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Energy storage systems (ESSs) installed in distribution networks have been widely
adopted for frequency regulation services due to their rapid response and flexibility.
Unlike existing ESS design methods which focus on control strategies, this paper
proposes a new method based on an ESS equivalent aggregated model (EAM) for
calculating the capacity and the droop of an ESS to maintain the system frequency
nadir and quasi-steady state frequency using low-order functions. The proposed
method 1) uses first-order functions to describe the frequency response (FR) of
synchronous generators (SGs); 2) ignores the control strategies of SGs, making the
method systematic and allowing it to avoid analyzing complex high-order functions;
and 3) is suitable for low inertia systems. The applicability and accuracy of themethod
is demonstrated using a modified four-generator two-area (4G2A) system.
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1 Introduction

Frequency is a crucial index for measuring power quality, representing the balance of
active power in power systems (He and Wen, 2021). With the increasing penetration of
renewable energy sources, the inertia of power systems is decreasing and the effective
maintenance of the frequency nadir (fnadir) and quasi-steady state frequency (fss)
consequently becomes challenging, posing a threat to system stability.

Therefore, system operators all over the world are focused on setting a series of frequency
response (FR) services. Among FR energy sources, energy storage systems (ESSs) installed in
distribution networks have been widely used (GB/T 30370-2013, 2013; Rana et al., 2023). The
National Grid in Britain has set various dynamic frequency control products (AEMO, 2023), the
Australian Energy Market Operator (AEMO) has proposed a Contingency Frequency Control
Ancillary Service (FCAS) and a Regulation FCAS (National Grid ESO, 2019), and in
Guangdong, China, a LiFePO4 (LFP) battery is also used as a frequency control product
(Wang et al., 2023). However, the design of the aforementioned ESSs relies entirely on
simulation analysis. Systematic methods for system operators to evaluate the frequency
support ability of an ESS and calculate the main parameters of an ESS have not been proposed.

ESSs can function both as generators and loads. Existing research mainly focuses on the
construction of the ESS FRmodel. In these studies, the classical FRmodel proposed byAnderson
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and Mirheydar (1990) has been widely used. Based on the classical
model, researchers have developed an ESS transfer functionmodel (Aik,
2006; Yang et al., 2022). In Chen et al. (2016), the penetration rate of an
ESS is considered to improve the FR model. However, ESS FR models
based on the classical FR model only consider the reheat turbines of
synchronous generators (SGs); thus, they are not suitable for systems
with other types of gas/hydraulic turbines. To avoid this limitation,
generic FR models have been proposed by Gao et al. (2021), Ju et al.
(2021), and Zhang et al. (2021). In Ju et al. (2021) and Gao et al. (2021),
the FR of an SG is described as an nth-order function, and in Zhang
et al. (2021), all generation sources are presented as lead-lag functions,
and the FR of the system can be described as the classical FR model.
Nevertheless, generic FR models present the system frequency
characteristics in an aggregated manner, making it difficult to
distinguish the FR of an ESS.

To precisely evaluate the frequency support ability of an ESS, many
ESS control strategies have been proposed. An ESS management strategy
was proposed by Ben Elghali et al. (2019) to determine the optimal
capacity of an ESS based on system frequency, and an ESS shaping
strategy was introduced by Jiang et al. (2021) to maintain the fnadir with
the optimal cost of an ESS (Mustafa and Altinoluk H, 2023) and aging
minimization (Wang et al., 2020). In Xiong et al. (2021), first-order
functions were used to size an ESS based on the rate of change of
frequency (RoCoF) to avoid dealing with high-order transfer functions.
Recently, ESS control schemes employing robust control (Xiong et al.,
2020), grid-tied inverter design (Xiong et al., 2016), self-adaptive control
(Wu et al., 2020), predictivemodels based on the uncertainty of renewable
sources (Zarei and Ghaffarzadeh, 2024), and ESS generation (Baker et al.,
2017; Zarei and Ghaffarzadeh, 2024) have been used to design ESSs.
However, these methods are only suitable for specific power grids,
limiting their broader applicability. Moreover, the control strategies
always ignore the capacity limit and droop limit of an ESS and regard
the frequency response output of an ESS as a step change, resulting in
significant errors in evaluating the frequency support ability of an ESS.

In this paper, an ESS equivalent aggregated model (EAM) is
introduced and a new method named the Energy Storage Designing
Method (ESDM) based on an EAM is proposed. An EAM consists of a
multistep model named FM to maintain the fnadir and a model named
QM to maintain the fss. For both FM and QM, which include a first-
order system FR model and a first-order ESS FR model, it is convenient
for system operators to evaluate and analyze the frequency support
ability of an ESS and lay the foundation of ESS sizing. Since renewable
sources such as wind farms and photovoltaic (PV) panels always work in
Maximum Power Point Tracking (MPPT) mode (Bai et al., 2015;
Mohanty et al., 2016) and are strongly related to the weather, and
the participation of renewable sources in frequency modulation is not
mandatory at present (Guangfu, 2020; Guangfu, 2022), SGs and ESSs are
still themain resources for frequency regulation. Therefore, the proposed
ESDM can effectively calculate the capacity and the droop of an ESS
based on a historical event and therefore accurately maintain the fnadir
and fss of the power system.

2 System equivalent frequency
response model

When there is an imbalance in the active power of the power
system, the system’s primary frequency response (PFR) can be

described in Figure 1, and it can also be described by the
classical swing equation as shown in (Eq. 1).

2H
∂Δf t( )

∂t
+DΔf t( ) � ΔPm − ΔPd, (1)

where H [s] is the inertia constant, D [p.u.] is the equivalent
damping factor, ΔPm [p.u.] is the mechanical power deviation
from generators, and ΔPd [p.u.] is the power disturbance. During
a frequency event, the system frequency must have a nadir. Due to
the monotone decreasing and converging of the step response of the
first-order system, if only the fnadir is considered, there must be a
first-order power function with a minimum value that is equal to the
fnadir as shown in Figure 2A. Similar to the fnadir, the fss can also be
described as a first-order function as shown in Figure 2B.

In Figure 2, tnadir1 is the time at which the system reaches the
frequency nadir at the maximum rate of the change of frequency
(RoCoFmax), while tnadir is the time at which the system reaches
the fnadir.

Therefore, the system equivalent FR (SEFR) model is depicted in
Figure 3. If K = K1, SEFR can be used to predict the fnadir after a
frequency event, with Δf = Δfnadir at t = ∞. Similarly, when K = K2,
SEFR is used to forecast the fss with Δf = fss at t = ∞. According to
Figure 3, the SEFR model can be shown as follows:

Δf s( )
ΔPd s( ) �

1
2Hs +D +K

(2)

Assuming that the load disturbance during a frequency event
undergoes a step change, with an amplitude ofΔPd, the time-domain
expression of the system frequency can be obtained by solving
(Eq. 3).

Δf s( ) � 1
2Hs +D + K

· ΔPd

s

Δf* t( ) � L−1 Δf s( )[ ] � ΔPd

D +K
1 − e−

D+K
2H t( )

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (3)

Δf*(t) is the per unit system frequency. It is clear from (Eq. 3)
that Δf*(t) is an increasing function, so its maximum value can be
calculated as shown in (Eq. 4).

Δf *
max � lim

t→∞
Δf* t( ) � ΔPd

D +K
(4)

For a historical frequency event, the fnadir and fss can be acquired
from system operators so that K1 and K2 can be easily calculated.

FIGURE 1
System PFR.

Frontiers in Energy Research frontiersin.org02

Duan et al. 10.3389/fenrg.2024.1427593

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1427593


K1 � ΔPdfN

fN − fnadir
−D

K2 � ΔPdfN

fN − fss
−D

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
, (5)

where fN is the base of system frequency (i.e., 50 Hz or 60 Hz).
As for the fss, if only PFR is considered, SEFR can accurately

symbolize the fss because both the actual value and SEFR value
are calculated when the time approaches infinity, i.e., t = ∞. To
analyze the accuracy of the SEFR in representing the fnadir, a
parameter named E is introduced to symbolize the error
between the actual fnadir and the SEFR value at tnadir. E can
be shown as

E � Δfnadir
* − Δf* tnadir( ) � Δfnadir

* e
− ΔPd
2HΔfnadir*tnadir

Δfnadir
* � fN − fnadir

fN

⎧⎪⎪⎪⎨⎪⎪⎪⎩ . (6)

According to (1), RoCoFmax can be described as (7), and if frequency
continues to fall at RoCoFmax, tnadir1 can be calculated as follows:

RoCoFmax � ΔPd

2H
, (7)

tnadir1 � Δfnadir
*

RoCoFmax

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣. (8)

A parameter named φ is proposed to describe the relationship
between tnadir1 and tnadir, so that E can be described as

tnadir1 � φ · tnadir
E � Δfnadir

* e−
1
φ

⎧⎨⎩ , (9)

where φ is a constant and φ ≤ 1.
According to Gao et al. (2021), tnadir usually falls in 8.5 s–10 s,

and in many areas, RoCoFmax can be very large (Xiong et al., 2021);
thus, φ can be very large so that E can be very small.

3 The proposed EAM

The parameters of an ESS are always designed based on the
maximum power disturbance (ΔPdmax), which means the utilization
ratio of an ESS will be quite low, and an ESS with a large droop and
capacity is not energy-efficient. Since ΔPdmax is a small probability
event, an ESS designed based on ΔPdmax is not flexible in dealing
with normal ΔPd.

3.1 The proposed FM

A new model named FM is proposed to calculate the parameters
of an ESS based on different levels of ΔPd and different required
frequency deviations as shown in Figure 4A.

Vsi and δsi, respectively, represent the equivalent capacity and
droop of an ESS for addressing frequency events with a power
disturbance level ΔPdi, and Δfi is the system-required frequency
maximum deviation at ΔPdi.

The principle of the ESS FM model is that different levels of
power disturbances have different occurrence probabilities. For
example, a% of disturbance lies in 0 to ΔPd1, b% of disturbance
lies in ΔPd1 to ΔPd2, and others lie in ΔPd2 to ΔPdmax. Therefore,
according to the range of power disturbances that need to be
addressed, system operators can design the Vsi and δsi of an ESS
using the FM model, as depicted in Figure 5, and choose the
appropriate combinations of Vsi and δsi based on their economic
or technical needs.

The Δfmax shown in Figure 5 can be selected as load-shedding
frequency deviation to deal with ΔPdmax of the power system, and
the frequency response characteristic of an ESS at ΔPdi should be
divided into three parts to deal with different disturbance levels
according to FM. The product of Vsi and δsi can be described
as (10).

FIGURE 2
(A) Representation of fnadir using the step response of the first-order system, and (B) Representation of fss using the step response of the first-
order system.

FIGURE 3
SEFR model.
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fNΔPdi

D + Vsiδsi + K1
≤Δfi

Vsiδsi ≥
fNΔPdi

Δfi
−D −K15VsiδsiΔfi + fNΔPdi

Δfnadiri
Δfi

≥fNΔPdi0Vsiδsi ≥fNΔPdi
1

Δfi
− 1
Δfnadiri

( ),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(10)

where Δfi is the knee point of FR of an ESS and can also be illustrated as
the system-required frequency maximum deviation at ΔPdi which can
be selected by system operators. Δfnadiri symbolizes the frequency
deviation at ΔPdi from a historical frequency event which can be
easily acquired from system operators. In applications, system
operators can select the Δfi based on their economic or technical
needs of an ESS and the stability of the power grid.

3.2 The proposed QM

As the proposed FMmodel does not consider detailed governor-
turbine dynamics, it cannot be used to represent frequency
dynamics after the nadir. To address this limitation, the QM
model is proposed to characterize the fss, as illustrated in Figure 4B.

The product of an ESS’s capacity, Vm, and droop, δm, can be
calculated as

ΔPdmaxfN

D +K2 + Vmδm
≤Δfssmax0Vmδm ≥

ΔPdmaxfN

Δfssmax
− D +K2( ). (11)

System operators always set up a rigorous limitation of fss
deviation (Δfss), so the calculation of Vm and δm can be based on
the ΔPdmax, where the Δfssmax is the required maximum Δfss.

3.3 The proposed EAM

The EAM includes the FM model and the QM model to deal
with the fnadir and fss, as mentioned above. The timing of switching
between FM and QM depends on ξ and the time tnadir. The tnadir can
be acquired from system operators and is smaller when an ESS takes
part in FR; thus, it is suitable that the moment of switching should be
greater than tnadir. ξ is introduced to measure the fss without the QM
mode’s participation.

ξ � fNΔPdi

D +K2 + Vsiδsi
(12)

3.4 Constraint condition in the ESDM

This section compares the energy efficiency of ESS designs based
on different levels of ΔPd and ΔPdmax to establish the constraint
conditions of the ESDM. If a power system experiences a
disturbance ΔPdm, according to the ESDM, the capacity and
droop of an ESS are Vsm and δsm, respectively. The output power
of an ESS, Pm1, is given by (Eq. 13).

Pm1 � Vsmδsm
ΔPdmfN

D + K1 + Vsmδsm
� ΔPdmfN

ΔPdmfN

Δfnadir1Vsmδsm
+ 1

(13)

If Vsmδsm < Vsmaxδsmas (the product of Vsm and δsm is based
on ΔPdm), an ESS designed through the ESDM is more
energy-saving.

4 Simulation results

The modified four-generator two-area (4G2A) system with PV
penetration and an line commutated converter based High Voltage

FIGURE 4
(A) The proposed FM, and (B) The proposed QM.

FIGURE 5
FR of ESS dealing with fnadir.
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Direct Current (LCC-HVDC) connection is used for simulation in
this section, as shown in Figure 6.

G1–G4 represent synchronous generators; PL7 and PL8 are the
equivalent loads at bus 7 and bus 9, respectively; and C7 and C8
represent reactive compensations. A grid-connected ESS is connected
to bus 10. Grid-connected PVs, named PV1 and PV2, are connected to
bus 1 and 6. The power rating of each synchronous generator is 900MVA,
and the capacity of LCC-HVDC is 800MVA, resulting in the power rating
of the receiving system (Area 2) being 2600 MVA. The parameters of the
simulation system are from Kundur (1994). The mechanical power gain
factor is 1 p.u., the power generated by the high-pressure turbine is 0.4 p.u.,
the reheat time constant is 8 s, and the equivalent damping factor is 0. The
system frequency characteristics are listed in Table 1.

4.1 Installed PV capacity of 33.3%

In scenario I, the power ratings of PV1 and PV2 are both
450 MVA. Furthermore, 90% of ΔPd is below 0.037 p.u., and the
system’s ΔPdmax is 0.046 p.u.

According to (10), ifΔf1 is selected as 0.2 Hz, andΔfmax is 0.3 Hz,
Vsi, δsi should satisfy Vs1δs1 ≥ 1.613 and Vs2δs2 ≥ 0.708. According to
(12), ξ = 0.172 Hz, and according to (11), Vmδm ≥ 3.067. The
simulation results are shown in Figure 7.

It can be seen in Figure 7 that FM and QM can accurately
describe the fnadir and fss, respectively. The orange curve in Figure 7
shows that the ESDM effectively maintains fnadir and fss. Considering
that Δfss is smaller than Δfssmax when ΔPd = 0.037, the ESS will not
switch to fss maintaining mode.

4.2 Installed PV capacity of 66.7%

In scenarios II and III, G1 is replaced with PV1 and PV2, both
with capacities of 900 MVA.

4.2.1 Scenario II
In scenario II, 90% of ΔPd is below 0.037 p.u., and the system’s

ΔPdmax is 0.0468 p.u.
According to (10), ifΔf1 is selected as 0.2 Hz, andΔfmax is 0.3 Hz,

Vsi, δsi should satisfy Vs1δs1 ≥ 1.733 and Vs2δs2 ≥ 2.251. According to
(12), ξ = 0.167 Hz, and according to (11), Vmδm ≥ 3.704. Taking
ΔPdmax as an example, simulation results are shown in Figure 8.

Figure 8 shows different switching times and combinations of
capacity and droop of an ESS. It can be seen that FM and QM can
accurately describe the fnadir and fss, respectively. Additionally, the
orange curve in Figure 8 shows that the ESDM effectively evaluates
the frequency support ability of an ESS and maintains fnadir and fss.

4.2.2 Scenario III
In scenario III, 40% of ΔPd is below 0.037 p.u., 50% of ΔPd lies

between 0.037 p.u. and 0.05 p.u., and ΔPdmax is 0.06 p. u. According
to (10), if Δf1 is selected as 0.2 Hz, Δf2 is selected as 0.5 Hz, and Δfmax

is 0.8 Hz, Vsi, δsi should satisfy Vs1δs1 ≥ 1.609, Vs2δs2 ≥ 1.608, and
Vs3δs3 ≥ 2.654.

Eq. 12 yields ξ = 0.21 Hz for ΔPd2 and ξ = 0.276 Hz for ΔPd3,
indicating that the ESS should be in fss maintaining mode and
Vmδm ≥ 7.595 according to (11).

Figure 9 demonstrates that the ESDMmaintains fnadir and fss not
only atΔPdmax but also at various ΔPd levels (as shown in Figure 9A).
For instance, in Figure 9A, the fnadir is larger than 59.5 Hz but lower
than 59.8 Hz, which means that ΔPd is larger than 0.036 and smaller

FIGURE 6
Modified four-generator two-area (4G2A) system.

TABLE 1 Simulation Scenario.

Scenario ΔPd Δfnadir/Hz Δfss/Hz Δfssmax/
Hz

Scenario I ΔPd1 0.037 0.234 0.134 0.15

ΔPd2 0.046 0.325 0.18

Scenario II ΔPd1 0.037 0.237 0.134

ΔPd2 0.0468 0.395 0.187

Scenario III ΔPd1 0.036 0.235 0.14 0.2

ΔPd2 0.05 0.683 0.236

ΔPd3 0.06 1.95 0.346
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than 0.05. Therefore, the ESS should be switched to fss maintaining
mode for added assurance.

4.3 Discussion

From Figures 7–9, it is evident that the ESS based on EAM is
conservative at the fnadir but exhibits some error at the fss. That is
because of the neglect of the coupling relationship between active
power and voltage in the model. With an increase in power

disturbance, the active power support increases, leading to higher
line losses and reduced load voltage. Taking the system load surge as
an example, the active power of the system increases so that the load
voltage decreases. As for the constant impedance load, active power
is positively correlated with the voltage. Consequently, the actual
power disturbance is lower than expected. With the frequency
support provided by an ESS and SGs, the system frequency is
recovered and the load voltage therefore increases. The increasing
voltage increases the power disturbance, leading to tiny errors in
maintaining the fss (as observed by the red lines (59.84 Hz) in 10; the

FIGURE 7
(A) FR of Scenario I at ΔPd = 0.046, and (B) FR of Scenario I at ΔPd = 0.037.

FIGURE 8
(A) FR of Scenario II at Switching moment = 10 s, and (B) FR of Scenario II at Switching moment = 7 s.

FIGURE 9
(A) FR of Scenario III at ΔPd = 0.047, and (B) FR of Scenario I at ΔPd = 0.06.
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error of 0.01 Hz is smaller than the dead-band of 0.015 Hz (GB/T
40595-2021, 2021)). In simulation scenarios, D is set as zero but
cannot be zero in reality. As for FM and QMmodels used for the ESS
calculation, D is not one of the input parameters according to (10)
and (11), and all input parameters are from system operators, so D
will not influence the accuracy of the models.

5 Conclusion

This paper proposes a method for calculating the capacity
and droop of an ESS based on historical frequency events to
maintain the fnadir and fss. The proposed method is convenient
and accurate for system operators to evaluate the frequency
support ability of an ESS and design ESSs. Furthermore, an ESS
based on the ESDM proves to be energy-efficient. Given that all
parameters are provided by system operators, the method holds
significant practical applications. Moreover, the proposed
method serves as a foundation for ESS sizing and control of
distribution network ESSs.
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