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Due to the fast response characteristics of battery storage, many renewable
energy power stations equip battery storage to participate in auxiliary frequency
regulation services of the grid, especially primary frequency regulation (PFR). In
order to make full use of the battery capacity and improve the overall revenue of
the renewable energy station, a two-level optimal scheduling strategy for battery
storage is proposed to provide primary frequency regulation and simultaneously
arbitrage, according to the peak-valley electricity price. The energy storage
output is composed of the droop-based primary frequency regulation output
and the economic output, according to the electricity price. First, day-ahead
optimization defines the economic output profile and an appropriate droop
coefficient, considering regulation needs, with the goal of maximizing the
overall return. The scheduling result is then adjusted for hour-ahead
optimization based on the updated regulation information to ensure more
durable and reliable performance. Simulation results show that the proposed
scheduling strategy can fully utilize the battery capacity, realize peak-valley
arbitrage while assuming the obligation of primary frequency regulation of the
renewable energy power station, and then improve the overall income of the
power station.

KEYWORDS

battery storage, renewable energy station, primary frequency regulation, droop control,
time-of-use electricity price, optimal scheduling

1 Introduction

Nowadays, many countries in the world are vigorously developing renewable energy
power generation, such as wind power and photovoltaic (PV) power. Compared with
traditional thermal power generation, renewable energy power generation is more
environmentally friendly due to the use of clean and renewable energy. However, most
renewable energy power units are connected to the grid through inverters, which decrease
the inertia and damping of the grid (Xiong et al., 2022). Moreover, renewable energy units
often operate in the maximum power tracking mode, which makes it difficult for them to
cope with active power instantaneous fluctuations in the grid; in other words, they lack
primary frequency regulation (PFR) capability. Related research equips renewable energy
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units with the primary frequency regulation ability by improving
their control algorithms, but they still have certain shortcomings
(Mahish and Pradhan, 2020; Li et al., 2021). For instance, wind
turbines need to operate at the right speed to participate in PFR (Ma
et al., 2024). PV units are mostly involved in PFR through load
shedding, which greatly reduces their operating economy (Cristaldi
et al., 2022).

Under the above context, the use of the battery energy storage
system (BESS) to undertake the primary frequency regulation task of
renewable energy power stations has emerged. It is shown that BESS
participating in PFR can effectively improve the system frequency
(Turk et al., 2019). With the coordination of energy storage and
renewable energy power stations, renewable energy units do not
need to participate in PFR, and all generated electricity is connected
to the grid. BESS utilizes its speed and flexibility to actively respond
to primary frequency regulation signals. As more countries start to
implement time-of-use electricity pricing policies, BESS can also
perform peak shaving and valley filling based on the output of
renewable energy generation when its capacity is sufficient. The
combination of the renewable energy power station and BESS
mentioned above can not only improve the grid-connected
characteristics but also further increase the revenue of the
integrated station (IS).

A lot of studies have been conducted on BESSs providing PFR
services. Zhu and Zhang (2019) divided the PFR control into
frequency regulation and state-of-charge (SOC) recovery phases.
For frequency regulation, it optimizes the charge and discharge
power of the BESS online based on the determined frequency
regulation requirements of the grid. Most of the PFR power of
BESSs is obtained by a droop-based control mechanism, according
to the system frequency difference (Arrigo et al., 2020; Fang et al.,
2020; Xiong et al., 2021; Zhao et al., 2022). Most BESSs under droop
control set a fixed droop coefficient in their factory settings, but a
fixed droop coefficient cannot satisfy various frequency regulation
conditions (Xiong et al., 2021). Schiapparelli et al. (2018); Feng et al.
(2024) dynamically adjusted the droop coefficient based on the
prediction of future system frequency differences or the SOC of
BESSs to maintain a long-term reliable operation. The above
research mainly focuses on BESSs participating solely in PFR,
while the relevant literature has studied BESSs providing multiple
auxiliary services, including PFR. Ma et al. (2022) considered a
shared BESS performing PFR and automatic generation control
(AGC) for multiple renewable energy power stations. This paper
only describes the formulation of the hour-ahead optimization
strategy and does not involve the content of the day-ahead
optimization strategy. According to Schiapparelli et al. (2018),
the BESS capacity in Conte et al. (2020) is divided into PFR sub-
battery and PV sub-battery: the former compensates for PV
prediction errors, and the latter is for frequency regulation. The
proposed method realizes the economic optimal of the IS under the
premise of keeping SOC safe in both day-ahead and intra-day
markets. However, the sub-battery compresses the available
capacity of BESSs, which does not take into account that the
effect of sub-batteries on SOC may counteract each other. Wang
et al. (2022) proposed a bi-level joint optimization model of BESSs to
arbitrage in the energy market and provide PFR services to make
profits. The optimization of BESSs in energy and PFR markets helps
improve the frequency security and stabilize the clearing price. In

this model, the dynamic frequency nonlinear constraints are
constructed to ensure the safety of the rate of change of
frequency (RoCoF) and the frequency nadir. These constraints
are related to the given power imbalance of the system and do
not take into account the randomness of actual frequency regulation
occurrences.

In this work, an IS containing several renewable energy units
and a small-capacity BESS with PFR are considered. Usually, small-
capacity BESSs in renewable energy stations are mostly just involved
in PFR services (Meng et al., 2021; Li et al., 2022). Here, BESSs
participate in PFR without affecting renewable energy generation
and utilize the remaining capacity to arbitrage through time-of-use
electricity prices. In summary, existing research on BESS
optimization scheduling has not paid enough attention to the
energy consumption of primary frequency regulation, and most
of it has not considered the uncertainty of primary frequency
regulation signals. We proposed a two-level optimization strategy
for BESSs providing PFR services based on the acquired forecast PFR
information. First, day-ahead scheduling (DAS) tunes a suitable
droop coefficient and optimizes a preliminary BESS charge and
discharge plan for the day to achieve the economic goal of the IS.
Because there may be great differences in PFR action between the
before-day forecast and actual operation, hour-ahead scheduling
(HAS) corrects the results of DAS using updated SOC and PFR
forecast to keep the BESS operation safer and more reliable. Due to
the strong randomness of the PFR action by units in the real grid,
both DAS and HAS use the prediction of system frequency
difference integral to construct probability constraints for BESS
energy offset in order to describe PFR behavior more accurately.

The remainder of this article is organized as follows: Section 2
presents the modeling of ISs and BESSs. Section 3 and Section 4
introduce the DAS and HAS optimization algorithms, respectively.
Section 5 shows the simulation result analysis, and Section 6
provides a summary of our whole work.

2 IS modeling

2.1 System architecture

Figure 1 shows the system architecture of the IS. The IS mainly
consists of three parts: renewable energy units, BESSs, and an
integrated station dispatch center (ISDC). The power grid
dispatch center (PGDC) is responsible for communication with
the IS, and the total power output Pt from the IS is delivered to the
grid at the grid coupling point (GCP). Pnew and Pb represent the
output of all renewable energy units and BESSs, respectively. Here,
renewable energy units are composed of several wind turbines or PV
plants. We assume these renewable energy units operate in the
maximum power tracking mode, with their output decoupled from
the system frequency. Therefore, Pnew is fully connected to the grid.

The output Pt from the IS is the sum of the output from BESSs
and renewable energy units, which is given by Eq. 1.

Pt � Pb + Pnew. (1)
In the IS above, the PFR service is only provided by BESSs, and

the power from the PFR service of BESSs is Pf, which will be
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elaborated in Section 2.2. Furthermore, BESS arbitrages through the
time-of-use electricity price, and this power is indicated by Pe. Pe

can be obtained throughDAS or HAS. At this point, the BESS output
Pb is given by

Pb � Pf + Pe. (2)

The ISDC gathers a variety of information from the power
station and the grid and then performs scheduling algorithms (DAS
and HAS) to plan the operation for the BESS. For running DAS, the
ISDC collects the time-of-use electricity price of the day, the forecast
PFR needs from PGDC, the initial capacity of BESSs, and the output
forecast from renewable energy units. Through DAS, we can obtain
the droop coefficient for PFR and the charge and discharge plan for
BESSs before the day operation, with the goal of maximum profit.
For running HAS during the day, the ISDC adds the newest PFR
needs and the real-time SOC of BESSs to correct the DAS results in
order to maintain a lasting and reliable operation.

The DAS and HAS optimization results will be sent back to
PGDC in order to schedule the operation of other units at the grid
level. During the real-time operation of BESSs, the ISDC also needs
to obtain information, such as system frequency, from the GCP to
provide PFR services.

2.2 Modeling of BESSs

According to droop-based control (Ma et al., 2022), the PFR
output Pf from BESSs can be calculated as Eq. 3.

Pf � −Kf ×
Δf
fN

× Pn, (3)

where Kf is the droop coefficient; Δf is the system frequency
difference from fN; fN is the rated system frequency value; and
Pn is the operating power of the renewable energy power station,
which we consider to be the rated power of the renewable
energy station.

Suppose we have a BESS with output Pb,k at time step k and
capacity En, then the SOC variation in the BESS satisfies the
following equation in a discrete process:

SOCk+1 � SOCk − τ

3600 · En
× Pb,k, (4)

where τ refers to the scheduling interval during optimization.
According to the above text, we can conclude that Pb,k is
composed of Pf,k and Pe,k. Pe,k is obtained by DAS and HAS,
which we will discuss in detail in Sections 3.1 and 3.2. Because Pf is
real-time dependent on Δf, in order to get the energy exchange Ef,k

caused by Pf,k, we have

Ef,k � −Kf · ∫ k+1( )τ

kτ
Δf t( )dt � −Kf ·Wf,k, (5)

where Wf,k is the integral of the frequency difference over time
period [kτ, (k + 1)τ]. Schiapparelli et al. (2018) showed that time
series {Wf,k} collected through a large amount of real measurement
data can be expressed using an autoregressive (AR) process model
and that the predicted value Ŵf,k can be used to improve SOC
management of BESSs under droop control. Based on this research,
in our work, the before-day and intra-day forecast Ŵf,k represents
the estimation of system frequency regulation needs for DAS and
HAS. According to the AR model, Wf,k+1 is given by Eq. 6.

Wf,k+1 � Ŵf,k+1 + ζk+1 � a1Wf,k + . . . + anWf,k−n−1( ) + ζk+1, (6)

where Wf,k, . . . Wf,k−n−1 are the real measurements of the integral
during the last n time steps; Ŵf,k+1 refers to the prediction at time
step k + 1; a1, . . ., an are the AR coefficients obtained from the
database; ζk+1 represents a zero-mean Gaussian random variable
with standard deviation σ, which is closely related to integral
intervals. Here, we consider the integral interval to be equal to
the scheduling interval τ as this ensures that more accurate PFR
demand information is provided for DAS and HAS under a certain
amount of data. An excessively long integral interval may cause the
optimization to blur or ignore the PFR demand during this time
interval, leading to overly aggressive or conservative BESS
operations.

3 Day-ahead scheduling

3.1 DAS objective function

The DAS optimization has the objective of maximizing the
overall revenue of the IS by obtaining an appropriate droop

FIGURE 1
System architecture of the IS.
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coefficientKf and the daily power delivery plan Pe,k{ }. The objective
function of DAS is as follows:

JDAS � max
Pe,k{ },Kf

cpfrKf +∑N−1
k�0 ct,kPe,k −∑N−1

k�0 P
2
e,k, (7)

where cpfr is the PFR profit coefficient; ct,k is the time-of-use
electricity price; and N is the total length of the scheduling
interval with N � 24 · 3600/τ. Since the renewable energy output
is not our decision variable, we consider the overall revenue of the IS
to be composed of the PFR revenue and the electricity price revenue
from the BESS. Zhang et al. (2018) showed the profit BESS receives
by providing PFR is proportional to its standby reserve capacity
rather than the actual PFR output. Referring to Conte et al. (2020),
we use the droop coefficient Kf to represent the PFR capability of
BESSs and let cpfrKf represent the PFR revenue. In Eq. 7, ct,kPe,k

refers to the electricity price revenue of the BESS output. So, the sum
of the first two items in Eq. 7 is equal to the total revenue. The square
of Pe,k is added as a penalty to make the BESS power smoother and
avoid sudden changes in the output. For running DAS before-day,
the following data should be available in advance:

(a) the initial SOC of the BESS SOC0;
(b) the PFR profit coefficient cpfr;
(c) the time-of-use electricity price ct,k{ };
(d) the forecast frequency integral Ŵf,k{ } and the standard

deviation σ;
(e) the forecast renewable energy power P̂new,k{ }.
The solution to the DAS problem should also satisfy a certain

number of constraints, which are elaborated in detail in the following.

3.2 DAS constraints

• SOC constraints

Combining Eqs 2, 4 and Eq. 5, we can obtain SOC variation as
Eq. 8.

SOCk+1 − SOCk � −τPe,k −KfWf,k

3600 · En
. (8)

Define SOCd � SOCk+1 − SOCk as the SOC offset between time
steps k and k + 1. During the daily operation of the BESS, we
consider the SOC deviation between every two steps to be within
an allowable range to avoid SOC being too close to the operating
boundary. Here, we introduce δ to describe the allowable SOC
deviation, similar to Eq. 9. Because the SOC offset between two
periods could be either positive or negative, there are two possible
situations for SOC deviation like Eq. 10.

SOCd ≤ δ, (9)

δ � SOCmax − SOCk, SOCk+1 ≥ SOCk

SOCk − SOCmin, SOCk+1 < SOCk
{ . (10)

Figure 2 shows two situations that satisfy our SOC constraint:
variations from SOCk to SOCk+1 and SOC′

k to SOCk+1′ correspond to
two possible increasing or decreasing cases. For example, assume
that the SOC at time step k is SOCk; as long as the SOC at k + 1 is
within the yellow or red range, the operation of SOC is safe.

From Eq. 6 we can derive that Wf,k is a Gaussian random
variable, and it is the only random variable in the definition of SOCd.
Therefore, SOCd is a Gaussian random variable, and its randomness
comes from the uncertainty ofWf,k. In order to maintain the SOC of
the BESS safe, we have the following probability constraint:

P SOCd ≤ δ( )≥ ρ, (11)
where ρ is the confidence level. Eq. 11 means the probability that the
SOC offset during every two steps of the BESS is within δ should be
greater than ρ. By applying such a probability constraint, the uncertainty
of PFR action is taken into account, making the optimization more
adaptable and in line with the energy requirements of PFR action in real
scenarios. Now, we will convert this chance constraint into a
deterministic constraint through derivation.

Eq. 11 can be rewritten as follows:

P
KfWf,k − τPe,k

3600 · En
≤ δ( )≥ ρ. (12)

Obviously, if Kf and En are greater than zero, then we can
normalize the coefficients of Wf,k as Eq. 13.

P Wf,k − τPe,k/Kf ≤ 3600 · δEn/Kf( )≥ ρ. (13)

In addition, the random events included in the above probability
inequality are

Wf,k − τPe,k/Kf ≤ 3600 · SOCmax − SOCk( )En/Kf, SOCk+1 ≥ SOCk

Wf,k − τPe,k/Kf ≥ − 3600 · SOCk − SOCmin( )En/Kf, SOCk+1 < SOCk

⎧⎨⎩ .

(14)

Clearly, Wf,k − τPe,k/Kf is a Gaussian random variable and it
follows Eqs 15, 16.

Wf,k − τPe,k/Kf( ) ~ N mk, σk( ), (15)
where

mk � Ŵf,k − τPe,k/Kf, σk � σ. (16)

FIGURE 2
SOC offset constraint.
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Since we have known the mean and standard variance of
Wf,k − τPe,k/Kf, Eq. 12 can be solved based on probability
theory. The idea is to convert the random variable on the left in
Eq. 14 into a standard Gaussian random variable and solve it
according to the percentile table. Therefore, we obtain the
following inequality:

3600 · En SOCmax − SOCk( )
Kf

−Wf,k + τPe,k

Kf
( )/σ ≥ μ

3600 · En SOCk − SOCmin( )
Kf

−Wf,k + τPe,k

Kf
( )/σ ≤ − μ

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
, (17)

where μ is ρth percentile of the zero-mean standard Gaussian
random variable. Eq. 17 can be further simplified:

3600 · En SOCmax − SOCk( ) + τPe,k( )≥Kf μσ +Wf,k( )
−3600 · En SOCk − SOCmin( ) + τPe,k( )≤Kf −μσ +Wf,k( )

⎧⎨⎩ . (18)

We can see that Eq. 18 expresses the inequality relationship
among the BESS capacity margin, energy exchanged by Pe,k, and
PFR energy. The uncertainty of PFR action is ultimately reflected
in the parentheses at the right end of the inequality. At each step
of DAS, SOCk can be obtained based on known optimization
results, so this constraint is built for the optimization of Pe,k and
Kf. Such two inequalities can constrain the SOC changes in both
directions of the BESS at the same time. Eq. 18 can be further
extended to the constraints of the BESS operation for a day,
similar to Eq. 19:

3600 · En SOCmax − SOC0( ) + τ∑N−1
k�0 Pe,k( )≥Kf Nμσ +∑N−1

k�0 Wf,k( )
−3600 · En SOCk − SOCmin( ) + τ∑N−1

k�0 Pe,k( )≤Kf −Nμσ +∑N−1
k�0 Wf,k( )

⎧⎨⎩ .

(19)

The above equation indicates that after a day of PFR and
charging or discharging behavior, the deviation between the final
SOC of the BESS and the initial SOC0 should be within the
constraint conditions. This constraint contributes to the safety of
the next day’s initiation SOC of the BESS.

• Power constraints

The operation of the BESS and IS also needs to meet certain
power constraints. First, for the BESS, its droop coefficient Kf

should meet the requirements of the scheduling agency, i.e.,

0≤Kf ≤Kf,max. (20)

The output of the BESS must be within the allowable range of its
rated power output PbN, so we have

−PbN ≤Pe,k ≤PbN, (21)
−PbN ≤

KfWf,k

τ
≤PbN, (22)

0≤ |KfΔfmax ≤| PbN, (23)

where Δfmax is the maximum frequency deviation of this region
obtained from the historical data andKfΔfmax refers to the possible
maximum power demand by PFR. Eq. 21 is a constraint for the
optimization of Pe,k. Eqs 22, 23 are constraints for PFR output. First,
we consider that the average output for PFR cannot exceed the rated

power of the BESS. Then, considering extreme situations, the
maximum PFR output should also need to be constrained.

Pe,k also needs to meet the following ramp constraint:

Pe,k+1 − Pe,k ≤Δ| Pbmax

∣∣∣∣ , (24)

where ΔPbmax is the maximum power variation in the BESS.
Finally, it is necessary to impose constraint on the total output of

the IS:

0≤Pnew,k + Pe,k ≤PtN, (25)
where PtN is the maximum rated power for the IS. Except for the
output in response to the PFR signal, the sum of all other outputs of
the power station should be greater than zero, indicating that it
should supply electricity to the grid at any time.

4 Hour-ahead scheduling

4.1 Objective function

HAS is an optimization process that corrects the results of DAS
based on the latest SOC variation and PFR requirements to maintain
the long-term operation capacity of the BESS. The goal of HAS is to
improve the safety of SOCwithout changing the optimization results
from DAS as much as possible. For running HAS before-hour, the
following data should be available in advance.

(a) the DAS result PeD,k{ } and droop coefficient Kf;
(b) the penalty coefficient cde;
(c) the updated SOC of the BESS SOCi;
(d) the updated frequency integral Ŵfh,k{ } and the standard

deviation σ;
(e) the updated renewable energy power Pnew,k{ }.
Figure 3 shows the schematic diagram of HAS. Suppose that i

represents the number of hours in a day (0, 1, 2, . . . , 23), n �
3600/τ is the number of scheduling periods within an hour, and k
represents the number of scheduling periods in a day (in;
in + 1,. . .,96). Suppose we run HAS in the first hour of the day
(i � 0), and we already have the results from DAS PeD,k{ }. Then,
we obtain the latest optimization results Pe,k{ } from HAS. Next,
the BESS will work based on Pe,k{ } for n steps, and the SOC of the
BESS will update according to real PFR actions and Kf. When it
comes to i � 1, HAS gets scheduling for the rest of the day with
SOCi, and the process will repeat in the same way as the first hour.
Only the results of one coming hour (CH) at ith hour will be put
into the real operation of the BESS, and the results of the
remaining hours (RH) of the day are just a subsidiary
result for HAS.

The objective function of HAS in the ith hour is as follows:

JHAS,i � max
Pe,k{ },μc,μr

−cde∑N−1
k�in Pe,k − PeD,k

∣∣∣∣ ∣∣∣∣ + αcμc + αrμr( ). (26)

In Eq. 26, cde is the penalty coefficient for the deviation of HAS and
DAS results; αc and αr are the weight coefficients for CH and RH,
respectively; and μc and μr are quantiles in probability constraints for
CH and RH, respectively. The objective function of HAS optimization
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consists of two parts: one is the penalty for deviation from the in step to
N − 1 step betweenDAS andHAS optimization results, and the other is
the SOC safety optimization index. The larger the value of JHAS,i, the
smaller the deviation of the optimization results between DAS and
HAS, and αcμc + αrμr should be larger. The larger the αcμc + αrμr
value, the safer the SOC of the BESS, which is discussed in Section 4.2.

4.2 Constraints

The SOC constraint set for HAS is as follows (CH and RH,
respectively):

3600 · En SOCmax − SOCk( ) + τPe,k( )≥Kf μcσ +Wfh,k( )
−3600 · En SOCk − SOCmin( ) + τPe,k( )≤Kf −μcσ +Wfh,k( )

⎧⎨⎩ ,

(27)
μmin ≤ μc ≤ μmax, (28)

3600 · En SOCmax − SOCk( ) + τPe,k( )≥Kf μrσ +Wfh,k( )
−3600 · En SOCk − SOCmin( ) + τPe,k( )≤Kf −μrσ +Wfh,k( )

⎧⎨⎩ ,

(29)
μmin ≤ μr ≤ μmax. (30)

Eqs 27–30 are actually reformulations of Eq. 18, where μ and
Wf,k in the original formula are replaced with μc (μr) andWfh,k. In
DAS, such SOC constraints are implemented for a whole day, while
in HAS, they are used separately in CH and RH. These constraints
are all derived based on the probability constraints of the SOC offset
(Eq. 11) to ensure that the SOC deviation of the BESS at each step is
within a safe range. The objective of JHAS,i is to increase the values of
μc and μr as they increase the probability of constraint Eqs 27–29
being satisfied. This can be seen from the calculation formula of μ.
The value of μ that satisfies probability ρ is

Φ μ( ) � 1���
2π

√ ∫μ

−∞
e−

t2
2 dt

Φ μ( ) � 1
2

ρ + 1( )
⎧⎪⎪⎪⎨⎪⎪⎪⎩ , (31)

where Φ(·) represents the distribution function of the standard
Gaussian distribution. We can then obtain the derivative of ρ as
Eq. 32.

dρ
dμ

�
�
2

√
π
e−

μ2

2 . (32)

Clearly, dρdt is greater than zero. So, as the value of μ increases, the
corresponding probability ρ, which refers to the possibility of Eqs
27–29 being valid, also increases. We add constraints for μc and μr in
Eqs 28–30 to limit the range of possibilities that the constraint can
satisfy. Therefore, we can ensure the durable operation of the BESS
using the above constraints.

There is a contradiction between the two optimization objectives
in Eq. 25. The results of DAS have already achieved economic
optimality while maximizing the utilization of energy storage
capacity. If we want to make the operation of energy storage
more conservative, it will inevitably lead to an increase in the
deviation of the optimization results between DAS and HAS.
Therefore, the size of the three weight coefficients in Eq. 25 will
significantly affect the difference in the final optimization results.

The power constraints for HAS are almost the same as those for
DAS (i.e., Eqs 21–25) and will not be further elaborated here.

5 Simulation analysis

For the simulation part, first, we focus on a renewable energy
power station that consists of 10 wind turbines with a rated capacity
of 1.5 MW and a total rated output of 15 MW. Consider equipping
these wind turbines with a BESS of 2MW/2 MW·h to provide PFR
and peak-valley arbitrage services. We collected historical frequency
fluctuation data measured from several stations in the power grid of
Henan province, China. We selected several days of system
frequency difference data as our simulation scenario and
obtained the corresponding frequency regulation demand
prediction using the AR model. The time-of-use electricity price
released by Henan province is used as the value of ct,k. Renewable

FIGURE 3
HAS example.
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TABLE 1 Simulation parameters.

Parameter Numerical value Parameter Numerical value

τ (s) 900 ΔPbmax (MW) 2

fN (Hz) 50 PtN (MW) 18

cpfr (CNY) 180 SOCmax 0.9

cde (CNY/MW) 31.25 SOCmin 0.1

ρ 0.95 μmin (ρ = 0.95) 1.69

Kf,max 80 μmax (ρ = 0.99) 2.58

FIGURE 4
DAS results.

Frontiers in Energy Research frontiersin.org07

Hu et al. 10.3389/fenrg.2024.1424389

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1424389


energy outputs are chosen from Elia Transmission Belgium. For the
values of other parameters in our algorithm, please refer to Table 1.
Additionally, the programming of DAS andHAS is written using the
YALMIP toolbox and solved using CPLEX in MATLAB.

We first select the operation optimization of the BESS on a
certain day as the first part of our simulation. The results of DAS and
DAS and HAS will be shown separately. Figure 4 shows the
simulation results using DAS optimization only. Figure 4A shows
the scheduling result for DAS Pe,k{ } together with the time-of-use
electricity price ct,k{ }, corresponding to the left and right coordinate
axes, respectively. Figure 4B shows the renewable energy forecast

P̂new,k{ } and the sum of P̂new,k{ } and Pe,k{ }. The SOC variation curve
calculated by DAS and the realized ones are displayed in Figure 4C.
Figure 4D shows the real renewable energy output Pnew,k{ } and the
sum of Pnew,k{ } and Pe,k{ }, together with the real total power output
Pt,k{ }. First, Figure 4A shows that the trends of Pe,k{ } and ct,k{ } are
very similar. The BESS was charged and replenished during low-
electricity prices (such as 0–7) and discharged during high-
electricity prices (like 10–14) to generate revenue. Figure 4B
shows that the economic output of BESS does not change the
overall trend of renewable energy output but transfers energy
from different periods according to electricity prices. From

FIGURE 5
HAS results.
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Figure 4C, we can infer that during DAS, the SOC of the BESS is fully
utilized, while in the realized situation, the SOC has crossed the
safety boundary at certain hours. This is due to significant errors
between the predicted and actual frequency differences, so the
results of DAS may be aggressive in practical scenarios. This
issue can be addressed through the updated SOC trajectory and
frequency regulation requirements in HAS. When SOC exceeds the
boundary, the BESS output is zero to ensure safety, as shown in
Figure 4D (approximately 13): at a certain time, only renewable
energy output constitutes the total output. The long-term operation
of energy storage near the SOC boundary not only affects its own
safety but also hinders its provision of PFR services. Such a situation
should be avoided as much as possible.

Figure 5 shows the simulation results using DAS and HAS
optimization. Figure 5A shows the scheduling results for DAS
and HAS. Figure 5B contains the sum of two scheduling results
and the prediction of renewable energy output separately. The
realized SOC by DAS and HAS is displayed in Figure 5C.
Figure 5D shows the real renewable energy output Pnew,k{ }, the
sum of Pnew,k{ } and Pe,k{ }, together with the real total power
output Pt,k{ } from HAS. We can find from the results of HAS that
it comes from a little correction of DAS, which makes the output
of BESS more conservative and does not change its overall trend
with variation in electricity prices. Through the HAS, the SOC
changes calculated based on actual frequency modulation actions
did not exceed the upper and lower limits within a day. BESS can
provide sufficient PFR services throughout the day. Therefore,
HAS can ensure the reliability of the BESS operation.

Table 2 summarizes the data results from the above
simulations as PFR scenario 1, and we add additional
simulation results for another day’s operation as PFR scenario
2. It mainly displays the optimization results of the BESS droop
coefficient, PFR revenue, and electricity revenue under different
simulation settings. We introduce γ% to describe the failure rate
of the BESS providing primary frequency regulation, which is the
proportion of the time when SOC exceeds the limit to the total
time of a day. The PFR revenue is obtained by multiplying the
original revenue by the actual duration of the PFR provided, and
the electricity revenue is the product of the economic output of
the BESS and the time-of-use electricity price. We have also
imposed penalties for the inability of the BESS to participate in
PFR in accordance with the Implementation Rules for Auxiliary

Service Management of Central China Electric Power. For PFR
scenario 1, it is obvious that the droop coefficient and PFR
revenue of the BESS only participating in PFR are lower than
those of DAS and HAS. This indicates that the economic output
and PFR output within a day can partially offset each other,
increasing more space for BESS PFR actions. When BESS output
only includes economic output, the electricity price revenue is
lower than the optimization results of DAS, which also indicates
that our optimization algorithm can increase the freedom of the
BESS to participate in PFR and peak-valley arbitrage
simultaneously. The low profit of the PFR revenue from DAS
is mainly due to the significant punishment it received, which was
avoided during the intra-day optimization. The reduction in
electricity price revenue through HAS compared to DAS alone
is mainly due to the correction of DAS’s overly aggressive
charging and discharging behavior. HAS reduces the PFR
failure time by 7.5%, and its total revenue is much greater
than that of DAS. Therefore, the scheduling results optimized
by DAS and HAS can ensure the reliability of PFR by the BESS
and achieve maximum total revenue.

The optimization results for PFR scenario 2 show that the PFR
task on the day is much heavier, so the optimized droop coefficient is
small. We can see that there is still 1.45% of the time that the BESS
cannot provide PFR, resulting in a decrease in PFR revenue in DAS.
Due to the fact that the PFR penalty stipulated in the
implementation rules for auxiliary service management in
Central China is related to its rated capacity and the optimized
droop coefficient is small, the PFR revenue of DAS is relatively low.
We can see that in the current scenario, the total revenue after DAS
and HAS is still optimal. The simulation results above show that the
proposed optimization scheduling method can ensure that the BESS
can provide PFR services stably, as well as increase the overall
revenue of the power station.

To verify the adaptability of the proposed algorithm in various
scenarios, we consider conducting the second simulation for a PV
station with a rated capacity of 10 MW. Other simulation
configurations remain unchanged. Figure 6 shows the simulation
results after using DAS and HAS. Figure 6A shows the scheduling
results for DAS and HAS. Figure 6B contains the sum of two
scheduling results and the prediction of PV output separately.
The realized SOC by DAS and HAS is displayed in Figure 6C.
Figure 6D shows the real PV output Pnew,k{ }, the sum of Pnew,k{ } and

TABLE 2 Simulation result data.

Simulation setting Kf γ/% PFR revenue (CNY) Electricity revenue (CNY) Total revenue (CNY)

BESS for PFR scenario 1 PFR only 28.55 0 5,056.43 __ 5,056.43

Arbitrage only __ 2,313.63 2,313.63

DAS 55.51 7.50 6,515.56 3,216.81 9,732.37

DAS and HAS 0 9,271.94 2,724.41 11,996.35

BESS for PFR scenario 2 PFR only 12.75 0 2,300.17 __ 2,300.17

Arbitrage only __ 2,527.01 2,527.01

DAS 17.75 1.45 438.49 3,055.93 3,494.42

DAS and HAS 0 3,194.87 2,208.50 5,403.37
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Pe,k{ }, together with the real total power output Pt,k{ } from HAS.
Because the output of the PV station at night is very low, our
optimization results are mainly reflected between 7 and 21 o’clock.
From Figure 6A, we can see that the BESS roughly goes through two
rounds of charging and discharging based on the electricity price.
Again, our HAS results are very similar to those of DAS. The DAS
SOC curve also showed an out-of-bounds situation, which is
improved during HAS. Finally, Figure 6D clearly shows that our
optimization has caused a deviation in the trend of the real PV

output: when the electricity price is high, the output of the power
station is increased (from 10 to 13), while when the electricity price
is low, the output of the power station is appropriately reduced
(from 13 to 17). Furthermore, the BESS has extended the time for
power transmission by the PV (from 18 to 21), achieving the
migration of energy from the PV at different periods. These
simulation results indicate that the method we proposed has
shown good performance in different renewable energy
generation scenarios.

FIGURE 6
HAS results of the PV.
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6 Conclusion

In order to fully harness the potential of battery energy
storage, it is essential to enhance its capability of supporting
primary frequency regulation while simultaneously carrying out
peak-valley arbitrage through the time-of-use electricity price.
Thus, a day-ahead and hour-ahead optimal scheduling algorithm
is proposed in this paper. The main conclusion of the context is
as follows.

(1) The proposed algorithm can ensure the long-term operation
ability of the energy storage and provide the primary
frequency regulation service stably, indicating that the
proposed probability constraints can ensure the safety of
the energy storage state of charge.

(2) The proposed algorithm can adjust the charge and discharge
plan of the energy storage in a day according to the time-of-
use electricity price, thereby maximizing the utilization of the
energy storage capacity and achieving the maximum energy
storage profit.
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