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As the physical power information system undergoes continual advancement,
mobile energy storage has become a pivotal component in the planning and
orchestration of multi-component distribution networks. Furthermore, the
evolution and enhancement of big data technologies have significantly
contributed to enhancing the rationality and efficacy of various distribution
network planning and layout approaches. At the same time, multi-distribution
networks have also confronted numerous network attacks with increasing
probability and severity. In this study, a Petri net is initially employed as a
modeling technique to delineate the network attack flow within the
distribution network. Subsequently, the data from prior network attacks are
consolidated and scrutinized to evaluate the vulnerability of the cyber-
physical system (CPS), thereby identifying the most critical network attack
pattern for a multi-component distribution network. Following this, the
defender–attacker–defender planning methodology is applied for scale
modeling, incorporating rapidly evolving mobile energy storage into the pre-
layout, aiming tomitigate the detrimental impact of network attacks on the power
grid. Ultimately, the column and constraint generation (C&CG) algorithm is
utilized to simulate and validate the proposed planning strategy in a 33-node
system with multiple control groups established to demonstrate the viability and
merits of the proposed strategy.
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1 Introduction

With the rapid development of the global energy Internet, the distribution network has
become an important part of the power system, and its operation safety is directly related to
the stability and reliability of the power supply. However, with the rapid development of
computers and communication technology, the traditional power system and information
communication system are more and more closely combined, forming a fused power and
information physical system known as a cyber-physical system (CPS). With the continuous
upgrading of network attacks, the security problem of power networks is becoming
increasingly prominent (Shelar and Amin, 2017). In order to cope with this challenge,
this study aims to explore a multi-component distribution network planning method under
power network attacks to improve the anti-attack capability and operational stability of the
distribution network.
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In recent years, many CPS studies have emerged. Based on the
establishment of the CPS dependencymodel and the characterization of
the coupling mechanism between them, Nguyen et al. (2013) studied
and analyzed the factors affecting the vulnerability of distribution
networks under network attacks. Gao et al. (2013) analyzed the
interdependence and connection between power and information
nodes. Through the communication process between the power
system and the information system, Long et al. (2019) conducted
network modeling to verify the relationship between the degree of
system loss and the proportion of fault nodes in the network. Zhang
et al. (2021) analyzed CPS modeling through a dependency network.
However, most of the modeling processes above are mainly from a
topological perspective, resulting in some differences between the final
model and actual system characteristics. Currently, research on network
attacks mostly focuses on large power grid information physical
systems, with most information attacks concentrated in transmission
grids. For example, Yu et al. (2016) verified that communication delay
between AC and DC changes the optimization strategy of control
centers in UHV systems. Cai et al. (2016) studied potential major
failures (catastrophic failures) in different structural information
networks under random or deliberate attacks. Based on the semi-
Markov process, Lau et al. (2020) modeled SCADA systems and
developed optimal mixed strategies for defense strategy allocation
through competitive games. Yu et al. (2019) proposed a transfer
model of the CPS system that integrates physical equipment and
information decision making and realizes dynamic control of the
transfer process by establishing an information control flow. Yi et al.
(2016) analyzed, defined, and classified the network attacks suffered by
CPS based on examples. At present, the network attack planning
methods for distribution networks are relatively few. The influence
of pre-layout defense measure configuration on network attacks is
ignored, and defender–attacker–defender (DAD) planning is rarely
taken into account in distribution network configuration planning.

Based on the above research background and research status,
this article proposes a multi-component distribution network
planning method that considers network attacks. First,
vulnerability attacks under Petri net and power network attacks
are used to analyze and obtain the vulnerability of distribution
networks under network attacks, and with the help of data-driven
(Stephane et al., 2022), the corresponding extreme scenarios are
simplified and generated. Second, based on the DAD planning
model, mobile energy storage is introduced for pre-layout in
advance to reduce the cost of fault recovery. Third, the C&CG
algorithm is used to analyze the three-layer, two-stage optimization
problem of the DAD planning model. Finally, a 33-node IEEE
system is tested and evaluated to verify the economy and
effectiveness of the proposed method.

2 Power network attack modeling

2.1 Typical power network attack model

As the key infrastructure supporting the normal operation of
society, the security and stability of the power network are very
important (Yang et al., 2022). With the rapid development of
computer and communication technology, traditional power
systems and information and communication systems are more

and more closely combined, forming a typical CPS. However, with
the continuous evolution of the means of network attack, the threat
to the power network is becoming more and more serious.

In the diversified and chain-oriented environment of network
attacks, it is difficult for traditional methods to deal with random
and highly interlocked attacks, mainly because it is difficult to
describe dynamic attack and defense behaviors. The state of the
whole system cannot be directly observed, which affects the
selection of defense behaviors. Therefore, this article chooses a
Petri net as the modeling method to describe the attack state and
provides the basis for the subsequent defense strategy selection.

The elements of a Petri net include a library (Place) circular
node, a Transition square node, a directed arc (Connection) that is
the directed arc between a library and a transition, and a token
(Token) that is a dynamic object in a library that can be moved from
one library to another (Deka et al., 2014). Figure 1 shows a common
network attack flow model.

When the actual transition probability and delay are
determined, a Petri net can be equated with a Markov chain
(MC) (Lin et al., 2005). At the same time, the trigger matrix data
are easily obtained in the reachable graph. The analysis of system
performance can have a very good effect. The specific method of
obtaining trigger matrix parameters is as follows: a random Petri net
is represented by a quadruple SPN = (P, T, Mo, Mf), where Mo

represents the initial mark, and Mf represents the final mark. The
calculation formula of the trigger matrix is as follows in Eq. (1)
(Amini et al., 2018):

Mf � Mo + CTUk. (1)

In this formula, C is the integration matrix, Uk is the trigger
matrix, and the tag and integration matrix can be derived from the
library and transition states.

2.2 Vulnerability analysis under power
network attack

2.2.1 Analysis of vulnerability indicators
2.2.1.1 Critical damage degree index

With the development of information technology, the power
system’s dependence on the information network also increases.
Therefore, security will be seriously threatened when network
attacks occur. It is necessary to assess the vulnerability of the
distribution network under network attacks (Dahmen et al.,
2019). Widely used mainstream evaluation methods are based on
complex network and transient energy functions and service
transmission (Shahsanee and Zareei, 2018).

At present, vulnerability assessment of network nodes is mainly
focused on the static condition, but when the network is running, the
vulnerability index will change constantly. Zhou et al. (2024) put forward
the concept of destructiveness to indicate the degree to which the
network is on the verge of destruction when attacked in Eq. (2):

Pij �
tij
Ti
, tij  <  Ti

1, tij ≥Ti

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (2)
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In this expression, Pi is the destructivity index and tij is the delay
range of the ith service beside j. Ti is the ruin value of the Class
i business.

For the case of multiple lines, according to the change of Pij, the
accuracy of vulnerability assessment is ensured by the following Eq. (3):

Cp Ep i, j( )[ ] � δt ∑i
j�1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ Vi∑i
j�1Vj

Pij

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (3)

In this formula, Cp[Ep(i,j)]is the vulnerability of the
communication branch, Ep(i,j) is the vulnerability value of the
communication branch from Article i to Article j, δt is the actual
delay of communication transmission, Vi is the traffic contained in
the communication branch, and Vj is the transmission rate of Class j
services on the communication branch.

2.2.1.2 Fault impact degree
When the distribution network is attacked and a fault occurs, the

node will lose load. Therefore, the analysis must also consider the
results caused by the failure of the distribution network and the
shutdown of nodes (Nazemi et al., 2019).

In view of the fact that the distribution network is generally a
radial network and operates in an open loop, the impact caused by
node outage can be quantitatively analyzed Eqs 4,5:

SNi � ωiP
Si
SB.

(4)

P � λ

λ + μ
. (5)

In this formula, ωi represents the load class weighting
coefficient, P represents the node failure rate, and SB represents
the power reference value of the system. λ represents the failure rate,
and μ represents the repair rate.

2.2.2 Assessment model of distribution network
vulnerability

Considering the existence of static and dynamic indicators of the
vulnerability of the distribution network, several nodes are selected
from different levels of the distribution network for assessment.
Different vulnerability assessment indicators are assigned according
to the levels and importance of different nodes (Yan et al., 2015).

Because the existing distribution network is coupled by the
power network and the communication network, the components
are diverse, and the coupling relationship is complicated. The
complex network theory can be used to model and analyze the
distribution network. Among them, the bus and line in the power
network are abstracted as nodes and edges. The relationships
between intelligent terminal devices and communication nodes in
a communication network are abstracted as nodes and edges. Based
on this, the power–communication coupling network model of the
distribution network shown in Figure 2 can be constructed.

The two types of nodes in the model, power node and
communication node, have two operating states, namely, normal
and fault. The model’s running state can be expressed by setting the
state variable in Eqs 6,7 (Guo et al., 2019).

f/kx,n � f/kx,ne + if/kx,nc �
1  x ∈ Ωe

i  x ∈ Ωc

0  x ∉ Ωe ∪ Ωc

⎧⎪⎨⎪⎩ . (6)

fxy,1 � fyx,1 � fxy,le + ifxy,lc �
1 + i xy ∈ ΩLe, xy ∈ ΩLe

1 xy ∈ ΩLe, xy ∉ ΩLe

i xy ∉ ΩLe, xy ∈ ΩLe.
0 xy ∉ ΩLe, xy ∉ ΩLe

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (7)

In this formula, fx,i represents the initial, power, and
communication operating states of nodes, respectively; kx,i
represents the actual, power, and communication operating states
of nodes; fxy,i is the overall status of line xy, the power line and the
communication line, respectively; Ωe、Ωc、and Ωv is the set of

FIGURE 1
Common network attack flow model.
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power, communication, and effective operation nodes, respectively;
and ΩLe、ΩLc、and ΩLv is the set of power, communication, and
effective operation lines, respectively.

In the power–communication network, M nodes are extracted,
whereM = {m1, m2, m3, ..., mn}. If there is a path between the nodes,
the coefficient k is 1, and otherwise 0. Static vulnerability assessment
indicators are defined as Eq. 8

N Mi( ) � ε1Pij mi( ) + ε2N mi( ). (8)

In this formula, N(Mi) is the static vulnerability assessment
index, a is the weight of each static factor, and Pij(mi) is the
destructivity index of the mi node. N(mi) indicates the pressure
indicator of the service layer. As can be seen from the above formula,
the static vulnerability assessment index is a constant.

The dynamic vulnerability assessment index is defined as
Eq. 9

Nvi Mi( ) � 1
N Mi( ). (9)

Based on the above formula, the vulnerability assessment model
is constructed, and the expression is as follows Eq. 10:

M′ �
������������������������
1
N

∑
mi∈M

N Mi( )  −  N Mi( )( )2.√
+

�����������������������
1
P

∑
mi∈M

N Mi( )  −  N Mi( )( )2√ (10)

In this formula, M′ is the expression of the vulnerability
assessment model, N is static loss, and P is dynamic loss. The loss
of power service when the network is attacked is judged according to

the change of the M′ value to realize the effective assessment of the
vulnerability of the power–communication network.

2.3 Power network attack scenario
generation

Before vulnerability assessment, different network attack
modes need to be analyzed; that is, attack scenarios need to be
generated. In this article, the K-means clustering algorithm
(Hagh et al., 2018) is used to reduce the typical Ms0 attack
scenarios obtained from previous network attack data to a
typical scenario set containing Md attack scenarios, in which
the ith sample is represented as λi = []i, Tst,i, Tdr,i]. The specific
steps to reduce the attack scenario are as follows:

Step 1: In Ms0 samples, randomly select K(K = Md) initial cluster
centers (λ1, λ2, . . . , λK);

Step 2: Calculate the Euclidean distance between each sample λi
and the cluster center, and aggregate each sample with the
nearest cluster center to form K cluster samples;

Step 3: CalculateDkm, the sum of the distance between the sample
and the respective clustering center, according to the
following formula and iteratively update the contents of
the K cluster sample in Eq. 11.

Dkm � ∑K
i�1

∑
z∈Yi

‖ z − λi ‖22. (11)

In this formula, z and λi are the noncentral samples and the
central samples of cluster Yi, respectively.

FIGURE 2
Power-communication coupling network model of distribution network.
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Step 4: Calculate the iteratively updated K clustering centers
according to the following formula (12):

λi � 1
Yi

∑
z∈Yi

z. (12)

Step 5: Repeat steps 2 to 4 until the maximum number of
iterations is reached or convergence conditions are met;

Step 6: Calculate the probability distribution of the final K
samples according to the Eq. 13.

Pd � Yi| |
Ms0.

(13)

In this formula, |Yi| is the number of samples contained
in cluster Yi.

The probability density of the ith scenario after clustering is Pdi,
and its cumulative probability distribution Fdi is shown in the
following Eq. 14.

Fdt � ∑i
k�1

Pdk i � 1, ...,Md( ). (14)

Similar to the determination of line fault state pl, the non-
sequential Monte Carlo simulation method can also be used to
generate uniformly distributed random numbers xd in the interval
[0, 1] and randomly select attack scenarios for the subsequent
resilience assessment process. When Fd(i-1)<xd < Fdi, it indicates
that scenario i is selected. A set of samples[]i, Tst,i, Tdr,i] can be
obtained, and the fault scenario can be further generated according
to the parameters of extreme events.

3Multi-grid distribution networkmodel
and toughness analysis

3.1 Distribution network model construction

3.1.1 Construction of the renewable energy
output model

With the development of global renewable energy, growing
renewable energy in multiple distribution networks is
increasingly important, followed by the network attack
probability. The attackers may be aimed at the control system of
renewable energy itself and may also use the renewable energy
system as a springboard through the data exchange system to attack
multiple distribution networks. Therefore, renewable energy must
also be included in the construction of the network attack model.
Considering the proportion and representativeness of renewable
energy in the grid, wind power and photovoltaic are selected to
construct renewable energy output models in this article.

3.1.1.1 Wind power
In general, the probability density of the wind speed conforms to

the Weibull distribution (Eq. 15):

f F ν( ) � k
c

ν

c
( )k−1

e−
v
c( )k . (15)

Among them, k and c are, respectively (Eq. 16):

k � σ

μ
( )1.086

c � μ

Γ 1 + 1/k( ).
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (16)

In this formula, σ is the standard deviation of wind speed in
statistical time, and μ is the expected wind speed in statistical time. Γ
is a gamma function.

The output power of the fan is related to the size of the wind
speed and the power characteristics of the fan itself. The output
power is (Eq. 17) (Nan et al. (2022):

Pwind v( ) �
0, v ≤ vci, v > vco
k1v + k2, vci < v < vr .
Pr , vci ≤ v ≤ vr

⎧⎪⎨⎪⎩ (17)

In this formula, vci and vco are the cut-in wind speed and cut-out
wind speed of the fan, vr is the rated wind speed of the fan, Pr is the
rated output power of the fan, and k1 and k2 are constants.

3.1.1.2 Photovoltaic
The output of distributed photovoltaics is directly related to the

magnitude of the light intensity. However, due to the intermittent
type and uncertainty of the light intensity, the photovoltaic output
will also change with the light intensity. Overall, the photovoltaic
output power is PPV. The probability density curve can be
approximated by a beta distribution (Eq. 18):

f PPV( ) � Γ α + β( )
Γ α( )Γ β( ) PPV

PMπ
( )α−1

1 − PPV

PMπ
( )β−1

. (18)

In this formula, Pmax indicates the maximum output power of
the photovoltaic power supply. α and β are the two parameters of the
beta distribution probability density function, respectively, which
can be calculated by calculating the average light intensity μ and the
variance σ of the light intensity within a day.

3.1.2 Typical load model construction
Saccentie et al. (2019) proposed a way of fitting a normal

distribution curve based on the analysis of extensive data, taking
the expectation of a normal distribution curve as a typical load curve.

Using a large amount of power grid load data, the load data at
the same time on different days are fitted to a normal distribution,
and, finally, the expectation of normal distribution at each time is
taken as the load value at that time of the typical day. The load data
at the same time on different days were fitted by maximum
likelihood estimation by calculating the load value of 24 periods
to the final fitted typical day, and the fitted data were calculated
(Eqs 19,20):

L θi( ) � L xi1, xi2,/, xia ; θi( ) � ∏n−bi
a�1

f xia ; θi( ). (19)

E xi( ) � ∫ xif xi( )dxi. (20)

In this formula, xia indicates the load remaining after duplicate
data are removed from the same period on different days. θi is the
unknown quantity to be estimated, a represents the ath load value in
the sample at time i, and bi indicates the number of repeated load
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values in period i. Represents the formula E(xi) expectation for
period i, and xi represents the argument of the normal distribution
function for the ith period.

3.1.3 Energy storage equipment, model
construction

The output of new energy units, such as wind power and
photovoltaic, in the distribution network is often intermittent
and uncertain. Access to energy storage equipment can suppress
the output power of new energy, improve the power absorption
capacity of the distribution network, and bring certain economic
benefits (Nan et al., 2022).

The energy storage system is equivalent to connecting the
distributed power supply to some nodes during some operating
periods and connecting with different power loads during other
periods. That is, the energy storage absorbs active power when
charging and emits active power when discharging (Eq. 21):

SOC t + Δt( ) � SOC t( ) + Pc t + Δt( )ηcΔt
E

.

SOC t + Δt( ) � SOC t( ) + Pd t + Δt( )Δt
Eηd

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (21)

In this formula, SOC(t) represents the SOC value of the energy
storage system at time t, Pc and Pd represent the absorption and
emitted power of the energy storage, ηc and ηd represent the
efficiency of the absorption and emitted power of the energy
storage system, and Δt represents the capacity of the energy
storage system and the duration of charge and discharge.

3.2 DAD planning model construction

The DADmodel is suitable for the development of defense plans
for important infrastructure, including power systems. Generally,
the interactive concept of attack and defense in traditional DAD
planning models can be divided into the following three layers:

(1) System planning layer: Defenders of this layer need to
consider all possible attack scenarios in advance and
analyze and classify these scenarios to facilitate the
development of defensive measures against these possible
attacks to reduce the losses caused by attacks. Common
countermeasures can include strengthening the hardened
target and adding backup equipment and smart
equipment, etc., to minimize the system loss caused by
the attack.

(2) System damage layer: Attackers in this layer usually develop
unique attack methods and approaches for these advanced
layout defense measures after knowing the measures
formulated by the system planning layer and try to identify
the worst and most serious attack scenarios so as to cause the
greatest loss to the system.

(3) System operation layer: after completing the pre-layout
defense, the defender of this layer takes some recovery
measures to deal with the attack after the attacker carries
out the worst attack in order to minimize the system loss.
Common recovery measures include load cutting, putting

energy storage devices or standby devices in use, and isolating
faulty or infected devices to minimize subsequent losses and
impact on system operation.

In short, the purpose of the defender is to minimize the system
loss, while the purpose of the attacker is to maximize the system loss.

4 Building and solving a DAD model of
distribution network considering a
network attack

4.1 Model construction under a
network attack

Compared with the traditional distribution network, much
energy storage equipment is connected to the current multiple
distribution network. When the network attack receives faults or
fluctuations, energy storage can be an important resource in
the planning of the distribution network DAD. The DAD
planning model of a multi-distribution network considering the
participation of energy storage under network attack is shown
in Figure 3.

The first layer in the figure is the system planning layer. This
article proposes the coordination measures of “line reinforcement
and energy storage configuration” that can operate with energy
storage in distant and important load disasters to reduce the
investment cost of grid prevention and minimize the load loss in
the distribution network emergency response. The second layer is
the disaster attack layer, from the perspective of the attacker, and the
third layer of system operation minimizes the load loss in the
emergency response determined in the second layer.

4.2 Model solution algorithm and steps

The DAD planning model for energy storage configuration
established in this article is a three-layer and two-stage optimization
problem, which has the same mathematical form as the two-stage
adaptive robust optimization model, namely, the three-layer and two-
stage structure of min–max–min. Generally, most existing studies use
the Bender decomposition and the C&CG algorithms to solve such
problems. Compared with the Bender decomposition algorithm, the
C&CG algorithm has stronger convergence and solution power (Nan
et al., 2022). Therefore, the C&CG algorithm is used.

4.2.1 C and CG, the algorithm for solving
According to the DAD planning model constructed in Section

3.1, the following matrix is listed (Eq. 22):

min Xmaxu∈UxminV∈Θ X,u( ) b
TY

s.t.AX ≤ a

Θ X, u( ) � Y | MY ≥NX,KY � u,
‖ JmY ‖2≤ f TmY ,m � 1, 2, . . . , n

{
⎧⎪⎪⎪⎨⎪⎪⎪⎩ . (22)

In this formula, X is the optimization variable in the first stage, u
is the optimization variable in the second stage, which belongs to an
uncertain set Us, and Y is the optimization variable of the running
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layer in the second stage. A, M, N, K, and Jm are the constant
coefficient matrix. a, b, and fm are the constant coefficient vector.

According to the application scope of the DAD planning model
1 and the C&CG algorithm constructed above, when using the
C&CG algorithm, the solution is necessary to assemble the
established model into the main problem (MP) and the
subproblem (SP) in advance.

In the DAD planning model of resilient distribution network
established in this article (Yang et al., 2024), pre-disaster planning
measures need to be formulated for the main problem, that is, to
solve the coordinated measures x1 and x2 of line reinforcement and
energy storage configuration under the given distribution line fault
state scenario ul (Eq. 23):

min x,φF
s.t.AX ≤ a
F ≥ bTYi

MTi ≥NX
KY � u?

‖ JmYi ‖2≤ f TmYi,m � 1, 2, ..., n

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
. (23)

In this formula, F is the main goal of the problem, i is the number
of iterations, and all the variables with subscripts i in the formula are
the variables obtained by the ith iteration.

The purpose of the subproblem (SP) is to find the distribution
network fault state scenario with the greatest loss. That is, in the case
that the optimal solution x1

*、 x2
* of MP is given, the worst fault

scenario u is obtained (Eq. 24):

max
u∈Us

min
TeΘ X′,n( ) b

TY . (24)

Following Zhang et al. (2020), this article adopts the strong
duality theory to transform the inner min form of the subproblem
into themax form and combine the outer problem into a single-layer
optimization problem (Eq. 25).

min
u,η,ξ,μn ,σn

MX*( )Tη + uTξ

s.t.MTη + KTξ + ∑n
m�1

JTmμm + f mσm( ) � b.

‖ μm ‖2≤ σm

η≥ 0

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
(25)

In this formula, η、ξ、μm、σm is the variable after dual
processing. The above formula contains a non-convex bilinear term,
uTξ, so ρi, a 0–1 integer variable, is introduced to represent the strongest
attack and the weakest attack on the distribution network. When ρi is
set to 1, the distribution network suffers the strongest attack, and when
ρi is set to 0, the distribution network suffers the weakest attack. The
linearization process is as follows (Eq. 26):

uTξ � ∑ uiξi � ∑ ui,minξi + ui,max − ui,min( )ρiξi[ ]. (26)

In this formula, ui and ξi are the elements in sets u and ξ,
respectively, and ui,max and ui,min represent the attacks that cause the
most and least damage to the distribution network, respectively. ρiξi is
relaxed by the big-M method. The relaxation process is as follows
(Eq. 27):

−Mρi ≤wi ≤Mρi
−M\ 1 − ρi( ) + ξi ≤wi ≤M 1 − ρi( ) + ξi.

{ (27)

In this formula,wi is an intermediate variable, andM is a positive
integer with a relatively large value. After the above conversion, the

FIGURE 3
DAD planning model considering energy storage.
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problem is converted into a convex and linear problem, which is easy
to solve.

The specific solution process is shown in Figure 4.

5 Example analysis

5.1 Simulation process and environment
configuration

Based on the above analysis, the specific process of DAD
planning of the multi-distribution network for network attacks is
shown in Figure 5.

As shown in the figure, the corresponding Petri net attack model
is first constructed according to common network attacks and
converted into the corresponding MC matrix to facilitate the
subsequent calculation of power grid vulnerability and vulnerable
nodes. The vulnerable nodes when network attacks occur are
determined by calculating the ruin degree of each node and the
MC matrix determined above, and on this basis, the fault scenario
for the weak nodes under network attacks in the multi-component
power grid is generated.

Considering the generation process of network attack scenarios in
the distribution network established in Section 1, after analysis and in
combination with the literature [19], the network attack mode in this
article will attack nodes in the system and deliberately attack nodes with
the most vulnerable analysis results to enhance the effectiveness of

attacks and the severity of consequences. At the same time, considering
that both power nodes and communication nodes exist in the physical
fusion system of power information and considering the inter-network
failure probability when the two types of nodes fail, this article chooses
to directly attack the power nodes because, in the case of the same inter-
network failure probability, continuous attacks on power nodes are
more likely to cause chain failures (Wang et al., 2018).

DAD is a three-layer planning model, so it is necessary to plan
the first defense layer before carrying out network attacks.
Coordination measures for line reinforcement, including energy
storage, are taken in this article. After network attacks,
corresponding measures are taken for damage and attacks so as
to minimize load loss to the greatest extent.

5.2 Simulation results

The simulation in this article is carried out under IEEE33 nodes.
The specific node configuration and wiring are shown in Figure 6.
Among these nodes, 2, 6, 9, 25, and 29 are DEG nodes, and 3, 4, 6, 10,
11, 15, 17, 19, 24, 26, 28, and 33 are important loads; 13, 18, 20, 24,
and 33 are PV nodes. The remaining parts are ordinary load nodes.

The main objective is to reduce the cost of the overall pre-layout
and ensure as few island nodes as possible after the fault branch is
disconnected. Each unit cost is shown in Table 1.

Based on the model established above, this article sets the
following scenarios for verification and comparison:

FIGURE 4
C&CG algorithm solution process.
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1) A pre-layout robust optimization planning model considering
energy storage coordination participation;

2) A robust optimization planning model considering energy
storage coordination participation;

3) A pre-layout deterministic optimal planning model
considering energy storage coordination participation;

4) A deterministic optimal planning model considering energy
storage coordination participation.

Under the above scenario, the pre-layout cost of various
optimization planning models and the node wiring situation after
failure are shown in Figure 7.

The figure shows the sum of the various costs in each of the four
cases, that is, whether pre-layout is performed and whether robust or
deterministic optimization is used. In the figure, the two columns on
the left show the impact of pre-layout on cost when robust
optimization is adopted. It can be seen that the cost of the
scheme with pre-layout is lower than that without pre-layout.

On the right is the cost situation under the condition of
deterministic optimization. The pre-layout has obvious
advantages, and the cost will be reduced by approximately
15%–20%. For the same pre-layout scheme, robust
optimization and deterministic optimization also have a
certain impact on the cost, as shown in the blue columns in
the figure. A comparison indicates that under the premise of the
same pre-layout, the robust optimization method has a lower cost
than the deterministic optimization method, and the cost can be
reduced by approximately 10%. Based on the above
simulation results, we can find that the pre-layout and robust
optimization methods have better effects and more advantages
for cost control.

Figures 8–11 show the cable connections between nodes after
faults in the four scenarios.

In view of the introduction of energy storage coordination and
participation in the previous DAD planningmodel, the impact of the
addition of energy storage equipment on the overall layout cost and

FIGURE 6
33 Node distribution.

FIGURE 5
DAD planning process under network attacks.
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line operation status is verified in the simulation. Themain scenarios
are as follows:

1) The pre-layout robustness optimization planning model
considering the participation of energy storage
coordination;

2) The pre-layout robustness optimization planning model
without considering the participation of energy storage
coordination.

In the above scenario, the cost and failure of the node
distribution of each scheme are shown in Figures 12, 13 and Table 2.

From the above simulation results, it can be observed that
before energy storage is taken into account, the overall layout
cost and fault recovery cost are approximately 8085.7 thousand
yuan. When mobile energy storage is introduced, the overall
cost is reduced to 5,085.8 thousand yuan, a reduction of
approximately 40%. In addition, on the premise of fault
recovery and line connection operation, comparing Figures
12, 13 indicates that when energy storage is involved, the number
of islands composed of three or fewer nodes is three, including one of
the important users, and one island is equipped with mobile energy
storage, which can be temporarily used as power supply. When energy
storage is not considered, the corresponding number of islands is four,
including one important user, and there is a DEG node disconnected
from the network.

It can be seen that the participation of energy storage has a better
effect on the operation of the distribution network after the failure. The
main reason for the 60% overall layout cost reduction caused by energy
storage participation is that when energy storage is not considered and
the network is attacked, the layout mode without energy storage will
cause more important load nodes to disconnect, thus increasing the
cost. At the same time, the number of island nodes is large, which affects
the normal operation of the network. This fully proves the effectiveness
and superiority of energy storage coordination participation.

TABLE 1 Unit costs.

Unit Preconfigured
energy storage

Load
reduction

Important
load cuts

Cost/103

yuan
500 1 10

FIGURE 7
Cost/thousand yuan under each simulation scenario.

FIGURE 8
Pre-layout robustness optimization.
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FIGURE 9
Pre-layout deterministic optimization.

FIGURE 10
Robust optimization without prelayout.
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FIGURE 11
Deterministic optimization without prelayout.

FIGURE 12
Robust optimization of prelayout considering the participation of energy storage.
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6 Conclusion

In the context of the integration of traditional power systems
with information and communication systems, resulting in a
distinctive power information physical fusion system, this article
delves into and validates the influence of a DAD planning model
that incorporates mobile energy storage coordination on the
layout cost and line operation of a multi-distribution network
in the event of network attacks. The key contributions of this
work are as follows:

1. First, a common network attack flow model is built using a
Petri net model, which is transformed and simplified with a
matrix. On this basis, considering the vulnerability of the
multi-distribution network under network attacks, two
parameters, namely, the degree of failure and the degree
of failure impact, are introduced to analyze the vulnerability
strength of each node in the power-communication
network under network attacks. The network attack
scenario of the multi-distribution network is simulated
and simplified with the help of big data from previous
network attack scenarios.

2. Characteristic analysis and model construction are carried
out for wind power, photovoltaic, and mobile energy storage
that frequently appear in current multi-component
distribution networks. At the same time, on the basis of
the traditional DAD planning model, mobile energy storage
is introduced into the planning to complete the DAD
planning model construction under network attacks. In
this article, the C&CG algorithm is used to solve the
three-layer, two-stage problem of the DAD planning
model, and the specific solving steps and flow chart
are given.

3. Based on the DAD planning model proposed above, a robust
pre-layout optimization planning scheme considering the
participation of mobile energy storage is proposed in order
to reduce the cost required for adjustment after failure and
improve the operation condition. To verify the effectiveness
and superiority of the scheme, a control group is also set up
according to whether pre-layout is carried out and whether
robustness optimization or deterministic top optimization is
adopted. A control group was set to determine whether mobile
energy storage participated in the pre-layout robustness. The
simulation results are verified in a 33-node system.

Finally, according to the simulation results, it is concluded that a
DAD planning pre-layout in advance and robust optimization
methods have certain effects on cost reduction, and their effects
can be superimposed. On the basis of the robustness optimization
method of pre-layout, the introduction of coordinated control of
mobile energy storage has a significant effect on cost reduction,
which proves its effectiveness and superiority.

FIGURE 13
Prelayout robust optimization without energy storage participation.

TABLE 2 Overall layout cost of each scenario.

Scene Consider energy
storage

Energy storage is not
considered

Cost/103

yuan
5085.8 8085.7
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