms and perform uncertainty quantification. This
provides a bridgehead for further digital twin system
augmentation with new algorithms and analysis tools.

– OpenFAST16 (with TurbSim) software was used to generate an
inflowdata and perform aeroelastic simulationswithAVENTA
AV-7 wind turbine model. A python package openfast_
toolbox17 was used to provide an intermediate integration
layer between OpenFAST and OctueSDK.

• The Aerosense dashboard allows to explore the Aerosense data
lake in a visual manner according to the selected metadata
defined in our data model. It allows for filtering based on
different measurement campaigns, installations, sensors, time
periods and other metadata such as wind turbine rotor speed
or relative statistical information (min, max, mean, standard
deviation etc.) for chosen variables of interest. The data can
be explored via the interactive plotly functions such as data
inspection, view controls (such as zooming and panning), and
selecting individual data sets.
• Colab notebooks providing additional post processing

capabilities are available to team members as well as invited
external researchers. The “Aerosense data playground”
is a set of Colab notebooks that can be shared with
chosen collaborators. The resulting code is continuously
refactored into a python library “aerosense-tools” hosted
onGitHub (Lugg et al., 2023).This library is used in dashboard
development. This allows different partners to work together,
develop code and get insights into the data.

4 Application and results

4.1 Test set-up

After some initial tests of the robustness of the housings and
the power consumption of the Aerosense system (Polonelli et al.,
2023a), a field test campaign was carried out with the final
Aerosense prototype (Figure 11). As mentioned in Section 2.3.1,
the design specifications enable the use of the system on multi-
Megawatt scale wind turbines. However, for practical and cost
considerations, these initial field tests were performed on a 6 kW
Aventa wind turbine. The turbine delivers 10-min averaged SCADA
data including the active power, the nacelle wind speed and wind
direction, the blade pitch angle and the generator temperature.
The sensor node was installed at a radial position of 74% of
the blade length (6.7 m from the centre of rotation) on one
blade. It is shown attached to the blade in Figure 11A. Several
measurement campaigns were carried out between July 2022 and

16 https://www.nrel.gov/wind/nwtc/openfast.html, last access: 01

March 2024.

17 https://github.com/OpenFAST/openfast_toolbox, last access: 01

March 2024.
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FIGURE 11
View of the sensor node installed in the field. (A) The Aerosense node installed on the Aventa turbine, (B) 3D reconstruction of the installed sensor node.

April 2023; however, with several improvements being made to the
hardware and firmware. This results in several weeks of useable
barometer, differential pressure sensor, microphone, and IMU
data during this time, which is available in Marykovskiy et al.
(2023b). All the samples are timestamped with UTC time. Wind
turbine, sensor location and sensor properties metadata is provided
as JSON files. The wind turbine metadata follows the WindIO
schema and the pressure sensor locations metadata follows the
Aerosense sensor geometry schema. The pressure sensor locations
were calculated as described in Section 3.4.2with a photogrammetry
process18, reconstructing the sensor node and the blade shape, as
demonstrated in Figure 11B. An accuracy in the order of 1 mm
was achieved, enabling accurate positioning of the aforementioned
sensors and the use of this information in post-processing or
transformation of measurement data.

4.2 Digital twin demonstration

The field test allowed us to demonstrate the value of the use
case introduced in Section 2.1 according to the outputs in Table 1.
As described in the aforementioned section, the two main modes to
use and analyse the data are the dashboard and the Colab notebooks.
Here, we limit the demonstration to these two functionalities of the
digital twin, while the detailed analysis of the data itself merits a
separate study to thoroughly explore the insights gained from the
field tests.

18 https://sketchfab.com/3d-models/aventa-blade-

2ebed0e05e0e4c3c95a7308af3a494d3, last access: 01 March 2024.

4.2.1 Dashboard
The dashboard displays times series for each sensor, classified

in different installations of the Aerosense measurement system,
as shown in Figure 12 for pressure data from the barometers.
Specific sensor types and measurements periods can be selected.
No data needs to be downloaded or specific code to be computed
to obtain an initial data inspection of measurement data. This
fulfils the output 1a of Table 1. The dashboard can also display
pressure coefficient distribution plots for an immediate visualisation
relative to specific time instances. This functionality enables
the verification of the physical plausibility of pressure data
recorded by the measurement system and a general understanding
of the aerodynamic behaviour at specific time instants. The
synchronisation time of the dashboard plots to the on-site
measurements is under 1 hour, allowing for quasi-real time
monitoring. This fulfils the output 2a and 2b of Table 1.

4.2.2 Colab notebooks
The Colab notebooks developed within this work allow users

to perform detailed analyses, such as extracting data and plotting
pressure distributions. This is achieved without the need to write
a new code that works with the downloaded data. The versatility
of the Colab notebook allows more complex analyses, for example,
based on conditional averaging with specific weather conditions
in a large time period or for specific azimuthal position of the
blade. The Colab notebook enables, for example, the comparison
of data from multiple wind turbine installations. This fulfils the
output 1b of Table 1.

Phase-averaged pressure and pressure coefficient distributions
at different operating conditions can be computed and analysed
in the Colab notebook. This allows, for example, a more detailed
analysis of the pressure distribution depending on the azimuth
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FIGURE 12
Barometer time series available from the Aerosense Dashboard.

position of the rotor blade for different operating conditions (output
2b from Table 1) It also enables direct comparisons with data from
the customer, for instance measured or simulated 2D pressure
coefficient distributions (output 2c). Furthermore, phase-averaged
pressure distribution can also be directly compared to pressure
distributions obtained from XFOIL simulations for given inflow
conditions, as illustrated in Figure 13 (output 2e). This figure
depicts phase-averaged pressure distributions at different rotor
blade azimuth positions (indicated by the colour of the points)
for a 1-min time interval when wind directions and wind speeds
were considered stable. They are compared to XFOIL simulations
for two inflow conditions. The inflow conditions were computed
using the Aerofoil inference model (Marykovskiy et al., 2023c)
available in the Python package used by the Colab notebook
(output 2d). Figure 13 illustrates that the local wind speed and
corresponding angle of attack differ at different positions on
the blade when rotating. This may be due to non-uniformity
of the wind or yaw misalignment of the wind turbine. These
findings can facilitate a more comprehensive understanding of
the aerodynamic behaviour of the wind turbine in operational
conditions, as well as to recommendations for the improvement of
aerodynamic models.

5 Discussion

In this work, we have seen that the development of digital twins
in the wind energy context primarily represents a characteristic
system engineering problem. In this discussion, we summarise
the main challenges we experienced in this project, followed

by an evaluation of the methodologies used to overcome these
challenges. Finally, we discuss how the results can be useful for wider
applications. This presents domain experts with questions, which
can often lie outside their primary expertise. The main challenges
encountered when architecting the Aerosense digital twins were
found to be:

• Establishing priority use cases for the digital twin system, and
preventing a “scope creep” from introducing ever increasing
requirements to the system.
• Collaboration and management of teams from

diverse domains.
• Selecting and adopting appropriate supporting digital

technologies for sustainable and scalable results.

The authors believe these challenges are not unique to the
Aerosense project, and the methods presented in this work can
also be applied in the development of digital twins with different
applications and different twinned physical systems, including the
multi-Megawatt scale wind turbines. This methodological approach
to digital twin design, in fact, becomes even more crucial for
the successful technology implementation as the complexity of
twinned systems increases, and the use cases require integration of
signals from increased number of sensors and analyses resulting
from multi-scale and multi physics models. In the next sections,
we evaluate the success of our use of the design thinking, design
patterns, decision trees and applied category theory methodologies
to overcome these challenges.
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FIGURE 13
Aerosense Colab notebooks produced plot. Phase-averaged pressure distributions at different rotor blade azimuth position for a 1-min time interval
when wind directions and wind speed were stable. Comparison with XFOIL simulation results.

5.1 Design thinking for digital twins

The main focus of the design thinking methodology in this
work was on the “Empathise” phase, in which “user stories” were
explored in order to then define the foundational use case that
was used as a basis for the design of the Aerosense digital twin.
It proved as essential tool for providing the required amount
of focus to then apply the design patterns methodology, as
discussed below. Furthermore, a range of other use cases were
defined, which could be used to further develop the present
solution.

5.2 Design patterns for digital twins

In the Aerosense project, when approaching the development
of the digital twin from a systems architecture perspective,
the authors adopted well-established twin types as well as
common conceptualisation schemes such as the 5-dimension
digital twin model. These conceptual models have provided an
initial indication on the overall design patterns, to serve as a
blueprint for further development. Currently, “the catalogue” of
solution patterns is rather limited and only a few digital twin
type definitions are commonly accepted and recognised across
engineering domains. A more fine-grained and widely accepted
digital twin classification can facilitatemore streamlined digital twin
development by applying proven methodologies. Additionally, this
approach opens avenues for collaborative innovation. By utilising
a classification system that is acknowledged across industries,
future digital twin projects can increase interoperability and
knowledge exchange, thus gaining access to otherwise untapped
resources.

Furthermore, the use of a standardised classification schemes
aids in documenting and communicating the functionality and
scope of digital twins more effectively, both within and across
industries.This not only enhances the visibility of research outcomes
but also aids in selection and adoption of technical solutions,making
them more accessible to domain experts from different sectors,
and facilitating cross-domain knowledge transfer. An example of
such knowledge transfer is the adoption of digital twin technology
innovations in the manufacturing sector by the wind energy
domain, where the principles of operational efficiency and predictive
maintenance are equally valuable.

5.3 Applied category theory and co-design
framework for digital twins

During the design of individual system components, the
discussion centered around the component assemblies and their
physical boundaries, rather than conceptual division into physical,
digital and connection systems. This type of compositional
thinking finds its fundamental basis in category theory. Co-design
formalisation originally proposed by Zardini et al. (2021) in the
context of robotics and autonomous systems also lends itself
to the digital twin development. The theoretical grounding of
this framework serves as means of knowledge representation for
functional and resource requirements for a given digital twin, its
components or component assemblies. Additionally, this formal
basis allows for multiple solution searches and optimisations
as a twin evolves to include new uses cases or technology
implementations.

Frontiers in Energy Research 18 frontiersin.org

https://doi.org/10.3389/fenrg.2024.1428387
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org


Marykovskiy et al. 10.3389/fenrg.2024.1428387

6 Conclusion

In this paper the authors approached the design, development,
and deployment of digital twin from a system engineering
perspective, to architect the Aerosense system for aerodynamic
monitoring of wind turbine blades.

The Aerosense system use case and requirements (Section 2.1)
were adopted in Section 2.2, leading to characterisation of the
particular digital twin with a “Simulation/Prediction” functionality,
“Digital Shadow” connectivity, and being at “Instance” physical
system lifetime stage. By undertaking the same classification process
for prospective digital twins, readers can understand whether the
technology solutions used in this work are appropriate for reuse to
accelerate their own project(s).

Casting the design of the digital twin into a co-design
formalism of applied category theory (Section 3.1), proved
instrumental for obtaining desired twin functionalities and
affronting interdisciplinary challenges.

The technology solutions form a fully-tested, production-
ready data system for turbine blade data collection, cloud
ingress, data lakehouse storage and access/use. Both software
and hardware solutions have been developed and published as
open source (together with documentation) to provide a complete
implementation example.

The Aerosense digital twin brings this all together to provide
an out-of-the-box solution to monitoring wind turbines in the field,
collecting blade sensor data for research purposes and augmenting
that data with simulations to form a digital twin of the type
classification described above.
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