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The wind energy industry is witnessing a new era of extraordinary growth as the
demand for renewable energy continues to grow. However, accurately predicting
wind speed remains a significant challenge due to its high fluctuation and
randomness. These difficulties hinder effective wind farm management and
integration into the power grid. To address this issue, we propose the MRGS-
LSTM model to improve the accuracy and reliability of wind speed prediction
results, which considers the complex spatio-temporal correlations between
features at multiple sites. First, mRMR-RF filters the input multidimensional
meteorological variables and computes the feature subset with minimum
information redundancy. Second, the feature map topology is constructed by
quantifying the spatial distance distribution of the multiple sites and the maximum
mutual information coefficient among the features. On this basis, the GraphSAGE
framework is used to sample and aggregate the feature information of neighboring
sites to extract spatial feature vectors. Then, the spatial feature vectors are input into
the long short-termmemory (LSTM)model after slidingwindow sampling. The LSTM
model learns the temporal features of wind speed data to output the predicted
results of the spatio-temporal correlation at each site. Finally, through the simulation
experiments based on real historical data from the Roscoe Wind Farm in Texas,
United States, we prove that our model MRGS-LSTM improves the performance of
MAE by 15.43%–27.97% and RMSE by 12.57%–25.40% compared with other models
of the same type. The experimental results verify the validity and superiority of our
proposed model and provide a more reliable basis for the scheduling and
optimization of wind farms.
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1 Introduction

As a green, renewable and clean source of energy, wind energy is crucial for mitigating
climate change and building a sustainable energy system. Currently, wind power has become an
important part of global renewable energy (https://gwec.net/wp-content/uploads/2023/04/
GWEC-2023_interactive.pdf, 2023). However, due to the high randomness and volatility of
wind speed, large-scale grid-connected wind power can pose a serious threat to the smooth
operation of the power systems (Zhang et al., 2019; Li, 2022). Predicting wind speed can help
wind farms to adjust their scheduling plans in real time and provide a reference for the operation
and maintenance time of wind turbines (Wu et al., 2021). Therefore, improving the accuracy of
wind speed prediction will reduce the cost of wind energy utilization and enhance the efficiency
of wind power access (Khosravi et al., 2018; Zhang et al., 2020).
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Generally, wind speed prediction methods are divided into
physical, statistical and machine learning methods. Physical
methods use numerical weather prediction models and
probability density models to correct errors. Statistical methods
mainly use differential autoregressive moving average models to fit
historical data (Cadenas et al., 2016), but both of these methods
cannot well capture the dynamic changes and nonlinear features of
wind speed. Machine learning methods have been widely used in the
field of wind speed prediction for single turbines because of their
powerful feature extraction capabilities. Time-series prediction
models such as LSTM (Liu et al., 2018; Li et al., 2022; Wang
et al., 2023), gated recurrent unit (GRU) (Li et al., 2020; Wang
and Gui, 2022) etc. have strong nonlinear fitting effects and strong
learning ability, which in turn are more popular in wind speed
prediction modeling. For example, Wu et al. (2021) proposed an
LSTM network model that combines the maximum information
coefficient (MIC) and multi-task learning, and verified that the
machine learning model outperforms physical and statistical
methods. Chen et al. (2021) leveraged bidirectional GRU to
improve the accuracy and generalization ability of the model by
extracting the temporal feature information of wind power and
meteorological data. From a macroscale perspective, wind speed
exhibits certain regularities and periodicities annually, quarterly,
and even monthly. In addition, studies (Nielson and Bhaganagar.,
2019; Nielson et al., 2020) have shown that atmospheric stability
plays a key role in wind energy production. Considering
atmospheric input characteristics, such as wind shear and
turbulence intensity, can significantly improve the accuracy of
wind turbine power predictions. This highlights the importance
of including atmospheric variables in wind speed prediction models
to improve their performance and reliability.

Wind farms are mostly constructed in clusters, and single turbine
wind speed prediction methods are more difficult to adapt to wind
speed prediction scenarios in wind farms. Due to the high similarity of
the environment and meteorological conditions in which the wind
farms are located, there is also a correlation between the wind speed
variations among the sites within the wind farms, and this spatial
correlation can be utilized to improve the accuracy of wind speed
prediction. Zhu et al. (2021) used convolutional neural network (CNN)
to extract the field-wide features that affect the long-term wind speed
distribution and considered the wind speed correlation among units.
However, the single feature limits the ability of the model to capture
complex interactions in themulti-turbine feature expansion.Wang et al.
(2022) proposed an ultra-short-term wind farm cluster power
forecasting method based on dynamic spatio-temporal correlation.
Yu et al. (2022) established a CNN-LSTM-AM dynamic integration
model. But CNN could not accurately express the spatial features of
wind field distributed by non-grid structure, which resulted in low
accuracy of wind speed prediction. Bai et al. (2024) proposed a wind
speed prediction model based on the improved variational mode
decomposition and Seq2Seq network, which fully learns the implicit
correlation features of multidimensional time series data. Meanwhile,
the Seq2Seqmodel has a complex encoder and decoder structure, which
makes the model consume a large number of computational resources
when the wind speed fluctuates greatly. On the whole, the above
methods fail to fully utilize the spatial correlation of multi-variables
among sites within a wind farm, and the spatial relationship of multi-
variables is insufficiently portrayed.

In recent years, there has been an increasing trend in researches on
modeling spatial features using graph models to characterize the spatial
correlation of multiple wind farm features. The spatial relationships
between nodes are characterized by graph models, which are used for
feature transfer and aggregation to better extract spatial features via
graph neural network (GNN). Typical graph neural networks are GCN
(Liu and Ware, 2022), GAT (Liu et al., 2023a), etc., which have been
successfully applied to extract spatial features from graph models in
various fields, such as traffic prediction (Yu et al., 2018) and airport
delay prediction (Zeng et al., 2021). Geng et al. (2021) proposed a graph
optimization neural network for multi-node offshore wind speed
prediction, which captures spatial dependencies and generates high-
dimensional spatial features through GCN and channel attention
mechanisms. Khodayar and Wang (2019) combined rough set
networks and GCN to extract spatial features of wind farms. Liu
et al. (2023b) proposed an adaptive graph learning convolutional
network (AGLCN) that can automatically infer hidden associations
and achieve better results in extracting spatial features of offshore wind
farms. He et al. (2022) used GAT to extract multi-site wind features for
collaborative wind speed prediction to improve the accuracy of model.
Therefore, wind speed prediction of multiple sites requires
comprehensive consideration of both time-series data from each
individual site as well as interactions between their respective
distributions across space. Reasonably and efficiently characterizing
and utilizing this spatial and temporal correlations of multiple sites are
the key to improving the accuracy of wind speed prediction model.
Many studies either focus on single turbine wind prediction or fail to
adequately capture the complex spatio-temporal interactions within
sites. Moreover, traditional models often overlook the irregular
distribution of wind turbines, resulting in poor generality in
practical applications.

The main idea of this study is to propose a novel wind speed
prediction model, called MRGS-LSTM, which integrates the spatio-
temporal correlation of irregular multiple sites distributions. The
novelty and contributions of this study are described below.

1. We randomly select 20 irregularly distributed wind turbines to
validate our model’s robustness in handling datasets from
irregular wind site layouts.

2. We develop a novel mRMR-RF method to assess the
importance of various features and select the most
influential subset relevant to wind speed prediction.

3. Our innovative MRGS-LSTM model extracts spatio-temporal
features from multiple sites. Experiments show that central
sites achieve better prediction accuracy by incorporating wind
speed data from neighboring sites.

4. We selected other mainstream graph neural network models
and temporal feature extraction models to construct
5 comparison models. The experimental results show that
our model has excellent performance in MAE and RMSE.

2 Methodology

2.1 Graph modeling

Assuming that a graph,G � (V, E), whereV represents the set of
N nodes, and E is the set of edges that show the node-to-node
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connectivity. Node Vi and Vj are connected in the graph only when
there exists a strong correlation between them, where
Vi, Vj ∈ V, i, j ∈ 1, 2, ..., N{ }. The correlation between Vi and Vj

is defined as rViVj. X � X1, X2, ..., XN{ }, where Xi � xi
1, x

i
2, ..., x

i
n{ }

is the feature set with number n of nodeVi, denotes the sample set of
all nodes. W is a N × N adjacency matrix. To enhance
computational efficiency of graph neural networks and prevent
interference from weakly correlated nodes, Wij is defined as
Equation 1.

Wij � rViVj, rViVj ≥ 0.8
0, otherwise

{ , (1)

where Wij � Wji. Figure 1 shows an example of adjacency matrix
construction, which describes the connection relationships and
correlations between nodes.

2.1.1 GraphSAGE
GraphSAGE network is an inductive learning framework for graph

representation. By leveraging the attribute information of the nodes, this
network can efficiently generate vector representations of unknown
nodes or new graphs. Computational complexities are reduced by
sampling neighboring nodes for aggregated representation.
GraphSAGE can also capture diverse graph structures and feature
information to fit various graph data and tasks.

GraphSAGE randomly samples the target nodes with K layers of
neighbor nodes. The preset number of neighbor nodes to be sampled
in each layer is denoted as Sk, k � 1, 2, ..., K. During sampling, if the
node number of the k-th layer is less than Sk, the sampling scheme
without replacement is adopted, otherwise the sampling scheme
with replacement is utilized. Based on the study by Hamilton et al.
(2018), we select K = 2 for GraphSAGE to achieve excellent
performance. For example, if S1 = 3 and S2 = 7, the sampling
and aggregation process is shown in Figure 2. The blue dots and the
green dots represent the first-order and second-order neighbor node
sampled for the target node, respectively.

GraphSAGE aggregates the information of neighboring nodes at
each layer through the aggregation function AGGREGATE.
Afterwards, the information of the target node is continuously
updated by Equations 2, 3.

hkN V( ) ← AGGREGATEk hk−1u ,∀u ∈ N V( ){ }( ), (2)

hkV ← σ Zk · CONCAT hk−1
V , hkN V( )( )( ), (3)

where N(V) denotes the set of neighbor nodes of node V, hkV
denotes the embedding vector of node V in the k-th epoch, the
CONCAT function linearly superimposes each vector using residual
crosstabs, Zk is the weight matrix that GraphSAGE needs to learn,

FIGURE 1
Adjacency matrix construction.

FIGURE 2
Illustration of GraphSAGE.
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and σ is the nonlinear activation function ReLU, which can
effectively solve the vanishing gradient problem and improve the
convergence speed of the network. To increase the convergence of
the model, vector representation can be normalized by Equation 4.

hkV ← hkV
hkV
				 				2. (4)

2.2 LSTM

Memory cell units are incorporated in the hidden layers for
LSTM to realize the selective memory and forgetting of information
and retain a certain length of historical information. Notably, LSTM
excels in capturing long-term dependency in data and solves the
problems of gradient vanishing and gradient explosion. Figure 3
illustrates the LSTM network structure, which contains multiple
memory cells. Furthermore, each cell is extended with an input gate,
a forget gate and an output gate.

Input gate: The input gate it regulates the inclusion of new
inputs according to the hidden state of the previous period and the
inputs of the current period. Additionally, the cell state ~ct selectively
stores the input information. The calculation of the input gate and
the cell state are as follows by Equations 5, 6.

it � σ ωi · rt−1, xt[ ] + bi( ), (5)
~ct � tanh ωc · rt−1, xt[ ] + bc( ). (6)

where rt−1 denotes the hidden state of the previous period, xt

denotes the inputs of the current period, ω is the weight
coefficients, and b is the bias values, σ and tanh denote the
sigmoid activation function and hyperbolic tangent function
respectively.

Forget gate: The forget gate ft determines the selective
forgetting or retention of the previous output information. The
forget gate is calculated according to the following Equation 7.

~ct � tanh ωc · rt−1, xt[ ] + bc( ). (7)

Output gate: The output gate ot obtains the output of the LSTM
network according to the cell state ct. The calculation of the output
gate can be expressed as Equations 8, 9.

ot � σ ωo · rt−1, xt[ ] + bo( ), (8)
rt � ot ⊙ tanh ct( ), (9)

where ⊙ denotes the Hadamard product. Based on the
aforementioned calculation results, the cell state is updated by
Equation 10.

ct � f t ⊙ ct−1 + it ⊙ ~ct . (10)

3 Spatial feature extraction

3.1 mRMR

Assuming that the original dataset of a wind farm with N sites is
X � X1, X2, ..., XN{ }, where Xj � χj1, χ

j
2, ..., χ

j
n{ } denotes the feature

set of site j, χji � [xj
i (1), xji (2), . . . , xj

i (M)] is the i-th feature
sequence of site j, the feature vector γi � [χ1i , χ2i , . . . , χNi ] is
constructed by concatenating the i-th feature values of all sites.
The minimum redundancy maximum relevance (mRMR) algorithm
assesses the significance of features by quantifying the correlation
between each feature and the target variable, as shown in
Equation 11.

I γi; γj( ) � ∫∫ p γi, γj( )log2 p γi, γj( )
p γi( )p γj( ) dγidγj, (11)

where p(·) is the probability distribution function. The mRMR
algorithm consists of two parts:

Max Relevance: Define S as the feature subset of γi. Average the
summation of the relevance between each feature and the target, as
shown in Equation 12.

Di � 1
S| |∑γi∈S

I γi; c( ), (12)

FIGURE 3
LSTM network structure.
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where |S| denotes the dimension of the feature subset and c denotes
the target.

Minimum Redundancy: Calculate the redundancy between the
features, as shown in Equation 13.

Ri � 1

S| |2 ∑γi ,γj∈S
I γi; γj( ), (13)

3.2 mRMR-RF

Random forest (RF) is an integrated machine learning algorithm.
Multiple decision tree model, which is the supervised learning
algorithm, improves the accuracy and stability of feature selection.
By using mutual information as metric and considering that both
feature relevance and redundancy, mRMR can be embedded into RF to
select feature subsets with minimal information redundancy which can
effectively eliminate irrelevant or repetitive features. As illustrated in
Figure 4, the specific processes are as follows:

Initialize the original dataset: The original dataset is divided into
features and target.

Data normalization: The constructed dataset is normalized to
eliminate the influence of dimensions by Equation 14.

γ̂i �
γi − γi,min

γi,max − γi,min

, (14)

where γ̂i is the normalized data, γi, min and γi, max are the maximum
and minimum values of the feature data, respectively.

Bootstrap Sampling: Sample data are randomly drawn with
replacement from the feature to build K decision trees. If the
feature has M points, then the unsampled probability of each
record is P � (1 − 1

M)M. When lim
M→∞P � 1/e, 36.8% of features

are not included in the training set. These data are also called
Out-Of-Bag data (OOB data).

Getting the candidate feature set: The error values Erri(j)(j �
1, 2, ..., K) for each decision tree are calculated from the OOB data.

RF shuffles the feature γi in the OOB data and recalculates the error
values Err*i(j). The equation for calculating the feature importance
is shown as Equation 15.

importi � 1
K
∑K

j�1 Erri j( ) − Err*i j( )[ ]. (15)

Afterwards, by ranking the feature importance, the features with
high importance are filtered by the determined threshold ε as a
candidate feature set.

Partitioning feature subsets: All possible feature subsets s(u, v)
are exhaustively enumerated from the candidate feature set, where
u � 1, 2, ..., n is the number of features in the subset, v �
1, 2, ...,∑N

u�1C
u
n is the number of subsets.

Calculating the mRMR score of feature subsets: Calculate the
score of the feature subset s(u, v) via the following Equation 16:

score u,v( ) � ∑u

i�1Di −∑u

i�1Ri. (16)

The optimal feature subset is selected by ranking each feature
subset score.

Feature fusion: The fused feature X̂
j
of site j is obtained by

averaging the selected optimal feature subset. X̂ � X̂
1
, X̂

2
, ..., X̂

N{ }
denotes the fused feature of all sites. The process of feature fusion is
shown as Equation 17.

X̂
j � 1

u
∑u

i�1χ̂
j
i. (17)

3.3 Topology construction of spatial features

The graph structured data represent the multi-site features and
their correlations. N sites and their feature correlation are
topologically constructed as Equation 18.

G � V , E, X̂,W( ), (18)

FIGURE 4
mRMR-RF feature selection.
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where V � V1, V2, ..., VN{ } denotes the set of sites, E denotes the set
of edges formed between sites, X̂ represents the fused features of all
sites, and W ∈ RN×N is the weighted adjacency matrix, which is
constructed by concurrently considering the spatial distance
correlation and time series correlation among multi-site. The
spatial weighted adjacency matrix Wspace and the temporal
weighted adjacency matrix Wtime individually express the
correlations. Subsequently, we linearly weighted the sum of both
to obtain the weighted adjacency matrix W, as shown in
Equation 19.

W � αWspace + 1 − α( )Wtime, (19)
where α ∈ [0, 1] is a weighting parameter.

Spatial distance correlation: The wind speeds at adjacent sites
are correlated due to the influence of the internal atmosphere of
the region. Generally, the closer the distance between two sites is,
the stronger the correlation between sites is, and vice versa.
Therefore, we take the actual longitude and latitude of sites as
inputs and use the Haversine formula to calculate the spherical
distance between sites. If the distance is less than or equal to a
threshold parameter θ, then we use the Gaussian kernel function
to calculate the spatial distance correlation. Otherwise, it
indicates that there is no spatial distance correlation between
them. For any two sites Vi and Vj, the edge weight is calculated
according to the following Equation 20.

wspace
ij � exp − dist Vi,Vj( )( )2

2σ2( ), if dist Vi,Vj( )≤ θ

0, otherwise

⎧⎪⎪⎨⎪⎪⎩ , (20)

where dist(Vi, Vj) represents the spherical distance between
nodes Vi and Vj and σ is the standard deviation of
dist(Vi, Vj).

Time series correlation: The wind speeds between multiple sites
are affected not only by the spatial distance, but also by the similarity
of their time series. If the wind speeds of two sites are closer to each
other at the same time, the time series correlation will be stronger.
Due to the nonlinearity of the wind speed series, we adopt MIC to
grid partition the data space. The mutual information between Vi

and Vj and their normalized edge weights are as follows by
Equations 21, 22.

I Vi;Vj( ) � ∫∫ p X̂
i
, X̂

j( )log2 p X̂
i
, X̂

j( )
p X̂

i( )p X̂
j( ) dX̂i

dX̂
j
, (21)

wtime
ij � MIC Vi;Vj( ) � max

X̂
i

∣∣∣ ∣∣∣ X̂j
∣∣∣ ∣∣∣<B

I Vi;Vj( )
log2 min X̂

i∣∣∣∣∣ ∣∣∣∣∣, X̂j∣∣∣∣∣ ∣∣∣∣∣( )( ). (22)

where MIC(Vi;Vj) is the maximum information coefficient
between nodes and B is the number of grids, which is generally
taken as the total amount of data 0.6 times (Chen et al., 2016).

3.4 mRMR-RF-GraphSAGE

The specific processes of the spatial feature extraction
framework based on mRMR-RF-GraphSAGE are as follows:

(1) Use mRMR-RF to filter the most representative and
distinguishable optimal feature subset, effectively reducing
the original feature data dimensionality and complexity.
Feature fusion is then applied to synthesize the selected
features into a comprehensive representation;

(2) Construct the spatial feature map topology by integrating
location information from multi-site, thereby transforming
the data into a graph structured format. The spatial feature
map serves as a topological representation of features to
convey the geographical relationships and time series
correlations between different sites;

(3) Utilize the GraphSAGE to train the graph structured data to
generate embedding spatial feature vectors by sampling and
aggregating neighbor information, which can fully explore the
potential of graph structured data.

4 Spatio-temporal feature
extraction framework

The framework proposed in this paper for spatio-temporal
feature extraction is articulated into four main components: data
preparation, multi-site map topology construction, spatial feature
extraction and temporal feature extraction, as illustrated in Figure 5.

FIGURE 5
Spatio-temporal feature extraction framework.
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Data preparation: We gather and systematically arrange the
geographic location of multi-site, historical wind speed records and
other environmental feature data. Using the mRMR-RF method, we
select the optimal features to reduce the dimensionality of the
original data. The final fused feature is obtained for wind speed
prediction by the optimal subset.

Multi-site map topology construction: By utilizing the fused
feature, we construct graph structure data that comprehensively
incorporates spatial geographic information from multi-site. Each
site is depicted as a node, while the edges quantify the spatial
distance and time series correlation between sites. Afterwards, the
weighted adjacency matrix W is constructed by combining the
spatial correlation matrix Wspace based on the Haversine formula,
with the time series correlation matrixWtime derived from the MIC.

Spatial feature extraction: We utilize GraphSAGE to extract
spatial features from the multi-site map topology. The uniform
sampling and mean aggregation approaches are adopted to sample
and aggregate neighboring sites, which yields the feature
representation of the central site. Then, the spatial feature

representations for each site are generated by a fully connected
layer, which captures the complex spatial correlations among
multiple sites.

Temporal feature extraction: The spatial feature vectors are
temporally resampled using the sliding window method to
generate spatio-temporal feature vectors. Subsequently, LSTM is
employed for extracting temporal correlation information. The
LSTM hidden layer consists of 64 nodes and the time window
sampling step is set to 24. Finally, a linear layer and a fully connected
layer are utilized to output the predicted values of multiple sites,
thereby completing the construction of the spatio-temporal feature
extraction framework.

5 Case analysis

5.1 Simulation experiment setting

This simulation experiment is implemented in Python 3.11,
using an open-source machine learning platform that includes a
GPU-accelerated version of the PyTorch 2.1.1 framework. This
platform utilizes CUDA and cuDNN to optimize training and
inference speed for deep neural networks, fully exerting the
computational power of the GPU. The simulation hardware
platform settings: CPU is Intel i7-13620H 2.4GHz, RAM is
16GB, and GPU is NVIDIA GeForce RTX 4060 8 GB. To
prevent overfitting, we make adjustments by randomly shuffling
the order of the input samples. Additionally, a fixed random seed is
set to ensure reproducibility by eliminating potential impacts from
random factors in deep learning models. The model training is set to
200 epochs, with a batch size of 72. The training minimizes the loss
through the mean absolute error (MAE) approach and Adam
optimizer while setting the weight decay at 10−5 (Kingma and
Ba, 2017).

TABLE 1 Statistical data of the wind station features.

Feature Unit

Wind speed at 10 m, 40 m, 60 m, 80 m, 100 m, 120 m, 140 m, 160 m, 200 m m/s

Wind direction at 10 m, 40 m, 60 m, 80 m, 100 m, 120 m, 140 m, 160 m,
200 m

°

Air temperature at 10 m, 40 m, 60 m, 80 m, 100 m, 120 m, 140 m, 160 m,
200 m

°C

Air pressure at 0 m, 100 m, 200 m Pa

Relative humidity mm/
h

Precipitation rate %

FIGURE 6
Schematic diagram of the multi-site location.
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5.2 Evaluation metrics

In this study, themean absolute error (MAE) and rootmean square
error (RMSE) are selected as model evaluation metrics. The calculation
formulas of MAE and RMSE are as follows by Equation 23, 24.

MAE � 1
n
∑n

i�1 yi − ŷi
∣∣∣∣ ∣∣∣∣, (23)

RMSE �
������������
1
n
∑n

i�1 yi-ŷi( )2√
, (24)

where yi is the true observed value of wind speed, ŷi is the model
output predicted value of wind speed, and n is the total number of
data samples.

5.3 Data description

The wind energy integrated national dataset is sourced from
the National Renewable Energy Laboratory (NREL) in the
United States (Jager and Andreas, 1996). This dataset includes

FIGURE 7
Importance ranking of wind site features.

FIGURE 8
Multi-site topology construction.
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meteorological conditions at different height positions for more
than 2,488,136 sites in the continental United States for the years
2007–2014. The dataset features 2 km spatial resolution and 15-
min temporal resolution. This dataset consists of 32 sets of
features as shown in Table 1, including information such as
wind speed, wind direction, temperature and air pressure. The
selected dataset for this study comes from 49 sites within the
Roscoe Wind Farm area in Texas, United States, and covers the
entire year of 2014. However, it should be noted that while wind
turbines are typically arranged in a regular rectangular grid
pattern within a wind farm, most turbines have an irregular
distribution shape. Therefore, we randomly selected 20 sites with
uneven distributions from all available sites as shown in Figure 6.
The dataset is divided into three parts. Data from January to
October 2014 was used as the training set for model training. This
period was chosen to provide sufficient training data for the
model. Data from November 2014 was used as the test set to
evaluate the generalization ability of the final model. Data from
December 2014 was used as the validation set. It help our model
fine-tune to find the optimal hyperparameters and prevent
overfitting.

5.4 Experimental results and analysis

5.4.1 Feature selection analysis
Utilizing the mRMR-RF feature selection algorithm, we initially

compute the RF feature importance, filtering out features with an
importance greater than the threshold (ε = 0.01). These features are
exhaustively combined to form feature subsets, and calculate their
mRMR scores. As a result, we identify the optimal feature subset
with a high correlation to wind speed prediction. As illustrated in
Figure 7, these features include wind speed at heights of 80 m, 60 m,
140 m, and 160 m. It is also evident from this process that other
features were not selected due to their lower correlation with wind
speed prediction.

5.4.2 Parameter analysis in map topology
construction

In map topology construction, the threshold parameter θ and
the weighting parameter α can influence the constructed graph
structure data. The threshold parameter θ is selected from the
distance between the two nearest sites to the distance between
the two farthest sites, with a step length of 1 km. The weighting

TABLE 2 Comparison of the wind speed prediction errors of multiple sites.

Model MAE RMSE

min Max Average std Imp (%) min Max Average std Imp (%)

GCN-MLP 0.4973 0.7339 0.5905 0.0645 22.76 0.6955 0.9658 0.8151 0.0744 20.70

GAT-MLP 0.4497 0.8495 0.6332 0.0827 27.97 0.7125 1.1509 0.8665 0.1015 25.40

GS-MLP 0.4345 0.6856 0.5393 0.0707 15.43 0.6157 0.8977 0.7393 0.0808 12.57

GCN-LSTM 0.477 0.6843 0.5608 0.0579 18.66 0.6614 0.9148 0.7664 0.0762 15.66

GAT-LSTM 0.4763 1.055 0.6105 0.1261 25.29 0.664 1.2861 0.8212 0.1376 21.29

MRGS-LSTM 0.4158 0.5326 0.4561 0.0327 0.00 0.5906 0.7562 0.6464 0.0452 0.00

FIGURE 9
The prediction errors of multi-site under the MRGS-LSTM, the color of the ball indicates the MAE and RMSE values of the wind speed prediction
results. (A) the MAE of multi-site. (B) the RMSE of multi-site.
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parameter α is chosen from 0 to 1, with a step length of 0.05. The
optimal parameters are obtained through exhaustive searching are
θ = 8 km and α = 0.4. The constructed topology of the multi-site is
shown in Figure 8.

5.4.3 Baseline model
In order to validate the efficacy and superiority of the

proposed MRGS-LSTM wind speed prediction model, we
conducted a comparative analysis with several widely adopted
wind speed prediction algorithms. Afterwards, algorithm
selection was performed by comparing various graph neural
networks, namely GCN, GAT, and GraphSAGE. For time
series prediction evaluation, multilayer perceptron (MLP) and
LSTM were compared.

In this paper, we conducted comparative experiments on GCN-
MLP, GAT-MLP, GS-MLP, GCN-LSTM, GAT-LSTM, and MRGS-
LSTM. Table 2 lists the MAEs and RMSEs of wind speed prediction
for these models. The min, max, average and std are the minimum,
maximum, mean and standard deviation of the prediction error for
all the sites, respectively. To better evaluate the improvement effect
of MRGS-LSTM compared with other prediction models, the
calculation formula of imp is as follows by Equation 25.

FIGURE 10
Prediction results of each prediction model. (A) Site #11. (B) Site #2.

TABLE 3 Comparison of training times for different models.

Model Total time (s) Average time per epoch (s)

GCN-MLP 6503.578 32.518

GAT-MLP 21,462.422 107.312

GS-MLP 5143.611 25.718

GCN-LSTM 6061.439 30.307

GAT-LSTM 21,637.675 108.188

MRGS-LSTM 4649.696 23.248
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imp � Eo − Ep

∣∣∣∣ ∣∣∣∣
Eo

× 100%, (25)

where imp denotes the average improvement value of wind speed
accuracy for our model compared to the comparison models, Eo is
the error value of the comparison models, and Ep is the error value
of our model.

The minimum value of the error for these models is indicated in
bold in the Table 2. Our proposed MRGS-LSTM model in this study
exhibits the smallest MAE and RMSE values, outperforming all other
prediction models. Compared to GCN-MLP, GAT-MLP, and GS-MLP
which do not incorporate temporal features, MRGS-LSTM achieves
22.76%, 27.97%, and 15.43% improvements in the statistical mean of
MAE respectively, as well as 20.70%, 25.40%, and 12.57%
improvements in the statistical mean of RMSE respectively.
Furthermore, when compared to GCN-LSTM and GAT-LSTM,
which utilize other GNNs for spatial feature extraction, MRGS-
LSTM improves the mean MAE by 18.66% and 25.29%,
respectively, and improves the mean RMSE by 15.66% and 21.29%,
respectively. Moreover, using MRGS-LSTM for wind speed prediction,
the error ranges of MAE and RMSE are between 0.4158 m/s and
0.5326 m/s and between 0.5906 m/s and 0.7562 m/s, respectively. Also,
the average and std are significantly smaller than those obtained from
other prediction models. This confirms that our proposed MRGS-
LSTMmodel exhibits more accurate and stable performance in spatio-
temporal feature extraction for wind farm.

The prediction errors of the MRGS-LSTM model at 20 different
sites are shown in Figure 9, where the size of the balls reflects the
magnitude of MAE and RMSE values. The predicted results and the
feature map topology are correlated. Sites closer to the center exhibit
better prediction accuracy due to their incorporation of wind speed
features from neighboring sites. Conversely, sites located at peripheral
positions exhibit poorer prediction performance because they have a
lower correlation with surrounding sites. Figure 10 shows the prediction
results of the two sites under the different prediction models from
December 1 to 15, 2014. Figure 10A shows the wind speed prediction
curve for site #11, which has the best MAE and RMSE prediction error

values. Figure 10B shows the wind speed prediction curve for site #2,
which has the worst MAE and RMSE prediction error values.
Comparison with models reveals that our proposed model has
better wind speed tracking ability, especially when the wind speed
fluctuates greatly as seen by the prediction starting at period 680.

5.4.4 Model training analysis
The training times of the different models are compared in Table 3.

Our MRGS-LSTM model required the shortest training duration.
Figure 11A shows the convergence curves of the prediction models
on the training set. As the number of training epochs increases, these
curves gradually decrease. This indicates that the models are constantly
learning the known data, reducing the errors, and improving the
performance. Figure 11B exhibits the convergence curves of the
prediction models on the validation set of the dataset, demonstrating
their effectiveness on unknown data. In both figures, it is evident that
our MRGS-LSTM model surpasses the other models in terms of both
the training and validation sets while exhibiting remarkable
generalization ability without overfitting.

6 Conclusion

This study proposes a novel multi-site wind speed prediction
model, namely MRGS-LSTM, which leverages historical data on
wind speed features frommulti-site within the RoscoeWind Farm in
Texas, United States. By incorporating both spatial and temporal
correlations, our proposed model enables accurate wind speed
predictions at various locations.

Our approach effectively captures the topology of sites
distribution within the wind farm and extracts spatio-temporal
correlations from different features to enhance prediction accuracy.
Firstly, we employ the mRMR-RF algorithm to obtain the fused
feature with highly relevant and minimally redundant. Subsequently,
based on spatial distance correlation and time series correlation
between sites, we construct a weighted adjacency matrix that
serves as input for the GraphSAGE network to update and

FIGURE 11
Convergence curves of the prediction models. (A) on the training set. (B) on the validation set.
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aggregate wind speed features at each site, resulting in spatial feature
vectors. Next, these spatial feature vectors are resampled by a sliding
time window. The model utilizes LSTM memory cells to capture
historical information from long time series data and obtain
integrated spatio-temporal predictions. Finally, simulation
experiments conduct with real historical data validate the
effectiveness and accuracy of our proposed MRGS-LSTM model.

Although our model demonstrates promising results in wind
speed prediction, further exploration is required regarding more
precise integration of various spatial features for accurately
predicting field-specific wind speeds. In future research
endeavors, we plan to incorporate atmospheric factors such as air
pressure and temperature as exogenous variables into the learning
process to further enhance predictive capabilities.
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