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A risk-aware scheduling method of multienergy virtual power plant (MEVPP) is
proposed to measure the uncertainty in MEVPP. First, a novel day-ahead
uncertainty scenario generation method based on denoising diffusion
probabilistic model is proposed, and historical data are employed to learn the
error relationship between real power curves and predict power curves. The
probability distribution of the prediction error which describes the day-ahead
output power curve of renewable energy source is learned by parameter training.
Subsequently, the effect of risk aversion on decision-making is investigated by
implementing conditional value-at-risk in the optimization model, MEVPP
operation mode under the carbon trading and green certificate trading
mechanism is analyzed. Finally, the proposed scheme is implemented on a
test MEVPP with carbon trading, and green certificate trading is addressed in
detail through a numerical study. Moreover, the effects of the operator’s risk-
averse behavior on the MEVPP are investigated.
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1 Introduction

Power system is comprehensively advancing its low-carbon energy transition, and this
process is unfolding rapidly. Against the backdrop of steady development in smart energy
and the gradual opening of the electricity market, the energy industry is continuously
progressing toward the goals of safety, efficiency, and sustainable development (Lin and Li,
2022). Due to the flexibility and environmental friendliness inherent in distributed energy
sources, their installed capacity and share of electricity generation in the power system are
steadily rising. This transformation involves not only a shift toward cleaner energy sources
but also research into integrated energy systems (IESs), virtual power plants (VPPs), and
other collaborative operational models involving distributed energy sources. The
development and application of smart energy solutions, led by distributed energy
sources, are creating favorable conditions for the energy industry to embrace
transformative changes. These changes are crucial in propelling the energy industry
toward a future characterized by safety, efficiency, and sustainable practices.

Currently, the application of distributed energy sources still faces several challenges.
First, the significant integration of renewable energy source (RES) has led to increasing
uncertainty in the energy system, rendering simple uncertainty models inadequate to meet
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accuracy requirements. Second, due to geographical constraints, the
regional limitations of IESs impede the effective coordination and
operation capabilities of different distributed energy sources. To
solve this problem, the concept of multienergy VPP (MEVPP) has
emerged. MEVPP integrates various types of energy with regional
characteristics to balance diverse energy demands in the market
trading environment, aiming to achieve objectives of safety,
economic efficiency, and environmental conservation. MEVPP is
recognized as a crucial approach to address the current challenges in
the application of distributed energy resources (Kwon et al., 2019).
The flexibility and resilience offered by MEVPP are significant as
they quickly adapt to supply and demand changes, reducing the
reliance on centralized power plants and supporting
decentralization. Technological advancements in smart grids,
energy storage (ES), and intelligent management systems are
driven by MEVPP, which also participate in energy markets by
offering essential ancillary services. This participation not only
contributes to market stability and efficiency but also opens up
new economic opportunities for energy trading and services.
MEVPP provides substantial environmental benefits by reducing
greenhouse gas emissions and minimizing the energy sector’s
environmental impact. Moreover, they assist in meeting stringent
regulatory requirements for renewable energy adoption and carbon
emissions reduction, aligning with global efforts to combat climate
change and transition to a sustainable, low-carbon economy.

MEVPP tackles the escalating uncertainty resulting from the
substantial integration of RES by introducing more refined and
accurate uncertainty models. Scenario analysis is a widely used
method to analyze RES uncertainty by generating a set of future
scenarios representing different possible outcomes of RES behavior.
By incorporating these scenarios into optimization models,
operators can make more informed decisions regarding
scheduling and planning schemes. In the process of scenario
generation, the sampling-based method is commonly employed
due to its simplicity and speed, which involves sampling from
the probability distribution to generate discrete sets of scenarios.
For example, an empirical distribution usingMonte Carlo samples is
used in Li et al. (2020) to generate a day-ahead set of scenarios. The
Gaussian copula is used in Papaefthymiou and Kurowicka (2008) to
analyze the uncertainty of large-scale wind power integration into
the power system. However, the aforementioned model-based
sampling methods require making assumptions about the
probability distribution approximately conforming to a certain
distribution. With the rapid development of artificial intelligence,
deep generative models have been widely used in scenario
generation. Qi et al. (2020) adopts VAE to generate PV scenarios
in multienergy power system. In Dumas et al. (2021), NF is applied
to forecast the quantiles of RES generation and is integrated into
robust optimization problems. Zhang et al. (2020) uses C-WGAN-
GP and support vector machine to generate scenarios by classifying
errors. The quality of scenario generation by monolayer VAE is
worse than GAN, NF can only be applied to certain tasks, and the
results are not satisfactory. GAN-based scenario generation has high
quality, but it is difficult to get good results by train. During the
training process, it will encounter the problem of mode collapse and
loss of diversity. There have been many techniques to improve
training (Zhao et al., 2020), but it is still difficult to apply in actual
engineering.

IES is a response to an integrated energy supply that can bring
together multiple energy demands and supplies, making effective use
of the complementary strengths of different energy sources.
However, due to geographical constraints, the coordinated
operational capabilities of IES cannot be effectively utilized.
MEVPP integrates different types of region-specific energy
sources, balancing various energy demands in the market trading
environment to achieve objectives of safety, economic efficiency, and
environmental conservation. In the literature, Chen et al. (2021)
employs a data-driven approach to encapsulate a VPP dispatch
model for real-time optimization but do not propose scheduling
models between various energy sources. Zhang et al. (2023)
introduces a self-conclusion and variation particle swarm
optimization method to address VPP scheduling issues, yet it
does not consider the uncertainty impact of RES. Good and
Mancarella (2017) utilizes Weibull probability distribution
functions and Monte Carlo simulation to describe the
distribution of wind power generation in a VPP, employing a
stochastic optimization method for dispatch tasks, but the
uncertainty probability distribution excessively relies on the
model. Kong et al. (2020) applies a GAN-based scenario
generation method and robust stochastic optimization to describe
the uncertainty of RES in an MEVPP. However, the practical
applicability of the GAN-based scenario generation method
remains challenging and hard to apply. Vahedipour-Dahraie
et al. (2020) investigates the optimal problem of VPPs in the
market but overlooks the variety of risks.

In these studies, there is a lack of adoption of a precise, easily
applicable method to describe the uncertainty of RES. Moreover, the
current methodology does not assess the risk of carbon emissions
under the market trading mechanism, leaving gaps in the economic
and environmental research within carbon trading and green
certificate trading market environments. To address these issues,
this paper proposes a risk-aware scheduling method. Specifically,

• to describe the inherent uncertainties of RES, a deep generate
model named the denoising diffusion probabilistic model
(DDPM) is used for scenario generation;

• an optimal dispatch model of MEVPP incorporating carbon
trading and green certificate trading is established;

• the DDPM-based conditional value-at-risk (CVaR) risk
estimation methodology is introduced to assess the risks
associated with carbon emissions; and

• the proposed DDPM-based CVaR risk estimation
methodology model for MEVPP participation in carbon
trading and green certificate trading improves the
utilization of RES and reduces the carbon emissions
of MEVPP.

2 Scenario generation by DDPM

2.1 System component model

Describing the inherent characteristics of RES is the key to
formulating the day-ahead optimization of MEVPP. Day-ahead
scenario generation can reveal the relationship between
influencing factors and RES output and accurately describe the
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output characteristics of RES under uncertain environments by
generating a set of scenarios that may occur in the future. To
analyze the scenario from the perspective of prediction error, we
use the historical dataset of a certain region as the training set, and
the resolution of the time series is τ; suppose that the time series
predicted for a certain day is c � [p1, p2, ..., pτ] and the
corresponding real-time series is x � [x1, x2, ..., xτ], the objection
of scenario generation is to learn the correlation between the
predicted time series c and the actual time series x in the
historical data. Finally, based on the day-ahead predicted time
series ρ, generate a real-time series {x*}Ns, using NS as the
number of generated scenarios and P as the probability of
occurrence for each scenario; the entire day-ahead scenario
generation task can be represented as Eq. 1

x*{ }Ns � argmax
x{ }

∏Ns

i�1
P i( ) x|c( ). (1)

2.2 Principle of DDPM

A DDPM is a parameterized Markov chain trained using
variational inference to produce samples matching the data after
finite time (Sohl-Dickstein et al., 2015). Transitions of this chain are
learned to reverse a diffusion process, which is a Markov chain that
gradually adds noise to the data in the opposite direction of sampling
until the signal is destroyed. When the diffusion consists of small
amounts of Gaussian noise, it is sufficient to set the sampling chain
transitions to conditional Gaussians, allowing for a particularly
simple neural network parameterization. In brief, the training of
DDPM can be regarded as two parts: reverse process (denoising
process) and diffusion process (add noising process).

For convenience, we use x to represent a time series, T is the
number of steps of diffusion, the data distribution of the sample is
represented by x ~ p(x), and the data distribution of diffusion is
represented by x ~ q(x). DDPM is a hidden variable model, which
can be expressed as Eq. 2

pθ x0( ) :� ∫pθ x0: T( )dx1: T, (2)

where x1, x2, ..., xT has the same hidden variable dimension as
x0 ~ q(x0). The reverse process samples from the initial noise
distribution by reversing the process of adding noise, and the entire
process can be defined as a learnable Markov chain as Eqs 3, 4.

pθ x0: T( ) :� p xT( )∏T
t�1

pθ xt−1|xt( ) (3)

pθ xt−1|xt( ) :� N xt−1; μθ xt, t( ),∑
θ
xt, t( )( ) (4)

The mean value μθ and covariance matrix ∑θ can be obtained
through learnable parameters θ and step t of the reverse process,
and the required scenario can be obtained through the denoising
process of the specified number of steps after learning the
parameters θ.

The second part of DDPM is the forward process, also known
as the diffusion process, which differs from other implicit
variable models in that it progressively adds noise to the data

on a fixed Markov chain based on the variance β1, β2...βT of each
step, and the posterior process q(x1:T | x0) can be represented as
Eqs 5, 6

q x1: T|x0( ) :� ∏T
i�1

q xi|xi−1( ), (5)

q xi|xi−1( ) :� N xi;
�����
1 − βi

√
xi−1, βiI( ). (6)

In the forward process, noise is gradually added to the data, with
the target of making the data distribution close to the Gaussian noise
distribution, the detailed method can be seen in Ho et al. (2020).

2.3 Denoising network structure

Applying DDPM to RES scenario generation, the emphasis lies
in establishing the probability distribution between conditions and
scenarios. By considering the influence of predicted conditions,
improving the training process of DDPM is aimed at establishing
the correlation of scenarios. Our model embedded the predicted
power as conditional inputs into each residual layer, The noise
sample is embedded into the residual network through the
convolutional network, and the features of each step are
embedded into the residual network; finally, the features are
extracted through a layer of convolutional network to generate a
removed noise. The detailed denoising network structure is depicted
in Figure 1.

2.4 The process of scenario reduction

After using DDPM to generate scenarios, it is necessary to
reduce the number of scenarios to an appropriate number and
obtain their probability distribution, which is the process of
discretization of the entire probability distribution. The process
of scenario reduction has been studied in many papers (Heitsch
and Römisch, 2003). In this paper, a simple spectral clustering
method is adopted to set the number of scenarios to an
appropriate number.

2.4.1 Scenario generation by spectral clustering
Spectral clustering, grounded in graph theory, utilizes the

decomposition of datasets through eigenvalues and eigenvectors
to reveal underlying structures that conventional clustering
techniques might fail to detect. This technique adeptly reduces
dimensionality, thereby exhibiting significant robustness against
noise and outliers, which substantially improves the fidelity of
clustering results. The method’s versatility is augmented by
kernel methods, allowing it to effectively manage data that are
not linearly separable. Within the context of this study, we
employ spectral clustering to condense scenarios, with the
objective of identifying renewable energy scenarios characterized
by pronounced features. Our methodology meticulously sifts
through the intricacies of renewable energy datasets, culminating
in a curated selection of scenarios that are both quintessential and
reflective of the inherent probabilistic nature of the energy sources
under scrutiny (Ng et al., 2001).
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2.4.2 Probability distribution of joint scenarios
Yang et al. (2015) is used to assess generation adequacy by

modeling a joint probability distribution model, which is not within
the scope of this paper.

We adopt the method of Li et al. (2022) and multiply the
probability of two scenarios respectively, i.e., the scenario
probability of wind power is Πa and the scenario probability of
photovoltaic is Πb, then the joint probability is Πa*Πb.

3 Carbon trading and green certificate
trading mechanism

3.1 Carbon trading mechanism

The implementation of the carbon trading mechanism involves
the allocation of carbon emission rights, turning carbon into a
tradable commodity. This approach utilizes market-oriented
means to drive the reduction of carbon emissions.

One of the key issues in the carbon trading mechanism is the
allocation of carbon emission quotas, typically determined through
national carbon emission targets. In China, carbon emission policies
are formulated based on the electricity production of power
generation enterprises. If the carbon emissions generated by a
power generation unit are less than the allocated carbon
emissions quota, they can benefit by selling excess quotas.
Conversely, if the carbon emissions exceed the allocated target,
the entity must purchase additional carbon emission quotas.

In theMEVPP described in this paper, the carbon emission sources
are gas turbines (GT) and gas boilers (GB). GT generates both electricity
and heat, whereas GB produces only heat. The carbon emission quotas
for the system at time t, denoted as Ep,t, are determined by equating the
electrical energy produced by GT to its equivalent heat generation and
allocating carbon emission quotas accordingly.

Ep,t � δ Ph
GT,t + φPe

GT,t + Ph
GB,t( ), (7)

In Eq. 7, where δ represents the regional unit carbon emission
allocation for electricity, determined by the “2019 Annual Emission
Reduction Project Baseline Emission Factor for China’s Regional
Power Grids” set by the National Development and Reform
Commission. In this study, it is obtained by taking the weighted

average of the marginal emission factors for electricity and capacity
in the system region, yielding a value of 0.57 t/(MW·h); Pe

GT,t, P
h
GT,t,

and Ph
GB,t denote the electrical and thermal power output of GT at

time t, respectively; φ is the conversion factor for electrical power;
Ph
GB,t is the thermal power output of GB at time t. The actual carbon

emissions of the system are approximately proportional to the unit
output. The actual carbon emissions can be assumed as Eq. 8.

Eac,t � φGT Ph
GT + τPe

GT,t( ) + φGBP
h
GB,t, (8)

where φGT and φGB represent the carbon emission coefficients
for GT and GB, respectively [19]. In this context, a value of 0.6101 t/
(MW·h) is utilized.

Therefore, the actual carbon trading cost CCa,t can be expressed
as Eq. 9

CCa,t � kca Eac,t − Ep,t( ), (9)

where kca is the price of carbon trading.

3.2 Green certificate trading mechanism

The green certificate trading mechanism is a market mechanism
designed to promote the development and utilization of RES, guide
fair consumption by market participants, internalize environmental
costs, and foster a harmonious ecosystem for sustainable
development between humanity and nature.

A green certificate is a certification granted after verifying the
production of RES that meets the standardized quality in the
MEVPP. Market participants can acquire RES quotas based on
their capacity to produce RES, and the green certificate serves as
tangible proof of this production. Green certificates can be
traded, allowing market entities to flexibly adjust their RES
quotas. If a market entity’s consumption of RES is below the
allocated quota, the entity needs to purchase tradable green
certificates to fulfill its RES quota. Conversely, if the
consumption of RES exceeds the allocated quota, market
entities can sell surplus green certificates to generate economic
profit. This mechanism encourages market entities to actively
participate in the consumption and production of RES, thus
driving the development of the RES market.

FIGURE 1
Detailed denoising network structure.
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The transaction cost of green certificates can be expressed as
Eq. 10

Cgre,t � kgre Pgre,t − Pre,t( ), (10)
where kgre is the unit price of green certificate in green certificate

trading. Pgre,t is the amount of RES generation in the dispatch
schedule of MEVPP in the t period. The amount of RES utilized
by MEVPP is transformed by 1 MW = 1 green certificate. Pre,t is the
RES consumption quota of VPP in the t period. The expression of
Pre,t can be seen in Wang et al. (2023).

3.3 MEVPP operating model under carbon
trading and certificate trading mechanisms

When a VPP expands beyond being confined to electricity and
incorporates interactions among various energy sources to meet
diverse energy procurement needs, it evolves into an MEVPP. For
operators, the control platform must balance multiple energy
sources and devise optimal strategies for the interaction between
different types of energy.

The MEVPP architecture studied in this paper consists of a control
platform, energy supply segment, energy conversion segment, and
energy demand segment. It adopts a centralized control structure
responsible for system scheduling, determining the purchase and sale
of electricity, handling the uncertainty of RES, and obtaining the demand
from the energy conversion segment. It optimizes the output of each unit.

The energy supply segment comprises three parts: electricity,
heat, and gas. The power generation equipment includes GTs, wind

turbines, and photovoltaic devices. The energy conversion segment
includes a combined heat and power generation (CHP) unit
consisting of a GT, a waste heat boiler (WHB), and a low-
temperature waste heat power generation device based on the
organic Rankine cycle (ORC). Additionally, it includes GBs and
heat pumps (HP). Energy storage devices encompass both electric
ES and thermal ES (HS). Energy demand primarily involves
electrical and thermal loads. The MEVPP control center specifies
scheduling schemes for the MEVPP based on market prices and the
dispatch plans of the distribution network dispatch center. The
transactional structure is illustrated in Figure 2.

3.4 Carbon emission with CVaR

Due to the uncertainty associated with RES and load, the
system’s carbon emissions may deviate from standards. When
formulating scheduling plans, the carbon emission costs arising
from such an uncertainty must be considered. This paper addresses
the uncertainty through a scenario-based method based on DDPM.
The optimization objective is to probabilistically minimize the
operational costs across various scenarios, considering the impact
of both carbon trading mechanisms and green certificate trading
mechanisms on carbon emissions. CVaR is introduced into the
objective function to enhance the consideration of uncertainties.

VaR and CVaR are widely used for risk characterization and
control. VaR is the maximum loss at a given confidence level β,
related to the probability of excess loss. CVaR is the expected value
of losses exceeding the VaR at a given confidence level β, related to

FIGURE 2
Multienergy virtual power plant (MEVPP) structure.
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the expected value of excess losses. Let π(x, y) denote the loss
function caused by the random variable y under decision variable
x. Assuming the density function of y is p(y), then for a given
confidence level β, the VaR and CVaR of the loss are obtained from
Equations 11 and 12, respectively.

Vβ π x, y( )( ) � inf α ∈ R | ∫
π x,y( )≤ αp y( )dy≥ β{ } (11)

Cβ π x, y( )( ) � E max π x, y( ) − Vβ π x, y( )( ), 0( )[ ] (12)

4 MEVPP optimization model
with CVaR

4.1 Objective function

We formulate a scheduling model to achieve a balance between
the economic efficiency and carbon emission risk of MEVPP under
user load satisfaction. The objective is articulated as a composite of
the expected economic cost and the tail risk value based on CVaR,
represented by Eq. 13:

min ωEfcos t + ωργrisk( ), (13)

where fcos t represents economic cost, γrisk denotes the tail risk
value, and ωE + ωρ = 1.

The total economic cost can be represented as Eq. 14

fcos t � Cbuy,t + CCa,t + CGre,t + COP. (14)

The economic cost is expressed for each component as follows.

4.1.1 Total cost of the MEVPP interaction with
other energy

Total cost of the MEVPP interaction with other energy is
expressed as Eq. 15.

Cbuy,t � ∑T
t�1

φe
b,tP

e
b,t − φe

s,tP
e
s,t + φgQb,t( ), (15)

where t represents a runtime period;Pe
b,t andP

e
s,t are purchased and

sold from/to the higher-level power grid at time t, respectively; φe
b,t and

φe
s,t are the corresponding electricity prices; Qb,t represents the amount

of natural gas used at time t; and φg is the unit price of natural gas.

4.1.2 Total cost of carbon trading
Total cost of carbon trading is expressed as Eq. 16.

CCa � ∑T
t�1
CCa,t (16)

4.1.3 Cost of green certification trading
Cost of green certification trading is expressed as Eq. 17.

CGre � ∑T
t�1
CCre,t (17)

4.1.4 Cost of operating
Cost of operating is expressed as Eq. 18.

COP � ∑T
t�1
∑7
i�1
ωiPi,t (18)

Here, i takes values 1, 2, 3, . . ., 7, representing the wind
turbine, PV, CHP, HP, GB, ES, and HS, respectively. ωi is the
operational coefficient of equipment i, and Pi,t is the output of
equipment i.

4.1.5 Risk of carbon emission based on CVaR
The risk of carbon emission by CVaR can be represented as

Eq. 19.

γrisk � ξ + 1
1 − β

∑W

ω�1πw(max π x, y( ) − ξ, 0( ), (19)

where πw represents the probability distribution obtained based
on the DDPM for scenario generation.

4.2 Constraints

4.2.1 RES generation constraints
The generation capacity limits of RESs can be articulated as Eqs

20, 21.

0≤Pw,t ≤Pw,pre,t, (20)
0≤Ppv,t ≤Ppv,pre,t, (21)

where Pw,pre,t and Ppv,pre,t are the predicted power of wind
power and Pw,t and Ppv,t are the real power for wind and PV in the t
period, respectively.

4.2.2 Power balance constraints
The Power balance constraints of MEVPP can be summarized as

Eqs 22–24.

Pe
b,t − Pe

s,t + Pe
WT,t − Pe

HP,t + Pe
CHP,t + Pe,dis

ES,t

−Pe,ch
ES,t � Pe0

L,t + ΔPe
CL,t + ΔPe

SL,t + ΔLr,e
t b,t

, (22)

Ph
GB,t + Ph

CHP,t + Ph
HP,t + Ph,dis

HS,t − Ph,ch
HS,t � Ph0

L,t + ΔLr,h
t , (23)

Qb,t � Qg
CHP,t + Qg

GB,t, (24)

where Pe
HP,t and Ph

HP,t represent the electrical and thermal
power consumption of the HP at time t, respectively; Pe

CHP,t,
Ph
CHP,t, and Qg

CHP,t represent the power generation (electric and
thermal) and gas consumption of the CHP at time t; Pe,dis

ES,t and
Pe,ch
ES,t represent the discharging and charging power of the ES

system at time t, respectively; Ph,dis
HS,t and Ph,ch

HS,t represent the heat
discharge and charge power of the HS system at time t,
respectively; Pe0

L,t and Ph0
L,t represent the electricity and heat

load at time t, respectively; and Qg
GB,t represents the gas

consumption of GB at time t.
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4.2.3 CHP constraints
The constraints of CHP can be summarized as Eqs 25–31.

Pe
CHP,t � Pe

GT,t + Pe
ORC,t, (25)

Ph
CHP,t � Ph

GT,tβtτWHB, (26)
Pe
GT,t � Qg

CHP,tτ
e
GTVg, (27)

Ph
GT,t � Qg

CHP,tτ
h
GTVg, (28)

Pe
ORC,t � Ph

GT,tαtδORC, (29)
αt + βt � 1, (30)

0# αt, βt # 1, (31)

where Pe
ORC,t represents the power generation of the low-

temperature waste heat device at time t; βt is the proportion of
waste heat generated by GT at time t allocated to the WHB for heat
production; τWHB is the thermal conversion efficiency of WHB; τeGT
and τhGT represent the gas-to-electricity and gas-to-heat efficiency of
GT, respectively; Vg is the heating value of natural gas (taken as
9.88 kW·h/m3); αt is the proportion of waste heat generated by GT
allocated to the waste heat power generation device at time t; and
δORC is the power generation efficiency of the waste heat power
generation device.

4.2.4 HP and GB constraints
The limits of HP and GB can be expressed in terms of

Eqs 32, 33.

0≤PHP ≤PHPmax, (32)
0≤PGB ≤PGBmax, (33)

where PHPmax is the maximum power of HP and PGBmax is the
maximum power of GB.

4.2.5 Energy storage device constraints
The energy storage device limits can be can be formulated as

Eq. 34.

Pess,dis,min ≤ Sdis,tPess,dis,t ≤Pess,dis,max

Pess,ch,min ≤ Sch,tPess,ch,t ≤Pess,ch,max

0≤ Sdis,t + Sch,t ≤ 1
Eess,t � Eess,t−1 + Sdis,tPess,dis,t( )/ηdis + Sch,tPess,ch,tηch
Eess,min #Eess,t#Eess,max

∑T
t�0

Sdis,tPess,dis,t + Sch,tPess,ch,t( ) � 0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
, (34)

where Pess,ch,max and Pess,dis,max are the maximum charging and
discharging power of the ES device, respectively. Sch,t and Sdis,t are
the binary variables representing the discharge and charge state of
the ES device, respectively. Pess,ch,min and Pess,dis,min are the
minimum charging and discharging power of the ES device,
respectively. ηch and ηdis represent the charging efficiency during
charging and the discharging efficiency during discharging of the ES
device, respectively. Eess,max and Eess,min are the maximum and
minimum energy values of the ES device in the scheduling period,
respectively.

4.2.6 Power constraints on the distribution grid
contact line

The Power constraints on distribution grid contact line can be
formulated as Eq. 35.

0≤Pgrid,buy,t ≤Pgrid,max, (35)

where Pgrid,max are the power limit values of the distribution grid
contact line, Pgrid,max = 1500 kW.

5 Case study

5.1 Data setting

Wind and PVdatasets are collected from the Belgian transmission
operator ELIA (Yang et al., 2020), which provides the power outputs
and day-ahead point forecasts for all offshore wind farms and PV
plants in Belgium. In this paper, 3 years of data are adopted as the train
data. One month’s data is adopted as test data. Noteworthy is that
these point forecasts provided on the official website are mainly
obtained through specialized forecasting tools developed by
external service providers or mathematical models based on
weather. Some weather point forecasts may be less accurate
because of the new sensor monitoring technologies with the
occurrence of extreme weather events. The detailed DDPM
parameter can be found in Table 1.

Furthermore, in order to properly evaluate the performance of
DDPM for scenario generation, the most popular deep generative
model Conditional Generative Adversarial Network (CGAN) and
the traditional methodMC are selected for comparison. The detailed
CGAN parameter can be found in Figure 3. This section was coded
in Python with PyTorch3.7 and implemented on Inter i7-12700H
2.7-GHz CPU with RAM 64 GB personal computer accelerated by
NVIDIA GTX 3080 GPU.

In order to verify the effectiveness of the method proposed in
this paper, MEVPP parameters shown in Table 2 are used for
verification. The trading price of green certificate is set at
50 RMB/(MW·h), and the carbon trading price is 150 RMB/t.
The prices of electricity used by customers are shown in Table 3.

5.2 Performance analysis

A scenario analysis using DDPM and GAN is shown in Figure 4.
For wind power scenarios in Figure 4A and 4B, both methods can
replicate the fluctuating nature of wind power. However, the generated
power curves from the GAN generation scenarios may deviate from the
real power curve, particularly in the header and tail sections. These
deviations prevent an accurate representation of the uncertainty
associated with the real power curve. Conversely, the DDPM
generation scenarios can provide a more precise coverage of the
curve, offering a more accurate depiction of its uncertainty. Five
centroid centers are shown in Figure 4C and 4D, by analyzing the
RES scenarios; it becomes evident that the DDPM-generated scenarios
with their five clustering centers can fully encompass the real power
curve. In contrast, the GAN-based method shows notable deviations,
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underscoring that DDPM is better suited for accurately capturing the
characteristics of real RESs through the reduced scenarios. The
correlation between time series plays a critical role in the operation
and planning of power systems, as it provides valuable insights into the
temporal characteristics of RESs. By accurately capturing these
characteristics, the risk of underestimating operating costs can be
minimized (Villanueva et al., 2011). Therefore, it is essential to
evaluate the effectiveness of generated scenarios through correlation
analysis. The autocorrelation coefficient is a metric used to measure the
level of correlation between time series at different periods. It quantifies
the impact of past behaviors on the present state. In our analysis, we
calculate the autocorrelation coefficients R(τ) of the samples by Eq. 36

R τ( ) � E St − μ( ) St+τ − μ( )( )
σ2

, (36)

where S is a random time series; µ and σ denote the mean and
variance of S, respectively; and τ is the time lag. The correlation
analysis presented in Figure 4E and 4F clearly indicates that
the time series generated using the DDPM method
closely resembles the real power curve in terms of temporal
correlation.

At last, the scenario probability distribution obtained by the
DDPM scenario generation method and the spectral clustering
scenario reduction method are shown in Table 4.

TABLE 1 Denoising diffusion probabilistic model (DDPM) parameters.

Parameter description Notation Value (wind) Value (PV)

Diffusion steps T 500 50

Diffusion noise variance β 0.0001–0.05 0.0001–0.05

Residual layers — 8 8

Embedding dimension — 32 16

FIGURE 3
CGAN structure.

TABLE 2 Device parameters.

Device type Parameter Value Device type Parameter Value

GT Capacity 4,000 GB Capacity 1,000

Electrical efficiency 0.3 Efficiency 0.9

Heat efficiency 0.4 400

WHB Efficiency 0.8 ORC Capacity 1,000

HP Capacity 400 Efficiency 0.8

Efficiency 4.4

HS Capacity 800 ES capacity 800

Initial capacity 100 Initial capacity 160

Charge/discharge efficiency 0.95/0.90 Charge/discharge efficiency 0.95/0.90

Max power 250 Max power 250
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5.3 Scheme comparison analysis

To compare the performance of scenario-based CVaR under
carbon trading and green certification mechanisms, four cases were
established for analysis.

S1: This case represents the performance without carbon trading
and green certification trading.

S2: In this case, MEVPP schedules under carbon trading.
S3: In this case, MEVPP schedules under carbon trading and

certification trading.
S4: In this case, MEVPP schedules under market trading

and considers the risk of carbon emission. β =
0.95, ωρ = 0.9.

5.3.1 MEVPP scheduling plan
The scheduling results for S1–S3 are illustrated in Figure 5. In

the low-demand periods (off-peak hours), the system relies on
wind turbine output and grid electricity purchases to meet the
power balance, whereas the heat demand is supplied by HP, GB,
and HS to maintain thermal equilibrium. This is attributed to the
lower electricity prices during grid purchases, resulting in lower
costs, with the remaining electricity demand primarily met by the
wind turbine output. Additionally, due to the high heating
efficiency of HP, it is given priority for heating. In cases where

FIGURE 4
Scenarios analysis of the denoising diffusion probabilistic model (DDPM) and CGAN: (A) Wind scenarios generated by DDPM; (B) wind scenarios
generated by CGAN; (C) DDPM generate wind scenarios cluster 5 centroid center; (D) CGAN generate wind scenarios cluster 5 centroid center; (E) time
series analysis of the DDPM generate wind centroid center; (F) time series analysis of the CGAN generate wind scenarios centroid center.

TABLE 4 Scenario probability distribution.

Scenario Probability (wind) Probability (PV)

Scenario 1 12.3 16.5

Scenario 2 14.5 18.7

Scenario 3 20.6 22.7

Scenario 4 25.3 28.8

Scenario 5 27.3 13.3

TABLE 3 Time of use tariffs.

Time Price

Low period 00:00–08:00 0.35

Intermediate period 08:00–09:00 0.68

12:00–19:00

22:00–24:00

Peak period 09:00–12:00 1.09

19:00–22:00
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HP and CHP cannot meet the demand, GB is employed for
heating. In the intermediate demand period, the system relies
on grid electricity purchases and solar/wind power output. The
substantial output from photovoltaics significantly reduces the cost

of purchasing electricity. During peak demand periods, when grid
electricity prices are higher, the system heavily relies on solar/wind
power output and CHP output to meet the load demands. The heat
demand is fulfilled by HS, HP, and CHP during this period.

FIGURE 5
MEVPP scheduling plan.
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FIGURE 6
MEVPP buys power from the grid in S1, S2, and S3.

FIGURE 7
Wind power utilized in S2.

FIGURE 8
Wind power utilized in S3.
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5.3.2 Carbon trading and green certificate
trading analysis

In S2, Figure 6 illustrates a distinct preference for procuring
electricity directly from the grid under the influence of a carbon
trading mechanism. This preference is not coincidental; it is a
strategic choice stemming from the way our carbon trading
mechanism is designed. It predominantly manages and
facilitates transactions of carbon emissions that are produced
within the confines of the MEVPP. Given this context, when the
grid electricity is priced competitively, our system is naturally
inclined to prioritize these purchases due to their cost-
effectiveness. In contrast, scenarios that incorporate a green
certificate trading mechanism demonstrate a different outcome.
They are characterized by a reduction in the overall cost
associated with generating power from solar and wind

sources. This decrease in generation costs is pivotal as it is
directly linked to the effectiveness of our approach to carbon
emission reduction. By bolstering the output from renewable
sources like solar and wind, we are not only promoting
environmental sustainability but also indirectly influencing
the economic dynamics of grid electricity purchases. The
enhanced utilization of solar and wind power leads to a more
significant reduction in the cost of grid electricity, making it an
even more attractive option for the MEVPP’s energy portfolio.
This integrated strategy harnesses the power of market
mechanisms to drive down emissions while simultaneously
optimizing energy acquisition costs.

As illustrated in Figures 7 and 8, which pertain to wind power
output, there is a notable reduction in the accommodation of
wind energy during off-peak hours when the load demand is

TABLE 5 Cost of schemes.

Case Operation
cost

Energy
purchasing cost

Carbon
trading cost

Maintenance
cost

Green
certification
revenue

Carbon
emission (kg)

CVaR

S1 35294.59 20294.02 1953.54 13526.77 — 13023.58 —

S2 33870.89 20266.16 115.75 13116.34 — 11740.79 —

S3 30618.47 18182.68 112.98 15767.09 3444.29 11428.09 −3131

S4 30634.84 18307.44 104.66 15673.70 3450.95 10615.64 −3546

FIGURE 9
Carbon emission in S3 and S4.
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minimal. This is due to the system’s inclination to prioritize the
fulfillment of the RES quota in order to procure additional green
certificates and subsequently generate supplementary revenue
through the green certificate trading mechanism. At the stroke of
midnight, there is a significant surge in wind power generation,
which escalates to 900 kW. Correspondingly, the integration of
wind power during the nocturnal period witnesses a marked
enhancement. Thus, the quintessence of the green certificate
trading mechanism is encapsulated in its role of amplifying
the RES absorption capacity. This is effectively achieved by
leveraging the internalization of costs associated with RES,
thereby fostering a more sustainable and economically viable
energy framework.

5.3.3 MEVPP cost analysis
The cost comparison of different schemes for MEVPP is

presented in Table 5. When applying the carbon trading
mechanism, the purchasing cost of electricity decreases by 4.03%.
This reduction is attributed to the introduction of carbon trading
shares, which offset a portion of the electricity purchasing cost. With
the implementation of the green certificate trading mechanism, the
income generated from RES generation reduces the cost of RES
production, leading to a 13.25% decrease in electricity purchasing
costs. The system tends to prioritize the integration of RES,
promoting a low-carbon development trajectory. In the case of
CVaR application, carbon emissions have an impact on the
scheduling plan. The system restricts the output of GT to reduce
carbon emissions, sacrificing some economic costs to achieve the
goal of emission reduction.

5.3.4 Carbon emission analysis
Figure 9 illustrates the impact of applying the CVaR method

on carbon emissions in the scheduling plan. Under the premise
of meeting load demand, there is a significant reduction in

carbon emissions during the periods 10:00–11:00 and 20:
00–22:00. This reduction is attributed to the relatively high
output of the gas turbine during these time intervals. By
decreasing the output of the gas turbine, the carbon
emissions of the MEVPP are effectively reduced. In
comparison to S3, the utilization of CVaR contributes to
formulating a scheduling plan with lower carbon emissions
within the current framework.

5.4 CVaR analysis

Figure 10A illustrates the impact of different β-values on carbon
emissions. A smaller β-value increases the probability of carbon
emission risk, making the system more inclined toward a low-
carbon solution. Carbon emissions fluctuate under different β-
values due to variations in discrete probabilities. When the
probability of the risk value is larger, the probability of exceeding
the risk value is smaller, affecting the system’s scheduling plan. In
Figure 10B, the influence of varying the weight ωρ on optimization
results is demonstrated when β is set to 0.9. As ωρ increases, the
system’s carbon emissions decrease, suggesting that controlling the
risk of carbon emissions can be achieved by increasing ωρ. However,
as ωρ increases, the expected operating costs also rise. Therefore,
adjusting ωρ allows for a balance between expected operating costs
and carbon emissions.

6 Conclusion

To track the fluctuation of RESs, a DDPM-based scenario
generation method is considered, Scenario reduced by spectral
clustering. Then, based on the scenarios, a CVaR-based carbon
trading risk model is constructed. A stochastic optimization model

FIGURE 10
Sensitivity analysis of conditional value-at-risk (CVaR) parameters.
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with carbon trading and green certificate trading for MEVPP is
constructed. After case analysis, the following conclusions are reached:

(1) DDPM-based scenario generation method can improve the
accuracy of describing the features of RES and the
effectiveness of optimized models.

(2) Green certificatemechanism and carbon tradingmechanism can
promote the consumption of RES, reduce carbon emissions, and
increase the economic cost of MEVPP operation.

(3) In the process of operation, it is necessary to consider the
preference of carbon emission indicators, and the method
based on CVaR can guide operators to make operation plans
under the requirements of carbon emission indicators.
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