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The accurate identification of low-voltage distribution substation topology plays
a crucial role in research applications such as line loss management, fault
location, imbalance correction, and intelligent operation and maintenance of
substations. In response to the challenges posed by the large scale of users and
the complex connection relationships in low-voltage distribution substations,
which complicate the identification of their topology, a method for identifying
low-voltage distribution substation topology based on user profiling technology
is proposed. This method is supported by big data technology and introduces the
concept of user profiling into the research of substation topology identification.
Firstly, by deeply studying the theoretical knowledge of the relationship between
the supply of distribution transformers and the power consumption of substation
users, as well as the voltage similarity, we establish the feature labels for electricity
coefficient and voltage similarity. Then, we use the continuous relaxationmethod
and branch-and-bound method to solve the electricity coefficient matrix; and
use the Gaussian kernel function to solve the voltage similarity matrix. Finally, by
constructing a comprehensive attribution matrix using the electricity coefficient
matrix and the voltage similarity matrix, employing a convolutional neural
network to cluster and solve the comprehensive attribution matrix, outputting
user-area attribution information, forming user-area attribution profiles, and
completing the identification of area attribution relationships in low-voltage
distribution systems. Simulation results demonstrate that the proposed
method not only effectively identifies the area information to which low-
voltage users belong but also discerns the connection relationships between
users and area transformers.
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1 Introduction

Currently, there is relatively low academic attention on the topology identification of
low-voltage distribution systems. This field lacks systematic theoretical research and
practical foundations, and has not yet formed a complete identification framework and
process. From a mathematical perspective, the topology identification problem can be
considered as an extension and expansion of system state estimation or network topology
identification problems. Currently, topology identification research mainly adopts the
following two methods:

The first approach involves utilizing clustering algorithms to achieve topology
identification based on the correlation between distribution transformers in substations
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and the voltages of their downstream users. The method proposed in
reference (Cui et al., 2021) presents an approach for household
transformer relation identification based on voltage feature
extraction and clustering algorithms. Initially, an adaptive
piecewise aggregate approximation method is employed to extract
voltage curve features. Subsequently, an improved DBSCAN
algorithm is utilized to identify households with mismatched
relations, thereby circumventing the challenge of distinguishing
curve similarities and ensuring identification accuracy. However,
this approach entails a higher computational complexity. References
(Zhang et al., 2021) initially employ the Pearson correlation
coefficient method to calculate the voltage similarity between
distribution transformers and users, and subsequently utilize
clustering algorithms to derive topology identification results.
However, this method heavily relies on high granularity data.
Reference (Zeng et al., 2021) proposes a method to identify
topology by correlating the electricity usage between users and
distribution transformers, utilizing an improved fuzzy clustering
method to identify the correlation between substation voltages and
users. Reference (Peng et al., 2023) proposes the transformation of
voltage curves into discrete sequences. It employs the entropy
weighting method to combine Euclidean distance with
morphological distance, forming the Euclidean morphological
distance. Subsequently, the nearest neighbor propagation
clustering algorithm is utilized to achieve identification of users
within a substation and differentiation of phases within the
substation. The drawback is that during the discretization of the
voltage, a portion of the measurement information may be lost,
leading to potentially inaccurate identification results. Reference
(Keming et al., 2021) introduces a substation topology identification
method based on dynamic time warping distance and clustering
analysis. It measures the similarity between voltage curves of users
using the dynamic time warping (DTW) distance between voltage
sequences. Then, clustering analysis is applied to the voltage curves
of users to identify the low-voltage substation to which they belong.
Reference (Su et al., 2021) addresses the issue of missing or abnormal
household transformer relations in the low-voltage distribution
substation topology. It proposes a household transformer relation
identification method based on Derivative Dynamic Time Warping
(DDTW) algorithm and Density-Based Spatial Clustering of
Applications with Noise (DBSCAN) algorithm. This method not
only analyzes voltage time sequences with different and unequal
time intervals but also remains insensitive to missing or abnormal
voltage data, thereby reducing the impact of clustering algorithm
parameters on clustering results. Reference (Song et al., 2022)
initially improves the dynamic programming method for
calculating voltage similarity and then enhances clustering
accuracy and efficiency through a two-stage clustering approach.
This improvement aims to increase the accuracy of identification
results. However, the drawback lies in the complex algorithm design
and the high computational complexity associated with it. Reference
(Ren et al., 2023) introduces a dynamic household transformer
relation identification method based on Bayesian inference and
spectral clustering. This method not only enables dynamic
identification of household transformer relations based on the
latest voltage data along the temporal axis but also enhances the
robustness of identification in scenarios involving data gaps or nodes
entering or exiting the substation.

The second approach involves utilizing data-driven learning
algorithms to achieve topology identification. Reference (Zhang
et al., 2022) proposes a topology recognition method based on
smart meter end-user data, providing a probabilistic
representation for all possible LVDG topologies. The paper
introduces an algorithm based on search to generate candidate
topologies, and then proposes the Bayesian information criterion
to describe the accuracy of these candidate topologies. However, the
search process is not time-controlled. In reference (Zhou et al.,
2022), a topology identification algorithm is presented, which
combines data preprocessing based on voltage characteristics
with multidimensional prior knowledge. It considers prior
knowledge of voltage-related characteristics and introduces a
knowledge-driven identification model to identify topology errors
and authentic topologies of users. However, a significant
shortcoming of this method is that the final identification results
are particularly influenced by prior knowledge. Reference (Zhao
et al., 2022) proposes a terminal customer data-driven approach that
utilizes on-site data obtained from advanced metering infrastructure
to identify transformer-customer relationships in low-voltage
distribution grids. A drawback is its high requirement for both
data quality and quantity. In reference (Yang et al., 2021), the
utilization of a BP neural network is proposed to train collected
voltage sample data by class, followed by feature extraction using the
trained data to perform cluster analysis, enabling accurate
identification of user substation information. Reference (Yang
et al., 2022) introduces a line loss evaluation index, which utilizes
bidirectional long short-term memory networks and spatial
convolutional networks to re-identify abnormal users in
substation information, yielding satisfactory identification results,
yet heavily reliant on the accuracy of measurement data. Reference
(Xiaodong et al., 2020) initially conducts feature extraction on data
using deep learning algorithms, subsequently calculating the
correlation between users and distribution transformers through
Pearson correlation coefficients, enabling synchronous
identification of users’ substation affiliation and phase distinction.
Reference (Gao et al., 2023) presents a data-driven machine learning
approach for identifying feeder-transformer relationships in
distribution networks. By applying a multi-feature fusion method
to extract additional features from feeders and combining them with
correlation coefficients to create a feature matrix, machine learning
algorithms are then applied to compute results. The drawback is that
the integration of multiple features is challenging and the required
computation time is relatively long. In reference (Li et al., 2023), a
method for low-voltage distribution network topology identification
based on unsupervised learning and graph theory is proposed.
Initially, the tSNE-DBSCAN-LLE algorithm is used to identify
the four-level topology information, followed by the simple
generation of topology graphs using the identified information,
thereby completing the topology identification of the low-voltage
distribution network.

The aforementioned topology identification methodologies rely
solely on individual node voltage or power consumption data for
topology discernment. However, in practical scenarios, node voltage
values obtained from meters associated with a single transformer
may exhibit considerable discrepancies, whereas those derived from
meters linked to distinct transformers may demonstrate strikingly
similar results. Consequently, the advancement of distribution grid
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control techniques faces challenges in achieving accurate
identification outcomes solely through correlation-based analyses
of voltage temporal measurements or power consumption data.

Reference (Chen et al., 2022; Yinjie et al., 2024) have proposed a
method for identifying the relationship between low-voltage
distribution transformers considering two types of measurement
data. Reference (Chen et al., 2022) introduces an electricity-
transformer relationship identification method based on voltage
fluctuation feature clustering and power summation relationships. It
involves extractingmultidimensional fluctuation parameters of adjacent
substation voltages and customer voltages, reducing the dimensionality
of high-dimensional voltage fluctuation features using the t-distributed
stochastic neighbor embedding (t-SNE) algorithm, and ultimately
identifying the topological relationships in the distribution network
based on the summation relationship between virtual user power data
and concentrators using the least squares method. Reference (Xu et al.,
2022), on the other hand, initially merges adjacent users based on
geographical location information and then employs the Gaussian
mixture model (GMM) clustering algorithm to partition voltage
time series data. The user partitioning results serve as the initial
values for the next iteration. Subsequently, it establishes a
convolutional identification model for the association between
distribution transformers and users based on energy supply-demand
balance to achieve the identification of the relationship between low-
voltage distribution substations and transformers. Reference (Yinjie
et al., 2024) proposes a photovoltaic temporal power convolutionmodel
based on the balance relationship between substation transformers and
user power. Initially, it establishes amultivariate linear regressionmodel
for the low-voltage transformer-user relationship with a high
proportion of photovoltaic usage based on the user-transformer
power balance relationship. It also introduces an optimization
objective function for voltage clustering based on Gaussian mixture
models to achieve transformer-user relationship identification.
However, the methods mentioned in the above literature do not
simultaneously consider the comprehensive use of voltage and
power consumption data for topology identification.

Therefore, this paper proposes a topology identification method
based on user profiling technology (Chen, 2021; Wu et al., 2020).
Firstly, by establishing features labeled with electricity consumption
coefficients and voltage similarity, the electricity consumption
coefficient matrix is solved using the continuous relaxation method
and branch-and-bound method, while the voltage similarity matrix is
solved using the Gaussian kernel function. Finally, a comprehensive
attribution matrix is constructed based on the electricity consumption
coefficient matrix and the voltage similarity matrix to form user
substation attribution profiles. A convolutional neural network is
employed to cluster and solve the comprehensive attribution matrix,
outputting user substation attribution information and completing
the identification of substation attribution relationships in low-voltage
distribution systems. Through simulation verification in practical
systems, the proposed method effectively identifies the substation
information to which low-voltage users belong and the connection
relationships between users and substation transformers.

The rest of this paper is organized as follows. Section 2 provides a
detailed exposition of the conceptual framework for topology
identification based on user profiling. Section 3 elucidates the specific
contents of user profiling feature labels, encompassing significant
features such as electricity coefficient and voltage similarity. Section 4

delves deeply into the process and methodologies involved in
establishing user substation attribution profiles, this culminates in the
formation of comprehensive user substation attribution profiles. Section
5 provides numerical simulations that demonstrate the performance of
the introduced methods.

2 The approach to topology structure
identification based on user profiles

Based on the concept of user profile, the identification approach of
topology structure is illustrated in Figure 1. As is well known, the
affiliation of users to distribution transformers (DTs) is closely related to
features such as the electricity consumption pattern and voltage
similarity of users. The concept of user profile is extended to the
research of topology structure identification. Based on the voltage and
electricity consumption data of low-voltage distribution transformer
users, an analysis is conducted, followed by the development of feature
label models and the study of user profiles. Firstly, the voltage and
electricity consumption data of loads are abstracted to describe the
features that can characterize the affiliation to distribution transformers.
Then, a label system representing the affiliation characteristics of
residential loads to distribution transformers is established,
generating user affiliation profiles, and ultimately accomplishing the
identification of user affiliations to distribution transformers.

3 User profile feature labels

The essence of user profiles lies in the study of user behavior,
where feature labels serve as highly refined identifiers of user
behavior. The core task of constructing user profiles is to assign
“labels” to users. The label model is constructed based on the
influencing factors of topology structure identification, which
include feature labels for electricity consumption coefficient and
voltage similarity classification.

3.1 Electricity consumption coefficient
feature label

Considering the issue of electricity matching, a model is
established for the relationship between distribution transformers
and users, using the distribution system depicted in Figure 2 as an
example. As illustrated in Figure 2, distribution transformers and all

FIGURE 1
Idea of topology identification based on user profiling.
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users under their respective substations follow the principle of
electricity balance. This means that within a certain period, the
electricity supplied by a distribution transformer equals the total
electricity consumed by all connected users in its substation
(assuming negligible losses in the lines). It is well-known that
due to factors such as occupation, age, and consumer psychology,
different users have different electricity consumption habits and
behaviors. Therefore, their electricity consumption varies during
different time periods. Hence, this chapter can utilize the supplied
and consumed electricity by distribution transformers and users
under their substations during multiple time periods to infer their
connection relationships.

Using Table 1 as a simple case study, during the time period
from 1:00 to 2:00, the electricity consumption measured by meters 1,
2, and three exactly matches the electricity supplied measured at
distribution transformer 1, while the electricity consumption
measured by meters 4 and 5 exactly matches the electricity
supplied measured at distribution transformer 2. This indicates
that meters 1, 2, and three belong to substation 1, while meters
4 and 5 belong to substation 2. This consistency extends beyond just

the 1:00–2:00 time period; it holds true for the 2:00–3:00 time period
as well. Thus, even if occasional identification errors occur due to
measurement or calculation inaccuracies within a single time period,
with a large amount of sampled data input, these errors can be
promptly corrected due to the variability of the data.

This chapter begins by utilizing the measured electricity data
from distribution transformer nodes and user nodes to formulate
electricity measurement balance equations. In a low-voltage
distribution system with m distribution transformers and n users,
there should exist the following summation relationship between the
metered electricity at transformer interfaces and the electricity
consumed by each user:

yj t( ) � ∑n
i�1
aj,ixi t( ), j ∈ m, t ∈ H (1)

Where, yj(t) represents the collected electricity at time t at the
interface of the j-th substation under analysis. xi(t) represents the
collected electricity at time t for the i-th user. ai,j represents the
coefficient of the i-th user to be solved for in the j-th substation
under analysis. If aj,i � 1, it indicates that the user i belongs to the
j-th substation. If aj,i � 0, it indicates that the user i does not belong
to the j-th substation.

According to Eq. 1, the following system of balance equations for
electricity between transformers and users can be established as
shown in Eqs 2–5:

Y � AX (2)

Y �
y1 1( ), y1 2( ), / y1 H( )
y2 1( ), y2 2( ), / y2 H( )

..

. ..
. ..

. ..
.

ym 1( ), ym 2( ), / ym H( ),

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (3)

X �
x1 1( ) x1 2( ) / x1 H( )
x2 1( ) x2 2( ) / x2 H( )
..
. ..

. ..
. ..

.

xn 1( ) xn 1( ) / xn H( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (4)

A �
a1,1, a1,2, / a1,n
a2,1, a2,2, / a2,n
..
. ..

. ..
. ..

.

am,1 am,2 / am,n

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (5)

Where, Y represents the electricity consumption sequence over
H hours for m transformer interface meters. A represents the matrix

FIGURE 2
Low-voltage distribution system structure.

TABLE 1 Measured data of distribution transformer power supply and customer power consumption.

Time Distribution
transformer
power supply

(kW/h)

Consumer power consumption (kW/h)

1# 2# Smart meter 1 Smart meter 2 Smart meter 3 Smart meter 4 Smart meter 5

1:00–2:00 14.5 6.7 2.0 4.5 10 3.9 2.8

2:00–3:00 23.1 8.4 4.7 6.1 12.3 3.1 5.3

3:00–4:00 28.9 12.7 9.2 3.2 16.5 5.1 7.6

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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of electricity consumption coefficients to be solved. X represents the
electricity consumption sequence of n users within the substation to
be analyzed overH hours. m represents the number of substations. n
represents the number of users.

It should be noted that a unique connection must exist between
low-voltage distribution transformers and users. A terminal user
meter cannot be connected to two distribution transformers
simultaneously. Therefore, the constraint condition is established
as shown in Eq. 6.

∑m
j�1
aj,i � 1, j ∈ m, i ∈ n, aj,i ∈ 0, 1{ } (6)

Therefore, considering measurement noise, the transformer-
user measurement equation based on electricity balance can be
expressed as Eqs 7, 8.

Y � AX + ω (7)
ATD � On (8)

Where, ω represents the measurement noise matrix. Z is an n*n
dimensional identity matrix. D � [Z, Z, / Z ]T, On represents a
1*n dimensional matrix filled with ones.

Eq. 8 ensures that each meter is only connected to one
distribution transformer. By solving for the electricity
consumption coefficient matrix, it can determine the association
between distribution transformers and users.

Given the measured quantities Y and X, an estimation equation
can be established based on the least squares method to solve for the
electricity consumption coefficients, as shown in Eq. 9:

min Y − XA‖ ‖22
s.t.

ATD � On

aj,i ∈ 0, 1{ }

⎧⎪⎨⎪⎩ (9)

Note that to ensure the estimation equation has a solution, it is
necessary to ensure that the number of available hours for electricity
data collection, H is greater than the number of users in the
substations to be analyzed n.

3.2 Voltage similarity feature label

Voltage similarity refers to the resemblance in electrical distance
and voltage fluctuations among users within the same substation.
Conversely, for users across different substations, there exists a
greater electrical distance and larger disparities in voltage
fluctuations. Despite occasional subtle differences, this paper
advocates for employing advanced clustering techniques to utilize
voltage similarity as an indicator for determining user substation
affiliations.

In this section, voltage similarity is obtained using a Gaussian
kernel function [28]. The definition of the Gaussian kernel function
is given by Eq. 10:

k x, y( ) � e−
x−y‖ ‖2
2σ2 (10)

Where, x and y represent two vectors, and σ controls the local
influence range of the Gaussian kernel function.

Therefore, the voltage data similarity between nodes i and j at
time t can be calculated using the Gaussian kernel function as shown
in Eq. 11:

pt i, j( ) � k vi,t, vj,t( ) (11)

Where, vi,t and vj,t represent the voltage measurements of nodes
i and j at time t.

4 User station attribution profiles

4.1 Profile method based convolutional
neural network

The proposed method involves utilizing a convolutional neural
network (CNN) classification approach to perform clustering
analysis on the electricity consumption coefficient feature labels
and voltage similarity feature labels mentioned above, thereby
further establishing user substation affiliation profiles. The overall
analysis method comprises the following four steps.

Step 1: Analysis of the values of the various indicators

1. Electricity consumption coefficient feature label E
By solving Eq. 9, we can obtain the electricity coefficient matrix,

and organizing this matrix yields the electricity coefficient feature
labels. The problem described by Eq. 9 is mathematically known as a
Mixed Integer Programming (MIP) problem. It is important to note
that as the dimensionality of integer variables increases, the search
space of MIP problems also grows, leading to a sharp increase in
computational complexity for solving MIP problems. This may
result in a significant increase in algorithm runtime, and in some
cases, make certain problems unsolvable within a reasonable
timeframe. This paper first employs a continuous relaxation
method to relax the binary variables, and then utilizes the
branch-and-bound method to round the continuous variables.

The Branch and Bound Method is an iterative search technique
that utilizes selecting different branching variables and branching
subproblems for exploration. Its main idea is to search within the
feasible region of the relaxed problem to find integer solutions that
can optimize the objective value. This method mainly consists of the
following two steps.

(1) Branching: When the optimal solution of the relaxed form of
an integer programming problem fails to satisfy the integer
constraints, it is split into two branching subproblems. The
feasible solution space of these two subproblems covers all
feasible solutions of the original integer programming
problem. Subsequently, each branching subproblem can
generate its own sub-branching subproblems until the
optimal solution of the integer programming problem
is found.

(2) Bounding: During the branching process, if a derived problem
happens to find a feasible solution to the integer
programming problem, then the objective function value of
that solution becomes a “bound,”which can serve as a guiding
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criterion for solving other branching subproblems. This
“bound” can be replaced by a more optimal value.

The main steps for solving the electricity consumption
coefficient are as follows.

(1) Firstly, relax problem (Eq. 9) using a continuous relaxation
method, then solve the relaxed linear programming problem
(Eq. 12) using CVX to obtain a continuous solution and the
lower bound of the problem.

min Y − XA‖ ‖22
s.t.

ATD � On

aj,i ∈ 0, 1[ ]

⎧⎪⎨⎪⎩ (12)

(2) Branching on a single variableaj,i, involves constructing two new
constraints aj,i � 0 and aj,i � 1, which are separately added to
problems (10). This creates two branching subproblems. Solve
these subproblems, compare their optimal values to obtain the
upper bound of the problem, then prune. Finally, populate the
0–1 variables into the discrete sequence.

(3) Prune the branching subproblems based on pruning
principles. The pruning principles are as follows:
Branching subproblems without feasible solutions should
be pruned and branching subproblems with an optimal
value exceeding the original upper bound should be pruned.

(4) Check if the discrete sequence is complete. If it is complete,
exit the loop and output the solved user coefficients. If it is not
complete, proceed to Step 2 to continue solving.

By solving the electricity coefficient matrix, we can obtain the
electricity characteristic coefficient labels at time t. As shown in
Eq. 13. The labels in the electricity coefficient characteristics are logical
values, indicating whether users are connected to the corresponding
substation. If connected, the value is 1; if not, the value is 0.

Et � E 1( ) E 2( ) / E n( )[ ]T (13)

2. Voltage similarity feature label D

To solve the voltage similarity between users using Eq. 11 and
establish the voltage similarity matrix at time t, we utilize this type of
characteristic label to represent the voltage similarity Dt between
every two users, as specified in Eq. 14.

Dt �
pt 1, 1( ) pt 1, 2( ) / pt 1, n( )
pt 2, 1( ) pt 2, 2( ) / pt 2, n( )

..

. ..
.

1 /
pt n, 1( ) pt n, 2( ) / pt n, n( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (14)

Step 2: Construct the comprehensive attribution feature matrix L
with the following components: electricity coefficient
characteristic label E and voltage similarity classification
characteristic label D, as shown in Eq. 15.

L � L E1,D1( ) L E2,D2( ) / L Et,Dt( )[ ] (15)

In the comprehensive attribution feature matrix L, each element
can describe the voltage similarity between nodes and the electricity
coefficient of users.

Step 3: Convolutional Neural Network Clustering Method

Convolutional Neural Network (CNN) are powerful deep
learning architectures that are particularly well-suited for tasks
such as image classification and object recognition. The specific
structure typically includes convolutional layers, pooling layers, and
other specialized neural network layers, as illustrated in Figure 3.

A total of five steps are required for user station attribution
classification using Convolutional Neural Network.

(1) Place the obtained comprehensive attribution feature matrix
data into the input layer.

(2) Feature extraction can be performed on the input
comprehensive attribution feature matrix data through
convolutional operations. Convolution involves each
neuron in the convolutional layer convolving with a
portion of the input comprehensive attribution feature
matrix data, thereby generating a feature representation
of the data.

(3) Utilize the ReLU activation function, which outputs 0 when
the input is less than 0, and outputs the input itself when the
input is greater than 0. The purpose of employing the
activation layer is to introduce non-linearity to the results
of matrix operations.

(4) Pooling layer performs down sampling on the comprehensive
attribution feature matrix data after non-linear activation to
reduce the number of parameters, prevent overfitting, and
enhance the processing speed of the model.

(5) Obtain clustering results and output the classification results,
which represent the attribution information of users to the
corresponding power distribution area.

4.2 Visualization of user station
attribution profiles

For ease of visually presenting the profiling of user-substation
affiliations, this section first generates comprehensive profiles based
on the integrated affiliation feature matrix. Subsequently, the results
of two types of feature labels for users are visualized. The electricity
coefficient feature labels denote the connection between users and

FIGURE 3
Structure of N-layer convolutional neural network.
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substations, while the voltage similarity feature labels are
represented by substation numbers, indicating the affiliation
substation for users. The presentation method is illustrated
in Figure 4.

5 Case analysis

5.1 System data

This article conducts simulation experiments using data from
125 electricity meters across 4 substations in a city in China.
Substations 1, 2, 3, and 4 have 35, 30, 32, and 28 m respectively.
Meters 1–35 belong to substation 1, 36–65 belong to substation 2,
66–97 belong to substation 3, and 98–125 belong to substation 4.
The analyzed data includes energy consumption and voltage data for
all meters, sampled every hour, over a continuous period of 1month.
This chapter selects complete data from a single day for simulation.
The voltage data is shown in Table 2, and the topology structure is
illustrated in Figure 5.

5.2 Simulation analysis

To validate the identification effect of the user profiling method
proposed in this paper for determining user substation affiliation,
this section is divided into three parts for verification. Firstly, the
identification effect of two feature labels is discussed separately, and
the factors influencing the identification effect of each feature label
are discussed respectively. Finally, the identification effect of user
substation affiliation profiling on low-voltage distribution substation
topology is analyzed.

(1) To validate the identification effect of the electricity
consumption coefficient feature label on topology
relationships and analyze the influencing factors.

To validate the identification effect of the electricity consumption
coefficient feature label on topology relationships, this paper employs

the Round half up method and the Branch-and-bound method to solve
the electricity consumption coefficient and compares the effectiveness
of these two methods. The electricity data from Substation 1 and
Substation two are used to respectively verify the effectiveness of the
rounding method and the branch-and-bound method in solving the
electricity consumption coefficient. Specifically, the data from
Substation 1 is used to validate the effectiveness of the Round half
up method, while the data from Substation two is used to validate the
effectiveness of the Branch-and-bound method.

As shown in Figure 6, there is a significant error between the
electricity consumption coefficients obtained using the continuous
relaxation method and the rounding method, compared to the true
values, with an error rate of nearly 30%. Additionally, Figure 7 reveals
that there is a considerable error in the fluctuation curve of the supply
volume of Substation 1’s distribution transformer compared to the total
electricity consumption of all users within the substation.

In contrast, Figure 8 demonstrates that the error between the
electricity consumption coefficients obtained using the continuous
relaxation method and the branch-and-bound method and the true
values is relatively small, with an error rate of only 7%. Moreover,
Figure 9 shows that the fluctuation curve of the supply volume of
Substation 2’s distribution transformer is very close to the total
electricity consumption of all users within the substation. Therefore,
the effectiveness of using the continuous relaxation method and the
branch-and-bound method to solve the electricity consumption
coefficients is superior to using the continuous relaxation method
and the rounding method. The results indicate that using the
continuous relaxation method and the branch-and-bound
method to solve the electricity consumption coefficients not only
improves the efficiency of the solution but also ensures that the
accuracy is not compromised. However, this conclusion is limited to
the case where only the electricity data from Substation 1 is involved
in solving the electricity consumption coefficients.

To verify the impact of the amount of electricity data on the
solution of electricity consumption coefficients using the branch-and-
bound method, this paper conducts validation analysis using the
electricity data from Substation three and Substation 4. When
solving the electricity consumption coefficients for Substation three
using the continuous relaxation method and the branch-and-bound
method, the electricity data from Substation 4 are not included.
Conversely, when solving the electricity consumption coefficients for
Substation 4 using the continuous relaxation method and the branch-
and-bound method, the simultaneous electricity data from Substation
three are included. Clearly, once the data from one substation aremixed
with the electricity data from another substation, the accuracy of the
identification decreases, as shown in Figure 10.

In Figure 10, the fluctuation of the supply volume of Substation
3’s distribution transformer is consistent with the total electricity
consumption of all users within the substation, with almost no
deviation, and the effect of solving the electricity consumption
coefficients is also very good, with an error rate below 6%.
Undoubtedly, the fluctuation of the supply volume of Substation
4’s distribution transformer exhibits a significant deviation from the
total electricity consumption of all users within the substation, and
the effect of solving the electricity consumption coefficients is poor,
with an error rate reaching 13%. This is because, over long time
scales, there is a certain probability that the electricity data will show
similarities, and this makes it impossible for the branch-and-bound

FIGURE 4
Visualization of user station attribution profiles.
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TABLE 2 Voltage measurement data for all smart meters.

Time Smart
meter 1

Smart
meter 2

Smart
meter 3

. . . Smart
meter 123

Smart
meter 124

Smart
meter 125

2023-3-23
11:00

222.4 223.7 225.2 . . . 225.9 228.9 223.7

2023-3-23
12:00

223.9 224.3 228.1 . . . 225.8 232.1 227.9

2023-3-23
13:00

225.1 222.4 224.3 . . . 224.6 229.7 224.4

2023-3-23
14:00

224.3 223.6 225.5 . . . 226.8 231.9 226.6

. . . . . . . . . . . . . . . . . . . . . . . .

2023-3-24
11:00

221.1 223.4 225.3 . . . 224.6 229.7 224.4

2023-3-24
12:00

224.3 226.3 228.2 . . . 227.6 232.5 225.7

FIGURE 5
Network topology diagram of low-voltage distribution substation area.
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method to make a correct choice, leaving only a 50% chance of
selecting the correct electricity consumption coefficient.

To further investigate the impact of the amount of electricity data
on the solution of electricity consumption coefficients, we selected four
different sets of data for testing. The first set of data only includes the
electricity data from Substation 1. The second set includes the electricity
data from Substations 1 and 2. The third set includes the electricity data
from Substations 1, 2, and 3. The fourth set includes the electricity data
from Substations 1, 2, 3, and 4. Regardless of how many substations’
electricity data are included, we only solve for the electricity
consumption coefficients of Substation 1.

Additionally, to eliminate errors caused by random factors, we
conducted 100 repeated experiments and took the average of the
results from these 100 experiments. The accuracy rates of the
solutions using the Round half up method and the Branch-and-
bound method are shown in the following Table 3.

From the table above, it can be seen that regardless of whether it
is the rounding method or the branch-and-bound method, as the
amount of substation data increases, the accuracy rates of solving the
electricity consumption coefficients using both methods gradually
decrease, eventually stabilizing at 66% and 85%, respectively.
However, it is evident that the accuracy rate of the Branch and
bound method is approximately 20% higher than that of the round
half up method. This further indicates that the branch-and-bound
method selected in this paper performs relatively well.

(2) To verify the effectiveness of voltage similarity feature labels
in identifying topological relationships and analyze the
influencing factors.

To verify the effectiveness of voltage similarity feature labels in
identifying topological relationships, this paper employs the

FIGURE 6
Comparison of solved and true values of power usage coefficient
for station 1

FIGURE 7
Energy fluctuation curve of station 1

FIGURE 8
Comparison of solved and true values of power usage coefficient
for station 2

FIGURE 9
Energy fluctuation curve of station 2
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K-means clustering method and the CNN method to cluster the
voltage similarity feature labels. The clustering performance of these
two methods is then compared. The voltage sequence data from
Table 2 is used for simulation verification, and the classification
results are shown in Figures 11, 12.

From Figures 11, 12, it can be seen that the accuracy of the CNN
method is only 91.2%, while the accuracy of the K-means clustering
method is only 85.6%. Although the CNN method shows a higher
accuracy, both methods do not achieve very high accuracy when
used to classify solely based on voltage similarity feature labels.

Considering the impact of different parameter values on the
experimental results and in order to analyze the influencing factors
on the classification of voltage similarity feature labels, this paper
conducts simulation verification with different values for the
parameter σ, which controls the local influence range of the
Gaussian kernel function. The value of σ ranges from [0,1] with
a step size of 0.05. The simulation results are shown in Figure 13.

It can be seen that when the parameter σ, which controls the
local influence range of the Gaussian kernel function, takes different
values, the classification accuracy of both the K-means clustering
method and the CNN classification method is affected. When
σ � 0.1, the accuracy obtained using the CNN method is the
highest, while the accuracy obtained using the K-means method
is highest when σ � 0.15. Therefore, in the verification section of
Part 3, this paper uses these two values for the parameter σ.

(3) To verify the topological identification effectiveness of user
substation allocation profiles

After discussing the identification effects of the two feature labels
separately, this section utilizes voltage data and electricity
consumption data from four substations to calculate the electricity
coefficient feature labels and voltage similarity feature labels. Then,
by integrating the electricity coefficient feature labels and voltage
similarity feature labels, user substation allocation profiles are
constructed.

Using a CNN method, clustering is performed on the two types
of labels to obtain the information on which substation each user
belongs to, thereby completing the identification of the relationship
between users and their respective substations. The topological
identification effectiveness of the user substation allocation
profiles is shown in Figure 14.

It can be seen from Figure 14 that by constructing user
substation allocation profiles, it is possible to automatically divide
the 125 users in the low-voltage distribution substation into four
groups without the need to pre-set thresholds. This effectively
determines the relationship between each user and their
respective distribution transformer, achieving a fundamentally
accurate user-transformer relationship and connection.
Additionally, this method overcomes the limitation of the
branching boundary method, which has a low accuracy in
calculating the electricity coefficient when data from other
substations are mixed in.

In addition, to further analyze the classification effectiveness of
the CNN method, this study also conducted simulation verification

FIGURE 10
Energy fluctuation curve of station three and station 4

TABLE 3 Effect of varying amount of power data on correctness rate.

Electricity data for
station 1 (%)

Electricity data for
station 1 and 2 (%)

Electricity data for station
1, 2 and 3 (%)

Electricity data for station 1,
2, 3 and 4 (%)

Round
half up

75 69 67 66

Branch and
bound

94 89 86 85

FIGURE 11
K-means classification accuracy demonstration.

Frontiers in Energy Research frontiersin.org10

Li et al. 10.3389/fenrg.2024.1427986

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1427986


using four combination methods: K-means + Round half up, CNN +
Round half up, K-means + Branch and bound, and CNN + Branch
and bound. The simulation results are shown in Figure 15.

From the simulation results in Figure 15, it can be seen that the
factors influencing the identification results mainly include the method
used to calculate the electricity coefficient feature labels and the different
clustering methods. It is evident that the topological identification
results obtained using the Branch and bound method for solving the
electricity coefficient are always better than those obtained using the
Round half up method. Furthermore, the topological identification
results using the CNNclassificationmethod are always superior to those
using the K-means clustering method. This further demonstrates the
advantages of the proposed method in the topological identification
process. Additionally, this method can achieve a high level of
topological identification accuracy early in the iteration process,

requiring only a few iterations to identify the connection
relationships between substations and users.

6 Conclusion

By introducing user profile technology into the research of
substation topology identification, a comprehensive user profile is
achieved through establishing voltage similarity feature tags and
power consumption coefficient feature tags. This is done by solving
the two types of tags to construct a comprehensive attribution
feature matrix, completing the identification and verification of
user substation attribution.

Simulation verification has revealed that single feature tags, whether
voltage similarity feature tags or power consumption coefficient feature
tags, have very limited effectiveness in identifying user relationships,

FIGURE 12
CNN classification accuracy demonstration.

FIGURE 13
Effect of different values of σ on classification results.

FIGURE 14
Visualization results of area identification.

FIGURE 15
Effect of various methods on the accuracy of topology
identification.
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with significant errors. However, by composing a comprehensive profile
with both types of tags, it becomes very intuitive to identify which user
substation attribution information is abnormal. Furthermore, the two
types of tags can mutually corroborate each other, improving the
accuracy of topology identification. However, constrained by the
limitations of the algorithm itself, it is not possible to achieve 100%
accurate identification, and further improvements are needed in
subsequent work.
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