
Working characteristic research
on themechanical stable platform
of the automatic vertical drilling
system

Lin Chai1*, Qiang Sun1, Baolin Liu2 and Feng Tang2

1Research Institute of Petroleum Exploration & Development, China National Petroleum Corporation,
Beijing, China, 2Key Laboratory of Deep Geological Drilling Technology, Ministry of Natural Resources,
Beijing, China

As a novel technology, themechanical stable platform can effectively improve the
temperature resistance of the automatic vertical drilling system, but its working
characteristics are still not yet clear. In this paper, theoretical mechanics is
introduced to establish the critical deviation angle model, in order to evaluate
the sensitivity of the mechanical stable platform to well deviation. Multi-body
dynamics simulation is applied to mutually verify the models and further analyze
the effect of vibration. The results show that the critical deviation angle is not only
affected by the platform design parameters, but also by the system speed and
external vibration. When the system angular velocity is less than the critical
angular velocity ωc (3.76 rad/s), the critical deviation angle αC′ gradually
decreases with the decreasing angular velocity until it approaches the
extreme deviation angle αl (5.1°). The critical deviation angle is jointly affected
by the amplitude A and frequency B of torsional vibration. When A>500°/s and B >
8 Hz, its variation range is between the αl (5.1°) and the critical deviation angle αc
(7.03°). The critical deviation angle is jointly affected by the amplitude E and
frequency F of axial vibration, with its value always greater than αc , but very small
range of variation (0.2°). Torsional vibration plays a dominant role in torsional-
axial coupled vibration, and the additional effect of axial vibration is relatively
small. The results obtained herein are significant for further understanding and
improvement of the performance of the mechanical vertical drilling system.
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1 Introduction

The main difference between the Mechanical Vertical Drilling System (MVDS) and the
Electric Control Vertical Drilling System (EVDS) is that MVDS uses a mechanical stable
platform to monitor the well deviation, without the use of any electronic components.
MVDS has several advantages over EVDS. It can be used in high-temperature deep wells
where EVDS is not suitable, and it can also reduce manufacturing and maintenance costs.
However, MVDS also has its drawbacks. The sensitivity of the mechanical stable platform to
well deviation is significantly lower compared to the high-precision sensors used in EVDS,
due to factors such as tool size, friction between components, and external environmental
conditions (Bram et al., 1988; Oppelt et al., 1991; Chur and Oppelt, 1993; Claus et al., 1995;
Ma et al., 2016).
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As the “brain” of the MVDS, the mechanical stable platform is a
crucial component. It utilizes the eccentric block as the sensing
element. Ideally, when the well deviation occurs, the eccentric block
will deflect towards the lower side of the borehole under the effect of
gravity. However, the characteristic of the eccentric block is that it
does not generate any eccentric moment when it is at the lower side
of the borehole, which means that it lacks the ability to maintain
stability. Therefore, when it is affected by factors such as internal
component friction or external vibration, it can deviate from the
lower side of the borehole and oscillate, causing instability or even
rotation, thus affecting the sensitivity of the mechanical stable
platform (Reich et al., 2003; Lin et al., 2020a; Lin et al., 2020b).

As a novel technology, there has been relatively limited
research and development on the mechanical stable platform.
The first MVDS worldwide was developed by Halliburton,
called the V-Pilot. Since then, Scout Downhole and Sinopec
have also developed their own MVDS. However, due to
commercial confidentiality, there have been little reports on the
internal structure and performance of their mechanical stable
platforms (Comeaux et al., 2007; Laiju et al., 2008; Jones et al.,
2016; Li et al., 2017). Meanwhile, scholars from universities have
conducted research on mechanical stable platforms to some extent.
Li et al. derived the stable position model of the eccentric block
based on the static balance principle and investigated its dynamic
characteristics under the effect of torsional vibration (Li et al.,
2018). Wang et al. analyzed the effects of various design
parameters on the stable position based on the stable position
model and conducted experimental testing and analysis on the
plate valves friction co-efficient (Wang et al., 2020b; Wang et al.,
2021). Li et al. further analyzed the influence of various design
parameters on the stable time of the eccentric block (Ranran et al.,
2022). Zhang et al. optimized the structure of plate valves based on
the stable position model and proposed a solution to reduce
friction using the convex-faced plate valves (Wang et al.,
2020a). In order to mitigate the frictional effects of the plate
valves on the eccentric block, Liu et al. designed a hydraulic
balanced turbine based on error compensation principles (Ma
et al., 2023). Li et al. constructed a non-contact angular
position measurement method for the eccentric block using an
absolute magnetic encoder.

In summary, most of the researches done by scholars so far are
based on the analysis and optimization of the stable position model
of the eccentric block. However, the following problems still exist.

1. The stable position model of the eccentric block is derived
based on statics, which means that it ignores the intermediate
process from the initial state to the final stable state of the
eccentric block. At the same time, due to the neglect of the
inertia and acceleration of the eccentric block, in some cases,
the calculated stable position may not exist in actual working
conditions. Therefore, the analysis and optimization based on
the stable position model also lack practical significance.

2. Currently, the research on mechanical stable platform mainly
focuses on the analysis and optimization in ideal
environments, considering only the influence of internal
structural parameters. As a result, there is a lack of
comprehensive studies that consider external disturbances,
especially the effects of system rotation speed and external

vibrations on the well deviation sensitivity of the mechanical
stable platform.

To solve these problems, on the basis of the stable position
model of the eccentric block, this paper derives the well deviation
sensitivity model of the mechanical stable platform, namely, the
critical deviation angle model, based on the kinetic energy theorem.
This model is then utilized to analyze the sensitivity of various
design parameters of the stable platform. Furthermore, the paper
constructs a universal dynamic equation for the eccentric block of
the mechanical stable platform through theoretical analysis. The
inherent motion characteristics of the eccentric block are analyzed
using this equation. Additionally, a multi-body dynamic model of
the mechanical stable platform is established. Bidirectional
approximation method is used to verify the simulation model
against the theoretical model, and the effect of torsional
vibration, axial vibration, and torsional-axial coupled vibration
on the critical deviation angle are further investigated. This paper
aims to provide designers with a better understanding of the
deviation response characteristics of mechanical stable platforms
in complex downhole environments, and offer insights for structural
optimization of the system.

2 Theoretical model

Before conducting force analysis on a mechanical stable
platform, it is necessary to understand its working principle.
Figure 1A is the schematic diagram of the mechanical stable
platform, which mainly includes four parts: an eccentric block,
an upper plate valve, a lower plate valve, and bearings. When the
system is working underground, the lower plate valve rotates
synchronously with the shell and bit, The upper plate valve is
fixed with the eccentric block circumferentially through the
connecting key. The eccentric block is isolated from the shell by
the bearing so that it can rotate freely around the tool center. When
well deviation occurs, the eccentric block drives the upper plate valve
to rotate to the lower side of the borehole under the effect of gravity.
Therefore, the arc hole on the upper plate valve, which is opposite
the eccentric block, can be located at the upper side of the borehole.
When one of the flow channels on the lower plate valve rotates to the
upper side of the borehole, it will be connected with the arc hole. At
this moment, the high-pressure drilling fluid will flow in the
connected channel and impel the corresponding steering rib of
the actuator to push against the upper side of the wellbore, so as to
make the bit produce side cutting force for deviation correction.

According to the working principle of the mechanical stable
platform, its key components are mutually fixed eccentric block and
the upper plate valve, as their positions directly affect the direction of
the pushing force used for deviation correction. Therefore, force
analysis for them is particularly important. As shown in Figure 1B,
the eccentric block and the upper plate valve are mainly subjected to
four torques: the eccentric moment generated by the gravity of the
eccentric block, the friction torque generated by the rotation of the
lower plate valve, the friction torque of the bearing, and the viscous
friction torque generated by the mud between the eccentric block
and the shell. Among them, the eccentric moment is the active
torque, and each friction torque is the interference torque. The two

Frontiers in Energy Research frontiersin.org02

Chai et al. 10.3389/fenrg.2024.1426840

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1426840


together determine the stable position of the eccentric block and the
upper plate valve. When the eccentric block stabilizes at a certain
position, the angle between the centerline of the eccentric block and
the lower side of the borehole is defined as the critical deflection
angle θC. Principle hypothesizes of theoretical model are as follows.

1. Treat the components of the stable platform as rigid bodies.
2. No consideration of external vibrations.

2.1 Critical deflection angle

When the active torque is equal to the interference torque, the
eccentric block will stop at the critical deflection angle position.
Therefore, in order to calculate the critical deflection angle, it is
necessary to establish mechanical models for the active torque and
interference torque separately.

When the cross-section of the eccentric block is designed as
semi-circular, it can generate the maximum eccentric moment, and
the calculation formula is shown in Eq. 1 (Chai et al., 2021).

TE � FG sin α sin θ YC � 2
3
ρglrE

3 sin α sin θ (1)

wherein, TE - Eccentric moment of eccentric block (N·m), α - Well
deviation angle (Rad), θ - The deflection angle of the eccentric block
relative to the lower side of the borehole (Rad), YC - The distance
between the centroid G of the eccentric block and the center of the
semi-circle (mm), FG - Gravity of eccentric block (N), ρ - Density of
eccentric block (kg/mm3), g - Acceleration of gravity (m/s2), l -
Length of eccentric block (mm), rE - Radius of the
eccentric block (mm).

The upper and lower plate valves of MVDS are usually designed
to be circular, and the friction torque of the plate valves can be
obtained by integral method after ignoring the influence of the holes
on the upper and lower plate valves (Li, 2018).

Tp � ∫rP

0
2μPPπr

2dr � 2
3
πμPPrP

3 (2)

wherein, Tp - Friction torque between plate valves (N·m), rP - Outer
diameter of plate valve (mm), μP - Friction coefficient between plate
valves, P - Pressure between plate valves (MPa).

The eccentric block is connected to the shell through radial ball
bearings. When the shell rotates, the bearing friction torque
generated is shown in Eq. 3.

TB � π

2
ρglrE

2 sin α cos θ μBrB (3)

wherein, TB - Friction torque of bearings (N·mm), μB - Friction
coefficient of bearing, rB - Equivalent friction radius of bearing (mm).

During the drilling process, due to the rotation of the shell with
the bit, the mud in the annulus between the shell and the eccentric
block is driven to rotate. The viscous friction torque generated by the
rotating mud on the stationary eccentric block is shown in Eq. 4
(Dongxia et al., 2000).

TM � 2
15
π2lμM

rS2rE2

rS2 − rE2
nS (4)

wherein, TM - Viscous friction torque of mud (N·mm), μM -
Viscosity of mud (Pa·s), rS - Inner diameter of shell (mm), nS -
The speed of the shell (r/s).

The values of friction torque of bearings and viscous friction
torque of mud are relatively small compared to eccentric moment
and friction torque between plate valves, and are not on the same
order of magnitude, so they are ignored. The calculation formula for
the critical deflection angle can be obtained by combining Equation
1 and 2, as shown in Eq. 5.

θC � sin−1 πμPPrP
3/ρglrE3 sin α( ) (5)

The essence of the critical deflection angle is the stable position
of the eccentric block, which can be used as an evaluation index for

FIGURE 1
Schematic diagram and force analysis of mechanical stable platform: (A) schematic diagram; (B) force analysis.

Frontiers in Energy Research frontiersin.org03

Chai et al. 10.3389/fenrg.2024.1426840

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1426840


the deviation correction efficiency of the MVDS. According to the
working principle of the mechanical stable platform, the smaller the
value of the critical deflection angle, the greater the pushing force
allocated to the upper side of the wellbore, and the higher the
deviation correction efficiency. However, as the model is based on
static, the effect of the inertia and acceleration of the eccentric block
is ignored.

2.2 Critical deviation angle

According to Eq. 5, when the design parameters and drilling
process parameters are determined, the critical deflection angle is
only related to the well deviation angle. By assigning typical
values to Equation 5, it was found that the critical deflection angle
is negatively correlated with the deviation angle (as shown in
Figure 2). When the deviation angle of the well is 5.1°, the critical
deflection angle is 90°. According to Eq. 1, it can be inferred that
the eccentric block can generate the maximum eccentric moment
under this deviation condition. When the deviation angle of the
well is less than 5.1°, Eq. (5) has no real solution, indicating that
the maximum eccentric moment generated by the eccentric block
under this deviation condition still cannot balance the friction
torque of the plate valves, and the eccentric block cannot stop at a
certain position. Previous scholars used the deviation angle value
corresponding to the critical deflection angle of 90° as the
theoretical deviation sensitivity of the mechanical stable
platform. The calculation formula is Eq. 6. However, due to
the effect of inertia, the above situation is impossible in reality.

αl � sin−1 πμPPrP
3/ρglrE3( ) (6)

wherein, αl - Extreme deviation angle (rad).
In order to facilitate the analysis, the circular coordinate system

is established clockwise, with the lower side of the borehole as the
zero point. The coordinate system can represent the position of the
centroid relative to the lower side of the borehole when the eccentric
block rotates clockwise, namely, the deflection angle of the eccentric
block. Since it is necessary to turn off the mud pump and stop the
rotation of the drilling tool every time when connecting the MVDS
or drill pipes, the pressure between the upper and lower plate valves
is much smaller than when the pump is opened. Therefore, the
eccentric block will fall to the lower side of the borehole due to the
action of gravity, and the initial position and initial angular velocity
of the eccentric block in the downhole are both 0. After opening the
pump for circulation and rotary drilling, the eccentric block starts to
move clockwise under the influence of plate valve friction torque.

The relationship curve shown in Figure 3A can be obtained from
Eqs 1, 2, with the vertical axis representing the resultant moment
received by the eccentric block (the difference between the eccentric
moment and the friction torque of the plate valves), and the
horizontal axis representing the deflection angle of the eccentric
block. When the value of resultant moment is positive, the eccentric
moment is greater than the friction torque, and the eccentric block
decelerates. When the value of resultant moment is negative, the
eccentric moment is smaller than the friction torque, and the
eccentric block accelerates.

It can be seen from Figure 3A that under different well
deviation angles the shape of the relation curve is parabola,
and the parabola is symmetrical with respect to the straight
line (x = 90°). The abscissa value of the intersection point of
parabola and dashed line is the critical deflection angle of the
eccentric block. With the decrease of well deviation angle, the

FIGURE 2
The relationship between critical deflection angle and well deviation angle.
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parabola gradually flattens. According to the characteristics of
parabolas, they can be divided into five states.

1. When the deviation angle is small, the eccentric moment of the
eccentric block is always less than the friction torque of the
plate valves, and there is no intersection point between the
parabola and the dashed line (as shown by the black line in
Figure 3A). At this time, the real solution of the critical
deflection angle cannot be obtained by Eq. 5. There is no
deceleration area in the circumferential direction, and the
eccentric block will rotate clockwise in one direction (as
shown in Figure 3B).

2. When the deviation angle increases to a certain value, the
maximum eccentric moment of the eccentric block is equal to
the friction torque of the plate valves. There is an intersection
point between the parabola and the dashed line (as shown by
the red line in Figure 3A), and the abscissa value of the

intersection point (θ = 90°) is the critical deflection angle of
the eccentric block under this well deviation of αl. At this time,
there will be a deceleration point in the circumferential
direction. However, because of the deceleration area being
only one point and the large inertia of the eccentric block, the
eccentric block cannot stop at the critical deflection angle
position (as shown in Figure 3C).

3. When the well deviation continues to increase, the eccentric
moment of the eccentric block will be greater than the friction
torque of the plate valves. There are two intersections between
the parabola and the dashed line (as shown by the blue line in
Figure 3A), which indicates that there are two critical deflection
angles of the eccentric block, one is upper and the other is
lower. The area between the two critical deflection angles is the
deceleration area. However, due to the small deceleration area,
the angular velocity of the eccentric block cannot be slowed
down to zero before accelerating again, so the eccentric block

FIGURE 3
Movement diagram of eccentric block: (A) the relationship between resultant moment and deflection angle of eccentric block; (B) first state; (C)
second state; (D) third state; (E) fourth state; (F) fifth state.
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still cannot stop at the critical deflection angle position (as
shown in Figure 3D).

At the same time, it can be observed that although the upper and
lower critical deflection angles are both the torque stable positions of
the eccentric block, they exhibit completely opposite properties in
terms of static stability: The lower critical deflection angle
(hereinafter referred to as the critical deflection angle) exhibits
positive static stability. When the eccentric block deviates from
the stable position due to external disturbances, it tends to return to
the stable position under the action of external forces; The upper
critical deflection angle exhibits negative static stability, and when
the eccentric block deviates from the stable position, it will continue
to accelerate and deviate. Therefore, compared to the critical
deflection angle position, the eccentric block at the upper critical
deflection angle position does not have any anti-interference ability
and is very prone to deviate from the stable position.

4. With the further increase of well deviation, the deceleration
area gradually increases, and the acceleration area gradually
decreases (as shown by the green line in Figure 3A). Therefore,
there must be a critical deviation angle. Under this well
deviation condition, the eccentric block just stops at the
upper critical deflection angle position under the combined
action of acceleration and deceleration (as shown in Figure 3E).

5. When the deviation angle continues to increase above the
critical deviation angle (as shown by the purple line in
Figure 3A), the eccentric block will decelerate to the angular
velocity of 0 in the deceleration area and then rotate
anticlockwise. After many swings, the tool can gradually
stop at the lower critical deflection angle position, and the
MVDS will begin to correct the deviation (as shown
in Figure 3F).

To sum up, only when the deviation angle is greater than the
critical deviation angle does the critical deflection angle calculated by
Eq. 5 have practical significance. At this juncture, the stable platform
can sense the deviation and the MVDS start to correct the deviation.

Under the critical deviation angle condition, the value of critical
deviation angle can be obtained by kinetic energy theorem (as shown
in Eq. 7) because the starting and ending boundary conditions of the
eccentric block are known.

1
2
Jω2

2 − 1
2
Jω1

2 � WF +WG (7)

wherein, J - Moment of inertia of eccentric block (kg·m2), ω1 -
Initial angular velocity of the eccentric block (Rad/s), ω2 - Terminal
angular velocity of the eccentric block (Rad/s),WF - Friction work of
plate valve (mJ), WG - Work of gravity (mJ).

ω1 � ω2 � 0 (8)
WF � Tp π − θC( ) � 2

3
πμPPrP

3 π − sin−1 πμPPrP
3/ρglrE3 sin αC( )( )

(9)
WG � −∫π−θC

0
TEdθ � −∫π−θC

0

2
3
ρglrE

3 sin αC sin θ dθ (10)

wherein, αC - Critical deviation angle (rad).

After substituting Eqs 8–10 into Eq. 7, the critical deviation
angle αC of the eccentric block can be obtained by the implicit
function 11. Eq. 11 is complex and cannot be solved by symbolic
calculation. Therefore, it is necessary to take the design parameters
of the stable platform into Eq. 11 to obtain the value of critical
deviation angle.

πμPPrP
3 π − sin−1

πμPPrP
3

ρglrE3 sin αC
( )( )

− ρglrE
3 sin αC cos sin−1

πμPPrP
3

ρglrE3 sin αC
( )( ) + 1( ) � 0 (11)

It should be noted that the above analysis is based on the
assumption that the system speed (bit speed) is relatively high,
and its angular velocity is always greater than the angular velocity of
the eccentric block, so that the eccentric block is always in an
accelerating state in the acceleration zone between the lower side of
the borehole and the critical deflection angle. However, when the
system speed is low, the eccentric block accelerates to the same
angular velocity as the system in the acceleration zone, and the
dynamic friction is converted into static friction. The eccentric block
will maintain a constant speed rotation and slow down only after
passing the critical deflection angle position. Therefore, a separate
analysis is needed for the above situation.

When the well deviation is the critical deviation angle, an
analysis is conducted on the motion process of the eccentric
block from the lower side of the borehole to the critical
deflection angle position. When the system speed is high, the
eccentric block is always in an accelerated state. According to the
kinetic energy theorem, Eq. 12 is established as follows:

1
2
Jωc

2 − 1
2
Jω1

2 � WFa +WGa (12)

wherein, ωc - The speed at which the eccentric block reaches the
critical deflection angle position (rad/s),WFa - Friction work of plate
valve in the acceleration zone (mJ), WGa - Work of gravity in the
acceleration zone (mJ).

WFa � TpθC � 2
3
πμPPrP

3θC (13)

WGa � −∫θC

0
TEdθ � −∫θC

0

2
3
ρglrE

3 sin αC sin θ dθ (14)

J � 1
2
mrE

2 � π

4
ρlrE

4 (15)

After substituting Eqs 13–15 into Eq. 12, the Eqs 16, 17 can
be obtained.

ωc �
������������������������������
16μPPrP

3θC
3ρlrE4

+ 16g sin αC cos θC − 1( )
3πrE

√
(16)

nc � 30
ωc

π
(17)

wherein, nc - Critical speed of the MVDS (r/min).
It can be concluded that ωc is the maximum angular velocity

that can be obtained by the eccentric block in the acceleration zone
under the condition of critical deviation angle. It is defined as the
critical angular velocity, and nc is the corresponding critical speed.
When the system speed is less than the critical speed, the eccentric
block will not accelerate to the critical angular velocity in the
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acceleration zone, but rotate at a uniform speed after accelerating to
the system angular velocity, thereby further reducing the range of
deceleration zone required to decelerate to the zero. Therefore, the
eccentric block can decelerate and stop at the upper critical
deflection angle position under smaller deviation conditions,
further improving the deviation sensitivity of the system. When
the system speed is less than the critical speed, the angular velocity at
which the eccentric block reaches the critical deflection angle
position is equal to the system angular velocity. Therefore, the
range of deceleration zone required to decelerate to the zero
point of velocity must be related to the angular velocity of the
system. In order to obtain this relationship, the deceleration process
of the eccentric block from the critical deflection angle to the upper
critical deflection angle is analyzed, and the equation is established
through the kinetic energy theorem as follows.

1
2
Jω2

2 − 1
2
Jω2 � WFd +WGd (18)

wherein, ω - Angular velocity of the MVDS (rad/s), WFd - Friction
work of plate valve in the deceleration zone (mJ), WGd - Work of
gravity in the deceleration zone (mJ).

WFd � Tp π − 2θC( ) � 2
3
πμPPrP

3 π − 2 sin−1
πμPPrP

3

ρglrE3 sin αC′
( )( )

(19)
WGd � −∫π−θC

θC

TEdθ � −∫π−θC

θC

2
3
ρglrE

3 sin αC′ sin θdθ (20)

After substituting Eqs 15, 19 and 20 into Eq. 18, the following
equation can be obtained.

π

8
ρlrE

4ω2 + 2
3
πμPPrP

3 π − 2 sin−1
πμPPrP

3

ρglrE3 sin αC′
( )( )

− 4
3
ρglrE

3 sin αC′ cos sin−1
πμPPrP

3

ρglrE3 sin αC′
( )( )

� 0 (21)

wherein, αC′ - Critical deviation angle (when the angular velocity of
the MVDS is less than the critical angular velocity) (rad).

By assigning typical values to Eqs 11, 21, the relationship curve
between critical deviation angle and angular velocity of the MVDS is
shown in Figure 4.

As shown in Figure 4, when the system angular velocity is less
than the critical angular velocity ωc, the critical deviation angle αC′
and the angular velocity ω have an approximately linear
relationship, and they are positively correlated. When the angular
velocity is the extreme angular velocity ωl, the corresponding critical
deviation angle tends to the extreme deviation angle αl. When the
angular velocity is less than the extreme angular velocity ωl, Eq. 21
no longer has a real solution.When the angular velocity is the critical
angular velocity ωc, the corresponding deviation angle is the critical
deviation angle αc obtained from Eq. 11. When the system angular
velocity is greater than the critical angular velocity ωc, the critical
deviation angle no longer varies with the angular velocity.

In summary, when the system angular velocity is less than the
critical angular velocity, the system angular velocity has an impact on
the critical deviation angle. As the angular velocity decreases, the critical
deviation angle gradually decreases until it approaches extreme
deviation angle αl. When the system angular velocity is greater than
the critical angular velocity, the system angular velocity no longer has an
impact on the critical deviation angle, and its value is equal to αc.

FIGURE 4
The relationship between critical deviation angle and angular velocity.
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From Figure 4, it can also be found that the value of critical
angular velocity ωc is 3.76 rad/s, and the converted critical speed
nc is 36 r/min. Though it is much smaller than the normal
working speed of system (80–300 r/min), it provides a
guidance for the practical application of the system. In order
to further improve the deviation sensitivity of the system, the
driller can start the rig at a low speed (ω<ωc) and then increase
the speed for drilling after the eccentric block is stabilized at the
position of the critical deflection angle.

2.3 Parameter sensitivity analysis

From the above analysis, it can be concluded that the critical
deviation angle can be used to evaluate the sensitivity of the
mechanical stable platform to well deviation. The smaller the
value of the critical deviation angle, the more sensitive the
mechanical stable platform. Therefore, it can be used as a
performance evaluation index for the mechanical stable platform.
In order to explore which design parameters have a significant
impact on the critical deviation angle, sensitivity analysis is needed
to provide ideas for subsequent optimization of parameters. Taking

the φ114 mm mechanical stable platform as an example, the
parameter range was determined through research on materials
and processing technology, as shown in Table 1.

Figure 5 demonstrates the sensitivity analysis results of the
critical deviation angle model when the system at normal
working speed (ω>ωc). From the figure, it can be seen that
the friction coefficient between the plate valves μP, the pressure
between the plate valves P and the outer diameter of the plate
valves rP are positively correlated with the critical deviation
angle αC. The density of the eccentric block ρ, the length of the
eccentric block l and the radius of the eccentric block rE are
negatively correlated with the critical deviation angle αC.
Therefore, when designing the mechanical stable platform,
the values of μP, P and rP should be reduced as much as
possible, and the values of ρ, l and rE should be increased so
that αC can be reduced as much as possible. Among all the
dashed lines, the slopes of the blue and orange dashed lines are
relatively the largest, indicating that rP and rE have the most
drastic effect on αC, due to the fact that the two have a third
power relationship with αC respectively in Eq. 11. Therefore,
they should be taken as the focus objects when parameter
optimization is performed.

TABLE 1 Parameters of the mechanical stable platform.

Structural parameters of stable platform Range of values Parameters of plate valves Range of values

ρ/kg/mm3 7 × 10−6 - 11 × 10−6 μP 0.05–0.1

l/mm 500–1,500 P/MPa 0.5–1.5

rE/mm 10–50 rP/mm 10–20

FIGURE 5
Sensitivity analysis of critical deviation angle model.
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2.4 Universal dynamic equation

Although the above theoretical method has obtained the analytical
solutions for the critical deflection angle and the critical deviation angle,
there are two shortcomings. One is that the abovemodel only takes into
account the initial and termination moments of the eccentric block, so
they do not reflect the intermediate motion process, thus ignoring the
time dimension. The other is that they do not analyze themotion law of
the eccentric block in the right semicircular interval (180°–360°).
Therefore, a universal dynamic equation of the eccentric block will
be developed in the following.

Firstly, the circular coordinate system shown in Figure 3 can be
divided into six regions as (a, b), (b, c), (c, d), (d, e), (e, f), and (f, a)
according to the characteristics of the eccentric moment and the
friction torque of the plate valves as shown in Figure 6. Define the
perpendicular to the plane inward as the positive direction of the
torque, according to the right-hand rule. Then establish dynamic
equations for each region separately, as shown in Eq. 22.

α � J
d2θ

dt2
�

Tp − TE, θ ∈ a, b( ) or c, d( ) and ωE <ω( )
−Tp − TE, θ ∈ a, b( ) or c, d( ) and ωE >ω( )
0, θ ∈ a, b( ) or c, d( ) and ωE � ω( )
Tp − TE, θ ∈ b, c( ) and ωE <ω( )
−Tp − TE, θ ∈ b, c( ) and ωE ≥ω( )
Tp + TE, θ ∈ d, e( ) or f, a( ) and ωE <ω( )
−Tp + TE, θ ∈ d, e( ) or f, a( ) and ωE >ω( )
0, θ ∈ d, e( ) or f, a( ) and ωE � ω( )
Tp + TE, θ ∈ e, f( ) and ωE ≤ω( )
−Tp + TE, θ ∈ e, f( ) and ωE >ω( )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(22)

Wherein, J is the moment of inertia of eccentric block, the
formula is Eq. 15. Tp is the friction torque between plate valves, the

formula is Eq. 2. TE is the eccentric moment of eccentric block, the
formula is Eq. 1. A is 0 or 2π and b is θC, the formula is Eq. 5. c is
π − θC, d is π,e is π + θC, f is 2 π − θC. ωE is angular velocity of
eccentric block. ω is angular velocity of the MVDS.

After substituting each parameter into Eq. 22, it was found that
the equation is a second-order nonlinear nonhomogeneous ordinary
differential equation with piecewise characteristics, which makes the
dynamic equation exhibit strong nonlinearity and time-varying
characteristics. The above analysis shows that the deflection angle
of the eccentric block is large, so it is impossible to linearize the
dynamic equations. In summary, it is difficult to obtain an analytical
solution for the dynamic equation established by Newtonian
vector mechanics.

Although Eq. 22 is difficult to be solved analytically, and thus it is
difficult to get the trajectory of the eccentric block in real space, the
trajectory of the eccentric block in the phase space can be clearly
demonstrated after order reduction. From the above analysis, it can
be concluded that when the system is at normal speed and the
deviation angle is greater than the critical deviation angle of the
mechanical stable platform, the friction torque of the plate valves is
always the dynamic friction torque and the eccentric block always
moves in the (a, c) region. Eq. 22 can be simplified to Eq. 23.

J _ωE � Tp − TE

_θ � ωE
{ (23)

After substituting each parameter into Eq. 23 and dividing the
upper and lower equations, Eq. 24 can be obtained.

dωE

dθ
� A′ − B′ sin θ

ωE
(24)

Wherein, A′ and B′ are shown in Equations 25, 26, respectively.

A′ � 8πμPPrP
3

3ρlrE4
(25)

B′ � 8g sin α
3πrE

(26)

After solving the differential equation for Equation 24, Equation
(27) can be obtained.

1
2
ωE

2 � A′θ + B′ cos θ + C′ (27)

Wherein, C′ is an integral constant determined by the initial
conditions of the eccentric block. According to the above analysis, it
can be seen that the initial deflection angle and initial angular
velocity of the eccentric block are both 0. By substituting the
boundary conditions into Eq. 27, it can be determined that C′ is
equal to -B′. Therefore, Eq. 27 is converted into Eq. 28.

1
2
ωE

2 � A′θ + B′ cos θ − B′ (28)

According to Eq. 28, when the angular velocity of the eccentric
block is 0, θ having zero and non-zero solutions. The non-zero
solution is defined as the maximum deflection angle of the eccentric
block, which characterizes the maximum deflection angle that the
eccentric block can reach when effectively sensing the deviation.
After assigning typical values to Eq. 28, the phase-graph of the
eccentric block under different deviation conditions can be obtained,
as shown in Figure 7.

FIGURE 6
Regional division for eccentric block.
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The horizontal axis in Figure 7 represents the deflection angle of the
eccentric block, the vertical axis represents the angular velocity, and the
three vertical dashed lines represent the critical deflection angles of the
eccentric block under three deviation conditions. As shown in the
figure, the phase-graph of the eccentric block is a closed approximate
elliptical curve, indicating that the motion state of the eccentric block is
periodic oscillation. If there is no damping force, the oscillation of the
eccentric block will never stop. The abscissa of the right intersection
point between the ellipse and the black center dashed line is the extreme
deflection angle of the eccentric block. As the deviation decreases, the
extreme deflection angle of the eccentric block gradually increases.
When the deviation angle is greater than the critical deviation angle, the
eccentric block will pass the upper critical deflection angle position and
rotation. As the deviation decreases, the oscillation center gradually
deviates from the critical deflection angle position.

3 Multi-body dynamics simulation

Although the dynamic equation of the eccentric block under the
ideal environment have been established above, when the external
environment is non-ideal (such as vibration), the complex nonlinear
dynamic characteristics make it difficult to establish the dynamic
equation of the system, and the theoretical methods no longer
applicable. Therefore, it is particularly important to study the
system by numerical simulation.

3.1 Modeling

In response to the difficulties encountered in using vector
mechanics, the theory of using mathematical analysis to

solve mechanical problems developed rapidly in the 18th
century, thus forming the theoretical system of analytical
mechanics. It uses energy and work to describe the
relationship between object motion and interaction,
and establishes a universal form of system dynamics
equations through the Darrell principle and virtual
displacement principle, with the most representative being
the La-grange equation and Hamilton equation. Due to the
fact that the Lagrange equation can numerically
solve complex multi-body dynamic problems, we adopt this
method to establish the dynamic equation of a mechanical
stable platform, as shown in Eq. 29 (Lurie, 2013; Liu and
Gao, 2017).

d

dt

∂T
∂ _q

( )T

− ∂T
∂q

( )T

+ φq
Tλ + θq

Tμ � Q (29)

Wherein, T - Kinetic energy of the system, q - The generalized
coordinate matrix of the system, Q - The generalized force matrix of
the system, λ - Lagrange multiplier matrix with holonomic
constraints, μ - Lagrange multiplier matrix with nonholonomic
constraints, φq - Holonomic constraint equation, θq -
Nonholonomic constraint equation.

In order to ensure good sealing, the upper and lower plate valves
will be tightly fitted, causing contact behavior between them. Due to
the stability and clear physical meaning of the impact function
method, we use the impact function model to calculate the contact
force between the plate valves, as shown in Eq. 30.

Fn � k · ge + STEP g, 0, 0, dmax, Cmax( ) · dg
dt

(30)

Wherein, Fn - Contact force between upper and lower plate
valves, k - Stiffness coefficient, g - Penetration depth, e - Elastic force

FIGURE 7
Phase-Graph of eccentric block.
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index, STEP - Step function, dmax -Maximum allowable penetration
depth, Cmax - Damping value at maximum penetration depth.

Due to the rotation of the lower plate valve with the bit and
relative rotation with the upper plate valve, the contact between the
upper and lower plate valves also causes friction between them. We
select the Coulomb Friction Model, which is widely used in the
engineering field, to describe the changes in the friction coefficient
between the upper and lower plate valves. As the relative speed
between the plate valves changes, the friction coefficient between the
plate valves transforms between the dynamic and static friction
coefficients. To avoid sudden changes in the dynamic and static
friction coefficients causing nonconvergence of computer
simulation results, a continuous transformation process is set for
the dynamic and static friction coefficients with relative speed, as
shown in Figure 8. The relationship formula is shown in Eq. 31
(Trinkle et al., 1997).

μP �

0 v � 0( )
−μd v � vd( )
−μs v � vs( )
μd v � −vd( )
μs v � −vs( )
−sign v( ) · μd v| |> vd( )
−STEP v| |, vd, μd, vs, μs( ) · sign v( ) vs < v| |< vd( )
STEP v,−vs, μs, vs,−μs( ) −vs < v< vs( )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(31)

Wherein, v - Relative velocity between upper and lower plate
valves (mm/s), μs - Static friction coefficient, μd - Dynamic friction
coefficient, vs - Static friction conversion velocity (mm/s), vd -
Dynamic friction conversion velocity (mm/s).

According to the above theoretical analysis, when the deviation
is greater than the critical deviation angle, the eccentric block swings
around the center position. When the damping effect is ignored, the
oscillation will never stop. However, due to the influence of external
environment damping and internal system damping, the mechanical
stable platform is a dissipative system. The amplitude of the
eccentric block will gradually decay under the damping effect
until it finally stabilizes at the critical deflection angle position.
We adopt the most commonly used linear viscous damping model in
engineering, and equates the damping torque of the system to a
viscous damping torque related to the angular velocity of the
eccentric block, as shown in Eq. 32 (Adhikari and
Woodhouse, 2001).

Fn � k · ge + STEP g, 0, 0, dmax, Cmax( ) · dg
dt

(32)

Wherein, Md - Viscous damping torque (N·mm), Cd - Viscous
damping coefficient.

3.2 Method validation

In order to verify the accuracy of the dynamic simulation model,
this paper compares the theoretical calculation results with the
simulation calculation results for verification. The parameters for
verification are the critical deviation angle and critical deflection
angle. The required theoretical model parameters and simulation
model parameters are shown in Table 2.

Substitute the theoretical model parameters into Eq. 16 to obtain
the critical angular velocity of the system ωc is 3.76 rad/s. In order to
verify the two cases of ω>ωc and ω<ωc respectively, ω is taken as
12.56 rad/s (n = 120 r/min) and 3.14 rad/s (n = 30 r/min)
respectively.

(1) Case ω>ωc

Substituting the theoretical model parameters into Equation 11
and Equation (5), the critical deviation angle αC is obtained as 7.03°

and the critical deflection angle θC is obtained as 133.5° (The
eccentric block stops at the upper critical deflection angle
position, as shown in Figure 3E). Since the dynamic simulation
adopts the numerical solution method, the solution error exists in
the calculation, coupled with the fact that the eccentric block does
not have positive static stability at the upper critical deflection angle
position, makes it difficult to simulate the critical state shown in
Figure 3E. Therefore, this paper adopts bidirectional approximation
method to determine the intermediate critical state through the
upper and lower bounds.

The lower bound and upper bound of the critical deviation angle
are set to 7.02° and 7.04°. The simulation model parameters in
Table 2 are used to simulate the dynamic response of the eccentric
block under the lower and upper bound deviation states. The results
are shown in Figure 9.

Figure 9A shows the dynamic response of the eccentric block
under the lower bound deviation state, which simulates the situation
shown in Figure 3D. Due to the rotation of the eccentric block, its
deflection angle continuously accumulates, so polar coordinates are
used for representation. Establish a polar coordinate system with the
lower side of the borehole as the polar origin and the clockwise
direction as the positive direction. The polar angle represents the
deflection angle of the eccentric block, and the polar diameter
represents time. As shown in Figure 9A, when the deviation
angle is less than the critical deviation angle, the eccentric block
will rotate, causing the mechanical stable platform to lose its ability
to sense the deviation.

Figure 9B shows the variation of deflection angle and angular
velocity of the eccentric block during the first lap. As shown in the
figure, the eccentric block has undergone a process of acceleration,
deceleration, and reacceleration. The critical deflection angle
position (point b) is the boundary point between acceleration
and deceleration. When the eccentric block reach the upper

FIGURE 8
Coulomb friction model.
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critical deflection angle position (point c), its angular velocity
decreases to the minimum (close to 0). Then it accelerate again
until the angular velocity exceeds the system angular velocity (720°/
s) and reaches its maximum at point f. When the eccentric block
enters the (f, a) region, it deceleration again to the system angular
velocity and maintain a constant speed until reach point a. The
eccentric block then enters the state of periodic
unidirectional rotation.

Figure 9C shows the dynamic response of the eccentric block
under the upper bound deviation state, which simulates the situation
shown in Figure 3F. Create a Cartesian coordinate system with time
as the horizontal axis and deflection angle as the vertical axis. From
the time-domain and phase diagrams of the eccentric block in
Figure 9C, it can be seen that when the deviation angle is greater
than the critical deviation angle, the eccentric block does not pass the

upper critical deviation angle position, but exhibits oscillation
attenuation characteristics. After several swings, it can gradually
stop at the critical deviation angle position (θC = 46.5°), causing the
MVDS to start correcting the deviation.

Figure 9D shows the variation of deflection angle and angular
velocity of the eccentric block during the first oscillation period. As
shown in the figure, the eccentric block has undergone a process of
acceleration, deceleration, reverse acceleration, and further deceleration.
The critical deflection angle position (point b) is the boundary point
between acceleration and deceleration. When the eccentric block
approaches the upper critical deflection angle position (point c), its
angular velocity decreases to 0, then accelerates in reverse and
decelerates again until the angular velocity reaches 0 (due to the
damping force, the eccentric block will not reach point a). The
eccentric block then enters the state of oscillation attenuation.

TABLE 2 Parameters for verify.

Parameters of theoretical model Parameters of simulation model

l = 1000 mm
rE = 40 mm

ρ = 7.8 × 10−6 kg/mm3

g = 9.8m/s2
ω � 0 − 12.56 rad/s

P = 1 MPa
rP = 12 mm
μP = 0.08
α � 0 − 10°

k = 1 × 105

e = 1.5
Cmax = 100

dmax = 1 × 10−9 mm
Cd = 1.0

μs = 0.1
μd = 0.08

vs = 0.01 mm/s
vd = 0.02 mm/s

FIGURE 9
The response of eccentric block at the lower and upper bound of critical deviation angle (ω>ωc): (A) polar plot (lower bound); (B) Cartesian plot
(lower bound and first lap); (C) Cartesian plot (upper bound); (D) Cartesian plot (upper bound and first oscillation period).
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(2) Case ω<ωc

Substituting the theoretical model parameters and ω �
3.14 rad/s into Equation 21 and Equation (5), the critical
deviation angle αC′ is obtained as 6.59° and the critical deflection
angle θC is obtained as 129.3°. The lower bound and upper bound of
the critical deviation angle are set to 6.58° and 6.60°. The simulation
model parameters in Table 2 are used to simulate the dynamic
response of the eccentric block under the lower and upper bound
deviation states. The results are shown in Figure 10.

As shown in Figure 10A, when the deviation angle is less than
the critical deviation angle, the eccentric block will rotate, causing
the mechanical stable platform to lose its ability to sense
the deviation.

Figure 10B shows the variation of deflection angle and angular
velocity of the eccentric block during the first lap. As shown in the
figure, the motion state of the eccentric block is roughly similar to
the situation shown in Figure 9B. The main difference is that,
because the system speed is less than the critical speed, the
eccentric block accelerates to the system angular velocity (180°/s)
in the (a, b) region and then maintains a constant speed to point b.
The eccentric block accelerates again to the system angular velocity
in the (c, d) region and maintains a constant speed to point e.

From the time-domain and phase diagrams of the eccentric
block in Figure 10C, it can be seen that when the deviation angle is
greater than the critical deviation angle, the eccentric block does not
pass the upper critical deviation angle position, but exhibits
oscillation attenuation characteristics. After several swings, it can
gradually stop at the critical deviation angle position (θC = 50.7°),
causing the MVDS to start correcting the deviation.

Figure 10D shows the variation of deflection angle and angular
velocity of the eccentric block during the first oscillation period. As
shown in the figure, the motion state of the eccentric block is roughly
similar to the situation shown in Figure 9D. The main difference is
that, because the system speed is less than the critical speed, the
eccentric block accelerates to the system angular velocity in the (a, b)
region and then maintains a constant speed to point b.

In summary, no matter the system speed is greater or less than
the critical speed, the eccentric block is unidirectionally rotating at
the lower bound of the critical deviation angle, oscillation
attenuation at the upper bound of the critical deviation angle and
gradually stabilizes at the critical deflection angle position. Since the
difference between the lower and upper bounds is very small (0.02°),
there must be a critical state between the lower and upper bounds as
shown in Figure 3E. The above analysis enables the theoretical
model and simulation model to be verified with each other, and also

FIGURE 10
The response of eccentric block at the lower and upper bound of critical deviation angle (ω<ωc): (A) polar plot (lower bound); (B) Cartesian plot
(lower bound and first lap); (C) Cartesian plot (upper bound); (D) Cartesian plot (upper bound and first oscillation period).
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proves that the simulation model has a high computational accuracy
and the parameter values are taken correctly.

4 Effect of vibration

When the bit breaks rock underground, it is subjected to strong
impact loads, resulting in strong torsional, axial, and lateral
vibrations of the drill string. Due to the installation of a stabilizer
on the upper part of the vertical drilling system (limited radial
displacement) and its large diameter (high bending stiffness), its
lateral vibration magnitude is relatively smaller than the other two
types of vibration. Therefore, this paper mainly analyzes the
influence of torsional vibration, axial vibration, and torsional-
axial coupled vibration on the deviation sensitivity of the
mechanical stable platform.

4.1 Effect of torsional vibration

In drilling operations, torsional vibration is widely present in the
drill string system, so it is not enough to only consider the ideal state
of the MVDS moving at a constant speed. The main reason for
torsional vibration is the periodic accumulation and release of elastic
potential energy inside the drill string when the bit breaks rock, and
its motion form is the periodic rotation through acceleration-
deceleration-acceleration. The torsional vibration model can be
characterized by the trigonometric function of angular velocity,
which is expressed as Eq. 33 (Li, 2018).

ωT � ω − A cos Bt + C( ) (33)

Wherein, ωT - Angular velocity of the system under torsional
vibration (°/s), ω - The constant angular velocity applied by the rig to
the drill string (°/s), t - Time (s),A - Amplitude of torsional vibration
(°/s), B - Frequency of torsional vibration (Hz), C - Initial phase of
torsional vibration.

According to the amplitude of torsional vibration, it is divided
into mild, moderate, and severe. The level of torsional vibration is
evaluated by Eq. 34.

Mild, A| |< 30% ω| |
Moderate, 30% Ω0| |< A| |< 70% ω| |
Severe, A| |> 70% ω| |

⎧⎪⎨⎪⎩ (34)

Set system angular velocity ω to 720°/s (120 r/min), the values of
amplitude A and frequency B are mainly related to geological and
drilling process factors. The torsional vibration of the system is more
intense due to the friction torque caused by the rotating rib pushing
against the wellbore. Through literature research, this paper takes
the range of A as (0, 720) and the range of B as (2, 18). Since the
MVDS first experiences an increase in angular velocity after starting
the rig, the initial phase C is set to 0. Subsequently, using the
bidirectional approximation method mentioned above, the multi-
body dynamics model is applied to find the critical deviation angle of
the mechanical stable platform under different torsional vibration
conditions.

Figure 11 shows the influence of torsional vibration on the
critical deviation angle of a mechanical stable platform. The

X-axis and Y-axis represent the amplitude and frequency of
torsional vibration, respectively, and the Z-axis represents the
critical deviation angle. From the figure, it can be seen that the
critical deviation angle is jointly affected by the amplitude and
frequency of torsional vibration, and its variation range is
between the extreme deviation angle αl (5.1°) and the critical
deviation angle αc (7.03°). When the amplitude is less than
500 and the frequency is less than 8, the torsional vibration
has no effect on the critical deviation angle, and the critical
deviation angle is always equal to 7.03°. As the amplitude and
frequency increase, the influence of torsional vibration on the
critical deviation angle gradually becomes apparent. When the
amplitude remains constant, as the frequency increases, the
critical deviation angle decreases nonlinearly, and the larger
the amplitude, the more intense the decrease range becomes.
Until the amplitude reaches the system angular velocity, the
decrease range reaches its maximum (from αc to αl). When
the frequency remains constant, as the amplitude increases,
the critical deviation angle decreases nonlinearly, and the
larger the frequency, the more intense the range of decrease.
Until the frequency reaches its maximum value, the range of
decrease also reaches its maximum (from αc to αl). From the
mapping region at the bottom of the 3D surface map, it can be
seen that the length of the color gradient region in the X-axis
direction is smaller than that in the Y-axis direction, which
indicates that the critical deviation angle is more sensitive to
the change of amplitude than the frequency of torsional
vibration. In addition, it should be noted that when the
amplitude is greater than 650 and the frequency is less than 3,
torsional vibration will also cause the critical deviation angle to
be less than 7.03°. Therefore, the effect of the torsional vibration
on the critical deviation angle is not monotonic.

To explain the above phenomenon, this paper takes the three
typical torsional vibration situations included in the above figure as
examples, extracts the simulation results at their upper bounds, and
conducts detailed analysis.

(1) Case ωT � 720 − 320 cos 10t

This torsional vibration situation can represent the dark red area
in the mapping region, and torsional vibration will not affect the
critical deviation angle. In this case, due to the small amplitude of
torsional vibration, the system angular velocity is always greater
than the angular velocity of the eccentric block, resulting in no
difference in the motion state of the eccentric block compared to the
situation shown in Figures 9C,D.

(2) Case ωT � 720 − 720 cos 18t

This torsional vibration situation can represent the color
gradient area in the mapping region, and torsional vibration have
a more intense impact on the critical deviation angle. As shown in
Figure 12A, when the amplitude and frequency of torsional
vibration increase to a certain extent, the critical deviation angle
of the mechanical stable platform can be reduced, thereby increasing
its critical deflection angle. Figure 12B shows the time-domain
diagrams of the deflection angle, angular velocity of the eccentric
block, and angular velocity of torsional vibration in the first
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oscillation period. As shown in the figure, during the rising stage of
the black solid line (representing the deflection angle of the eccentric
block), there are four intersections between the red solid line
(representing the angular velocity of the eccentric block) and the
blue dashed line (representing the angular velocity of torsional
vibration), indicating the existence of two time periods during
which the angular velocity of torsional vibration is smaller than
the angular velocity of the eccentric block, resulting in the negative
direction of the plate valves friction torque and the negative work on
the eccentric block. Due to the presence of two negative works, the
eccentric block exhibits a deceleration behavior in the (a, b) region,
and intensifies the deceleration process in the (b, c) region, allowing
its angular velocity decelerate to the zero in the (b, c) region.
Therefore, a certain degree of torsional vibration can effectively
reduce the critical deviation angle of the mechanical stable platform.
In addition, it can be further inferred from Figure 12B that as the
amplitude and frequency of torsional vibration increase, the
horizontal distance between the intersection points gradually
increases, resulting in a further increase in the magnitude of
negative work done by the friction torque, thereby further
weakening the kinetic energy of the eccentric block in the (a, c)
region. Therefore, the critical deviation angle can gradually decrease
until it approaches the extreme deviation angle αl.

(3) Case ωT � 720 − 670 cos 2t

This torsional vibration situation can represent the light red area
in the mapping region, and torsional vibration have a slight impact

on the critical deviation angle. As shown in Figure 12C, when the
amplitude of torsional vibration increases to a certain extent and the
frequency decreases to a certain extent, the critical deviation angle of
the mechanical stable platform can also be slightly reduced, thereby
increasing its critical deflection angle. Figure 12D shows the time-
domain diagrams of the deflection angle, angular velocity of the
eccentric block, and angular velocity of torsional vibration in the
first oscillation period. As shown in the figure, due to the large
amplitude and small frequency of torsional vibration, its initial
angular velocity is low and its growth rate is slow, which enables
the angular velocity of the eccentric block to catch up with the
torsional vibration angular velocity in the (a, b) region. when the
angular velocity of the eccentric block reaches the system angular
velocity in the (a, b) region, it will rotate at the same speed as the
system. Figure 12D shows the above situation, where the red solid
line and blue dashed line overlap in the (a, b) region until the
torsional vibration angular acceleration is greater than the
maximum angular acceleration that the eccentric block can
obtain, indicating that the slow increase in angular velocity
during the initial torsional vibration suppresses the increase in
kinetic energy of the eccentric block in the acceleration zone.
This enables its angular velocity decelerate to the zero in the (b,
c) region, thereby reducing the critical deviation angle.

To sum up, although torsional vibration can cause many
negative impacts on drilling operations, a certain degree of
torsional vibration can appropriately reduce the critical deviation
angle of the mechanical stable platform, thereby effectively
improving its deviation sensitivity.

FIGURE 11
The influence of torsional vibration on the critical deviation angle.
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4.2 Effect of axial vibration

Axial vibration is more likely to occur during drilling in vertical
wells because the wellbore damping effect in vertical wells is lower
than that in inclined wells, and energy is more easily transferred
along the drill string. It is caused by the alternating contact between
the bit teeth and the protruding rock at the bottom of the well, as
well as the elastic deformation of the drill string, and its motion form
is the periodic reciprocating motion through upward-downward-
upward. The axial vibration model can be characterized by the
trigonometric function of linear displacement, which is expressed as
Eq. 35 (Li and Guo, 2007).

D � E sin Ft + G( ) (35)

Wherein, D - Linear displacement of the system under axial
vibration (mm), E − Amplitude of axial vibration (mm), F -
Frequency of axial vibration (Hz), G - Initial phase of
axial vibration.

After taking the derivative of Equation 35 twice, the maximum
acceleration generated by axial vibration can be obtained, as shown
in Equation 36.

€Dl � EF2 (36)

According to the maximum acceleration generated by axial
vibration, it is divided into mild, moderate, and severe. The level
of axial vibration is evaluated by Eq. 37.

Mild, 0< €Dl ≤ 3g
Moderate, 3g< €Dl ≤ 8g
Severe, €Dl > 8g

⎧⎪⎨⎪⎩ (37)

The values of amplitude E and frequency F are mainly related
to the bit structure, rotational speed, drilling pressure, and
formation properties. Through literature research, this paper
takes the range of E as (0, 10) and the range of F as (10, 100).
Due to the contact between the bit and the bottom of the well
when starting the rig, the initial phase G is set to 0. Subsequently,
using the bidirectional approximation method mentioned above,
the multi-body dynamics model is applied to find the critical
deviation angle of the mechanical stable platform under different
axial vibration conditions.

Figure 13 shows the influence of axial vibration on the critical
deviation angle of a mechanical stable platform. The X-axis and
Y-axis represent the amplitude and frequency of axial vibration,
respectively, and the Z-axis represents the critical deviation
angle. From the figure, it can be seen that the critical

FIGURE 12
The response of eccentric block under the second and third torsional vibration situation: (A) Cartesian plot (second situation); (B) Cartesian plot
(second situation and first oscillation period); (C) Cartesian plot (third situation); (D) Cartesian plot (third situation and first oscillation period).
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deviation angle is jointly affected by the amplitude and frequency
of axial vibration, and its value is always greater than αc, but the
range of variation is very small compared to torsional vibration,
only 0.03°. When the amplitude is less than six and the frequency
is less than 30, the axial vibration has no effect on the critical
deviation angle, and the critical deviation angle is always equal
to 7.03°. As the amplitude and frequency increase, the influence
of axial vibration on the critical deviation angle gradually
becomes apparent. When the amplitude remains constant, as
the frequency increases, the critical deviation angle increases
nonlinearly, and the larger the amplitude, the more intense the
increase range becomes, until it reaches the maximum range and
no longer changes. When the frequency remains constant, as the
amplitude increases, the critical deviation angle increases
nonlinearly, and the larger the frequency, the more intense
the range of increase, until it reaches the maximum range
and no longer changes. Therefore, the effect of the axial
vibration on the critical deviation angle is monotonic.

The influence of axial vibration on the critical deviation
angle is mainly caused by the longitudinal acceleration. During
the axial vibration process, the longitudinal acceleration of the
upper plate valve on the stable platform is in a fluctuating state,
causing the contact force between the upper and lower plate
valves to be in a fluctuating state, thereby causing the friction
torque between the upper and lower plate valves to also be in a
fluctuating state. Figure 14 shows the linear acceleration and
contact force of the plate valves generated by axial vibrations
with different amplitudes and frequencies. As shown in the

figure, axial vibration causes both the acceleration and the
contact force of the plate valves to fluctuate in a sinusoidal
manner. With the increase of frequency or amplitude, the
extreme values of vibration acceleration and the contact force
also increase, and the axial vibration becomes stronger.
Therefore, its impact on the critical deviation angle is greater.
The acceleration curves under different axial vibration all
fluctuate around the acceleration zero point, and the contact
force curves of the plate valves under different axial vibration
all fluctuate around 454N (contact force of the plate valves
without axial vibration). Although axial vibration can
exacerbate the extreme values of acceleration and contact
force, the cancellation effect makes its impact on the critical
deviation angle tiny.

In summary, axial vibration causes a slight increase in the critical
deviation angle of mechanical stable platforms over αc, but the effect
is minimal compared to that of torsional vibration.

4.3 Effect of torsional-axial coupled vibration

During the drilling process, the vibration state of the drill string
is sometimes not singular, but a coupled state of multiple vibration
forms coexisting. In addition to the individual effects of torsional
vibration and axial vibration, mechanical stable platform will also be
subject to the coupling effects of the two vibration forms. Through
the above analysis, it can be seen that the effect of axial vibration on
the critical deviation angle can finally be attributed to the effect of

FIGURE 13
The influence of axial vibration on the critical deviation angle.
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the maximum acceleration generated by vibration. The critical
deviation angle of the mechanical stable platform under mild
axial vibration (E � 4, F � 50, €Dl � 1g), moderate axial vibration
(E � 8, F � 80, €Dl � 5g), and severe axial vibration
(E � 10, F � 100, €Dl � 10g) and accompanied by torsional
vibration of different amplitudes and frequencies are respectively
taken to investigate the influence of coupled vibration.

Figure 15 show the influence of torsional vibration on the
critical deviation angle under severe, moderate and mild axial
vibration respectively. Subfigure A, C, E show the variation law of
the critical deviation angle under coupled vibration and subfigure
B, D, F show the variation law of the difference between the
critical deviation angle under coupled vibration and single
torsional vibration. From Figures 15A,C,E, it can be seen that
the variation law of critical deviation angle under coupled
vibration is similar to that under single torsional vibration,
indicating that torsional vibration plays a dominant role, and
the additional effect of axial vibration is relatively small. As
shown in Figures 15B,D,F, the additional effect of axial
vibration in coupled vibration mainly acts on the large
amplitude region of torsional vibration. The effect of axial
vibration causes the critical deviation angle to fluctuate up
and down on the basis of a single torsional vibration value,
but the fluctuation amplitude is relatively small, with a
maximum of only 0.2°. As the intensity of axial vibration
gradually decreases and the surface shape gradually flattens, it
indicates that the difference in critical deviation angle gradually
decreases, and the additional effect of axial vibration in coupled
vibration gradually weakens.

In summary, torsional vibration plays a dominant role
in coupled vibration. The additional effect of axial vibration

is relatively small and gradually weakens as its
intensity decreases.

5 Conclusion

In this paper, theoretical mechanics is introduced to establish
the critical deviation angle model for the mechanical stable platform.
Multi-body dynamics simulation is applied to mutually verify the
models and further analyze the effect of vibration. The main
conclusions are as follows.

1. The critical deviation angle can be used to evaluate the
sensitivity of the mechanical stable platform to well
deviation. When the deviation angle is greater than the
critical deviation angle, the eccentric block can gradually
stop at the lower critical deflection angle position under the
damping effect, and the MVDS will begin to correct
the deviation.

2. When the system angular velocity is less than the critical
angular velocity, the system angular velocity has an impact
on the critical deviation angle. As the angular velocity
decreases, the critical deviation angle gradually decreases
until it approaches extreme deviation angle αl (5.1°). When
the system angular velocity is greater than the critical angular
velocity ωc (3.76 rad/s), the system angular velocity no longer
has an impact on the critical deviation angle, and its value is
always equal to αc (7.03°).

3. In order to improve the performance of the system, the values
of μP, P and rP should be reduced, and the values of ρ, l and rE
should be increased so that αC can be reduced as much as

FIGURE 14
Acceleration and contact force of plate valves under different axial vibrations.
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possible. Among them, rP and rE should be taken as the focus
objects when parameter optimization is performed because
they have the most drastic effect on αC.

4. The critical deviation angle is jointly affected by the amplitude
and frequency of torsional vibration, and its variation range is
between the extreme deviation angle αl (5.1°) and the critical
deviation angle αc (7.03°). A certain degree of torsional
vibration (A>500°/s, B > 8 Hz) can appropriately reduce the

critical deviation angle of the mechanical stable platform. The
critical deviation angle is jointly affected by the amplitude and
frequency of axial vibration, and its value is always greater than
αc, but the range of variation is very small compared to
torsional vibration, with a maximum of only 0.2°. Torsional
vibration plays a dominant role in torsional-axial coupled
vibration. The additional effect of axial vibration is relatively
small and gradually weakens as its intensity decreases.

FIGURE 15
The influence of torsional vibration on critical deviation angle under severe, moderate, and mild axial vibration: (A) Absolute value (severe axial
vibration); (B) Relative value (severe axial vibration); (C) Absolute value (moderate axial vibration); (D) Relative value (moderate axial vibration); (E) Absolute
value (mild axial vibration); (F) Relative value (mild axial vibration).
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