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With the widespread application of energy storage stations, BMS has become an
important subsystem inmodern power systems, leading to an increasing demand
for improving the accuracy of SOC prediction in lithium-ion battery energy
storage systems. Currently, common methods for predicting battery SOC
include the Ampere-hour integration method, open circuit voltage method,
and model-based prediction techniques. However, these methods often have
limitations such as single-variable research, complex model construction, and
inability to capture real-time changes in SOC. In this paper, a novel prediction
method based on the KF-SA-Transformer model is proposed by combining
model-based prediction techniques with data-driven methods. By using
temperature, voltage, and current as inputs, the limitations of single-variable
studies in the Ampere-hour integration method and open circuit voltage method
are overcome. The Transformer model can overcome the complex modeling
process in model-based prediction techniques by implementing a non-linear
mapping between inputs and SOC. The presence of the Kalman filter can
eliminate noise and improve data accuracy. Additionally, a sparse autoencoder
mechanism is integrated to optimize the position encoding embedding of input
vectors, further improving the prediction process. To verify the effectiveness of
the algorithm in predicting battery SOC, an open-source lithium-ion battery
dataset was used as a case study in this paper. The results show that the proposed
KF-SA-Transformer model has superiority in improving the accuracy and
reliability of battery SOC prediction, playing an important role in the stability
of the grid and efficient energy allocation.
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1 Introduction

With the transformation of the global energy structure and the increasing popularity of
renewable energy, the integration of new energy generation into the power system has
become an important aspect. However, due to the inherent randomness and instability of
the output power of new energy sources, integrating them into the grid may impact power
quality and reliability (Wang et al., 2019; Shi et al., 2022). Electrochemical batteries, as
representatives of energy storage systems, provide a promising solution to mitigate the
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instability and intermittency of new energy integration. They can
assist in peak shaving and frequency regulation, thereby enhancing
the security and flexibility of energy supply systems. The core of
electrochemical energy storage is the Battery Management System
(BMS), where the State of Charge (SOC) of the battery is a key
parameter. However, due to the non-linear and time-varying
electrochemical system inside batteries, SOC estimation can only
be based on measurable parameters such as voltage and current,
making accurate estimation of battery SOC a challenging task
(Rivera-Barrera et al., 2017). Large errors in estimating battery
SOC may damage battery capacity and service life, affect the
economic operation of the grid, and even lead to catastrophic
events such as combustion or explosion, posing a serious threat
to grid safety (Zhou et al., 2021).

Currently, the common methods for predicting battery SOC
mainly include the Ampere-hour integration method, open
circuit voltage method, model-based prediction techniques,
and data-driven methods. The Ampere-hour integration
method, although simple, is prone to accumulating errors over
time (Chang, 2013; Zhang et al., 2020). The accuracy of the open
circuit voltage method is influenced by the battery’s rest period.
Model-based prediction techniques are based on specific
operating conditions and may not be applicable to all
conditions; accurate estimation of physical parameters in the
model is very difficult, as these parameters change with battery
aging and usage conditions, increasing model uncertainty and
reducing prediction accuracy (How et al., 2019). Another method
is the data-driven approach, which uses data training to identify
the complex relationship between feature parameters and SOC,
thereby avoiding the need for complex battery models. Typical
data-driven methods usually utilize machine learning techniques
such as Random Forest (Li et al., 2014) and Support Vector
Machine (Song et al., 2020) to predict battery SOC. However,
compared to traditional machine learning methods, deep learning
methods based on neural networks demonstrate superior
performance in extracting latent features and are widely used
in SOC prediction, such as Long Short-Term Memory (LSTM)
(Chen et al., 2023), Gated Recurrent Unit (GRU) (Dey and Salem,
2017), and Transformer series models (Han et al., 2021). The
Transformer model, due to its inherent self-attention mechanism,
can perform parallel computation and sequential data processing,
making it more effective in handling time series data and
providing a solution with higher accuracy and generalization
capabilities for SOC prediction (Shen et al., 2022). (Hussein et al.,
2024) conducted research on the SOC estimation of lithium-ion
batteries using a self-supervised learning Transformer model,
which demonstrated lower root mean square error (RMSE)
and mean absolute error (MAE) under different ambient
temperatures, indicating the potential of self-supervised
learning in battery state estimation. However, this method has
poor resistance to noise, which affects the robustness of the model
in practical applications. (Chen et al., 2022) predicted the
remaining useful life (RUL) of lithium-ion batteries based on
the Transformer model, using a denoising autoencoder (DAE) to
preprocess noisy battery capacity data, and then utilizing the
Transformer network to capture temporal information and learn
useful features. Eventually, by integrating the denoising and
prediction tasks within a unified framework, the performance

of RUL prediction was significantly improved. Despite this, the
model by Chen et al. has some limitations. Although the DAE
preprocessing step can remove noise, it may not fully preserve all
the subtle features useful for prediction. To overcome these
challenges, a Kalman filter can be added to the Transformer
model. (Bao et al., 2024), in response to the limitations of existing
methods in extracting time series features, proposed a time
Transformer-based sequential network (TTSNet) for SOC
estimation of lithium-ion batteries in electric vehicles. TTSNet
effectively encodes features of the temporal dimension
information through the time Transformer and introduces
sliding time window technology and Kalman filtering as pre-
and post-processing steps, which not only enhances the
processing capability for long sequence data but also improves
the accuracy and robustness of the estimation. In summary, these
studies have made significant progress in the state monitoring
and management of lithium-ion batteries, especially in improving
prediction accuracy and handling long sequence data. However,
the complexity of these models also brings significant
computational costs. The Transformer model usually requires
a large number of parameters and computational resources,
which not only limits its application in resource-constrained
environments but also increases the time cost for training
and inference.

To overcome the limitations of the aforementioned methods,
this paper introduces Sparse Autoencoder (SA) technology to
improve the SA-Transformer model. The core idea of SA is to
reduce the number of model parameters and computational
complexity by learning the low-dimensional representation of
data. It can significantly reduce the number of model parameters,
thereby reducing memory usage and computational
requirements, making the dimensionality-reduced model more
lightweight, which can be trained and inferred more quickly. This
is particularly important for application scenarios that require
real-time responses. Since the sparse encoder encourages the
model to learn more robust and discriminative feature
representations, it can also improve the model’s generalization
capabilities.

To this end, this paper proposes a new model KF-SA-
Transformer, which combines the advantages of the KF, SA, and
Transformer. To enhance the model’s resistance to noise and the
smoothness of prediction, this paper introduces the KF module; to
address the issue of model computational complexity, this paper
uses the SA module to improve feature extraction capabilities by
learning sparse representations of data, dimensionality reduction of
large-scale sequence data, and reducing the input dimensions of the
Transformer. The Transformer model is adept at capturing and
learning long-term dependencies in the data, which enables the KF-
SA-Transformer model to demonstrate higher prediction accuracy
and stability in battery SOC prediction tasks. This three-in-one
architecture aims to achieve more accurate SOC prediction, which
can reduce the risk of overcharging and over-discharging the
battery, thereby reducing the frequency of battery replacement
and maintenance costs; it can also be used to develop intelligent
charging strategies, improve charging efficiency, and reduce the
impact on the power grid. In the field of new energy, such as wind
and solar power generation, accurate SOC prediction of energy
storage systems is of great importance for the stability of the power
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grid and the effective distribution of energy (Schmietendorf
et al.,2017; Yu G. et al., 2022a; Yu G. Z. et al., 2022b).

2 KF-SA-Transformer model for SOC
prediction

2.1 Model architecture

The KF-SA-Transformer model is an innovative battery SOC
prediction model that integrates three technologies: the Kalman
filter, the sparse autoencoder, and the Transformer module. The
input data of battery voltage, current, and temperature are filtered
through the Kalman filter to eliminate noise interference and ensure
data stability. The filtered data are then fed into the sparse
autoencoder module, which extracts key features related to the
battery SOC from the data through unsupervised learning,
forming an embedding matrix that includes positional
information. Finally, the embedding matrix is input into the
Transformer module, which uses its unique self-attention
mechanism to capture long-distance dependencies in the data,
thereby accurately predicting the battery’s SOC. The entire model
achieves precise prediction from raw data to the battery SOC
through this process, enhancing the accuracy and robustness of
the prediction results. The overall architecture of the model is shown
in Figure 1. This paper defines a feature input matrix X, with
dimensions m × 3, as shown in Eq. 1. Each row represents a
sample, and each column represents a feature (current, voltage,
or temperature).

X �
X11X12X13

X21X22X23

..

...
...
.

Xm1Xm2Xm3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (1)

Where: Xij denotes the measurement value of the ith sample on
the jth feature, and m is the total number of samples.

2.2 Kalman filter module

Using data-driven methods alone to predict battery SOC has
significant limitations, as it requires high-precision battery data
and may suffer from limited generalization capabilities. However,
the integration of the Kalman filtering method can achieve
optimal prediction of system states by minimizing the mean
square error (MSE), effectively overcoming the inaccuracy of
initial predictions. The Kalman filtering method treats estimated
variables as system state variables and measured variables as
observation variables. Through a recursive process, the Kalman
filtering method can filter out noise and allocate different
confidences to estimated and measured variables using
Kalman gain until the estimated variables converge to more
accurately reflect the actual variables (Peng, 2009). The state
transition equation and observation equation are respectively, as
shown in Eqs 2, 3:

Xk � AXk−1 + w k( ) (2)
Zk � HXk + v k( ) (3)

Where: Xk, Zk are the system’s state vector and observation
vector at time k; uk-1 is the control input at time k-1; A, H, are the
state transition matrix and observation matrix; w(k), v(k) are the
system noise and observation noise.

The core of the Kalman filter lies in two main update steps:
Prediction and Update. In the prediction step, the current state is
predicted based on the previous moment’s state estimate and
process noise, as shown in Eqs 4, 5:

X̂
−
k � AX̂

−
k (4)

FIGURE 1
Overall model architecture.
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P−
k � APk−1AT + Q (5)

Where: X̂
−
k represents the predicted state vector, P-k is the

predicted error covariance matrix, and Q is the process noise
covariance matrix. To integrate predicted information with
observational data, the concept of the Kalman gain is introduced.
By utilizing the Kalman gain, it is possible to update the state
estimate and the error covariance, as shown in Eqs 6–8:

KK � P−
kH

T HP−
kH

T + R( )−1 (6)
X̂k � X̂

−
k +Kk Zk −HX̂

−
k( ) (7)

Pk � I −KkH( )P−
k (8)

Where: Kk is the Kalman gain, X̂ k is the corrected state vector,
Pk is the corrected error covariance matrix, and R is the observation
noise covariance matrix. After processing by the Kalman filter,
updated state estimates are obtained, which reflect the optimal
estimated state of the battery system at each time step. These
state estimates are integrated into a new matrix XKF, which
captures the evolution of the system state over time and filters
out the effects of noise.

2.3 Sparse auto-encoder module

The Kalman filter, while effective in processing linear data, has
limited capabilities when dealing with nonlinear data and complex
relationships. To address this limitation, the integration of a sparse
autoencoder into the data processing pipeline is proposed. This
autoencoder effectively extracts features from the filtered data,
reducing its dimensionality while preserving valuable feature
information. This approach helps reduce data dimensionality and
identify useful feature information, thereby enhancing the accuracy
and performance of the prediction model.

SA introduces modifications to the embedding layer of the
Transformer architecture, aiming to lighten the temporal
positional encoding and enhance the modeling capabilities for
temporal dependencies. As an unsupervised algorithm, SA adjusts
its parameters adaptively by calculating the difference between the
input and output of the autoencoding process, resulting in a trained
final model. This algorithm finds widespread applications in
information compression and feature extraction. Its goal is to
reconstruct the input data using learned sparse representations.

The sparse autoencoder can sparsely represent battery input
features, reduce the dimensionality of the original data, and improve
computational efficiency. Its encoder input is the feature vector XKF

obtained after Kalman filtering, with the encoder output and
decoder input in the hidden space, where the data is compressed
into fewer dimensions while attempting to retain the most
important information. The decoder output transforms the
representation in the hidden space back to the original data
space, attempting to reconstruct data as similar as possible to the
input data, as shown in Eqs 9–11:

A1 � sigmoid W1XKF + b1( ) (9)
XSA � sigmoid W2A1 + b2( ) (10)
sigmoid z( ) � 1 + e−z( )−1 (11)

Where: z is any real number;W1,W2 are the weights of encoder
and decoder; b1, b2 are the biases of encoder and decoder. The
optimization objective is to minimize the reconstruction loss and
approximate the probability density distribution, therefore, the
network loss function is derived as shown in Eqs 12–14:

J W1,W2, b1, b2( ) � 1
M

∑M
i�1

x i( ) − x̂ i( )2∣∣∣∣∣ + λ

2
W1‖ ‖ + λ

2
W2‖ ‖

+ β∑d
j�1

p · log2
p

p̂j

+ 1 − p( ) · log2 1 − p( )
1 − p̂j( )⎡⎢⎢⎣ ⎤⎥⎥⎦

(12)

p̂j �
1
M

∑M
i�1
a i( )
j (13)

p � 1
M

∑M
i�1
s i( )
j (14)

Where: aj
(i) is the jth neuron output value of the ith sample of the

hidden space A1; sj
(i) denotes the jth neuron input value of the ith

sample of the encoder A0;M is the total number of samples; β is the
given sparsity constraint coefficient; λ is the given regularization
coefficient. The encoder output of the sparse autoencoder results in a
processed feature matrix, referred to as XSA. This matrix
encapsulates the salient characteristics of the input data, enabling
the subsequent neural network to discern intricate relationships
among the sequence elements.

2.4 Transformer module

Due to the inherent complexity and time-varying nature of
chemical reaction processes within batteries, model-based
prediction methods inherently carry the risk of errors. Enhancing
model accuracy further complicates the task of parameter
identification. To mitigate this challenge, the Transformer model
is introduced, as it excels at capturing long-term dependencies and
contextual information within sequence data, thereby enhancing the
prediction accuracy of lithium battery SOC.

Transformer is a sequence-to-sequence (seq2seq) model based
on the attention mechanism, which consists of two parts, Encoder
and Decoder. The Transformer model consists of four parts, which
are the self-attention mechanism, the multi-head attention
mechanism, the positional encoding and the forward propagation
network. As shown in Figure 2, the multi-head attention mechanism
in the Transformer model allows the model to focus on different
parts of the input sequence simultaneously, possessing the ability to
globally perceive the input features, which improves the
expressiveness of the model and better handles both local and
global information. The forward propagation network is a fully-
connected feedforward network consisting of two fully-
connected layers.

The Transformer encoder comprises numerous identical sub-
blocks, known as Transformer Blocks, stacked consecutively. The
initial sub-layer within each block incorporates the multi-head
attention mechanism, followed by a second sub-layer, a fully
connected network. These two sub-layers are interconnected
through residuals, which effectively prevent gradients from
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FIGURE 2
Multi-head attention structure.

FIGURE 3
Transformer model.
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vanishing and enhance the seamless flow of information between
them. Additionally, a layer normalization operation is performed
after the residuals are connected, further facilitating the algorithm’s
convergence. On the other hand, the decoder differs from the
encoder in a crucial aspect: the resulting three vectors, along with
an ordinal mask, are concurrently fed into the multi-head self-
attention layer, as illustrated in Figure 3.

The Transformer leverages its unique structure to process the
feature matrix XSA refined by the sparse autoencoder, thereby
achieving the prediction of the SOC for lithium batteries. The
model first captures the interdependencies between sequence data
in the input feature matrix through the self-attention mechanism,
thereby understanding the long-term dependencies and contextual
information within the sequence. And the multi-head attention
mechanism allows the Transformer to focus on different parts of
the input matrix simultaneously, globally perceiving the input
features, which helps the model to better understand and process
the input data. Positional encoding is used to provide positional
information for each element in the sequence, which is crucial for
understanding the sequential relationships. Finally, through the
feed-forward neural network, the Transformer integrates this
information and translates it into a prediction for the lithium
battery SOC. This processing method makes the Transformer
highly flexible and accurate when dealing with sequence data,
enabling precise prediction of the lithium battery SOC.

3 Case analysis

3.1 Simulation platform and data

3.1.1 Simulation platform
The simulation platform is equipped with an Intel Core i7-

7800X processor and an NVIDIA GeForce RTX 2080 Ti graphics
card. It utilizes Python 3.8 as a programming language for algorithm
development. The algorithmic model is built using TensorFlow, an
open-source machine learning framework.

3.1.2 Data preparation
This paper utilized a publicly accessible lithium-ion battery

dataset obtained by Dr. Phillip Kollmeyer at McMaster
University in Hamilton, Ontario, Canada, to confirm the
robustness of the studied model (Philip et al., 2020). This dataset
was generated through various charge-discharge cycles on brand-
new 3Ah LG 18650HG2 lithium-ion batteries following standard
protocols. The collected data includes experiments conducted at six
different temperatures ranging from −20°C to 40°C. This paper
utilizes the driving condition data at 25°C as the dataset for
validating the model’s effectiveness. The dataset includes four
standard drives (UDDS, HWFET, LA92, and US06) and eight
driving cycles that are randomly combined from the four
standard driving cycles.

The KF-SA-Transformer model used the terminal voltage,
current, and temperature of the lithium battery as input variables
to estimate the battery’s SOC. However, the original data often
exhibited significant fluctuations, which could introduce bias during
the model parameter optimization process. Consequently, this
might affect the effectiveness of the training process and the

generalization capability of the model. Additionally, the variables
were not uniformly scaled, which could lead to a contraction effect
on the data size and range within the neurons of the deep learning
model during parameter updates in the backpropagation phase. To
address this issue, normalization of the data before prediction
becomes imperative. This normalization process adjusts the data
to be contained within the [0,1] interval, with the transformation
function as show in Eq. 15:

X � X0 −Xmin

Xmax −Xmin
(15)

Where: X represents the normalized sample data; X0 represents
the original sample data; Xmin is the minimum value of the original
sample data; Xmax is the maximum value of the original sample data.

3.1.3 Assessment indicators
To appraise the precision of the model’s predictive capabilities,

this paper employs a suite of metrics: the MSE, MAE. These metrics
collectively assess the model’s performance in estimating the SOC of
the battery. The specific calculation formula as shown in Eqs 16, 17:

MSE � 1
m
∑m
i�1

yi − ŷi( )2 (16)

MAE � 1
m
∑m
i�1

yi − ŷi( )∣∣∣∣ ∣∣∣∣ (17)

Where: m is the number of samples, i is the sample sequence
number, yi is the actual value of the ith sample, ŷ i is the predicted
value of the ith sample, and di denotes the average of the real values.
The above indicators are used to evaluate the error between the
predicted value and the actual value, and the smaller the value is, the
more accurate the prediction result is.

3.2 Model performance optimization
strategies

3.2.1 Hyper-parameter settings
The accuracy of the neural network is influenced by hyper-

parameters, which include, but are not limited to, the number of
convolutional layers and the dimensions of the convolutional kernel.
These hyper-parameters are pivotal in determining the SOC
prediction outcomes. Commonly adopted methods for hyper-
parameter optimization encompass grid search, random search,

TABLE 1 Model parameter setting.

Parameters Correlation coefficient

Encoder Layers 4

dmodel 3

MLP hidden layer 4

Batch size 64

Learning rate 0.00001

Epochs 50
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and Bayesian optimization. While grid search is a straightforward
approach, it can be computationally expensive and time-consuming.
To achieve efficient hyper-parameter optimization within a
reasonable timeframe, this paper opts for the Bayesian
optimization algorithm. The underlying principle of Bayesian
optimization involves the construction of a probabilistic model of
the objective function. This model is iteratively refined by
incorporating new sample points, thereby updating the posterior
distribution of the objective function. The optimal hyperparameters
selected in this paper are shown in Table 1.

3.2.2 Comparison of optimization algorithms
To further enhance the precision of the model’s convergence

value, reduce prediction errors, and improve generalization
capabilities, it is necessary to introduce a parameter
optimization algorithm into the KF-SA-Transformer model.
This paper employs Stochastic Gradient Descent (SGD),
Average Stochastic Gradient Descent (ASGD), and Adaptive
Moment Estimation (Adam) to optimize the KF-SA-
Transformer model. As shown in Figure 4, loss curves during
iterative training on the training set and validation set for each

algorithm are plotted. The analysis indicates that the Adam, SGD,
and ASGD algorithms are all capable of achieving model
convergence. However, the convergence rate of the ASGD
optimization algorithm is relatively slow, failing to reach the
convergence value of the other two algorithms even after
50 training epochs. In contrast, the SGD algorithm converges
relatively quickly but exhibits significant fluctuations, especially
in the loss curve on the validation set. Comparatively, the Adam
optimization algorithm has the fastest convergence rate, with the
loss value approaching zero and the smallest fluctuations after
just 1-3 training epochs. Compared to SGD and ASGD, the Adam
algorithm has significantly improved the predictive accuracy of
the final model to a greater extent.

3.3 Results and discussion

3.3.1 Performance comparison of different models
To investigate the performance of the KF-SA-Transformer

model, this paper compares it with the SA-Transformer and the
Transformer models. Using the UDDS driving data as the test set,
the SOC prediction results of these models were compared. Figure 5
illustrates the comparative analysis of the prediction data and the
original data for the three models under the UDDS conditions, along
with a comparison of their prediction errors.

Based on the thorough data analysis presented in Figure 5, the
conclusions drawn are as follows: The KF-SA-Transformer
model has exhibited remarkable predictive capabilities. It
achieves a low MAE of 0.63% and an RMSE of 0.81% in SOC
prediction, while its maximum error is contained within 3.08%.
In contrast, the SA-Transformer model’s SOC prediction
performance is slightly inferior, with an MAE of 0.65%, an
RMSE of 0.88%, and a maximum error of 3.59%. The
traditional Transformer model, on the other hand, displays
comparatively weaker performance, attaining an MAE of 1.3%,
an RMSE of 1.72%, and a maximum error of 4.73%. These
findings underscore the KF-SA-Transformer model’s high
degree of accuracy and stability in SOC prediction,
highlighting its significant advantage over the other models.

3.3.2 Prediction performance under different
conditions

To further explore the performance of the KF-SA-Transformer
model in practical applications, this study selected the US06 driving
data and a set of mixed driving cycles as the test set, thereby
comprehensively evaluating the predictive capability of the KF-
SA-Transformer model under variable operating conditions. The
predicted results and errors are presented in Figures 6, 7.

Under the US06, a representative high-speed driving scenario,
the KF-SA-Transformer model exhibited outstanding accuracy in
predicting the battery’s SOC. Notably, its predicted results achieved
an MAE of merely 0.87%, along with an RMSE of 1.13%. Even at the
peak of error, the deviation remained within a range of 3.48%. This
data unequivocally demonstrates that the KF-SA-Transformer
model maintains exceptional predictive accuracy under high-
speed and high-load conditions.

In the more complex mixed driving cycles, which encompass
a variety of driving speeds and load conditions, the KF-SA-

FIGURE 4
Loss profile based on KF-SA-Transformer model (A) training set
(B) validation set.
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FIGURE 5
SOC prediction results (A) KF-SA-Transformer (B) SA-Transformer (C) Transformer (D) error comparison of each model.

FIGURE 6
SOC prediction results of the US06 driving (A) prediction results (B) error curve.
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Transformer model’s predictive performance remains equally
remarkable. These conditions pose higher demands on the
model’s generalization capabilities. However, the KF-SA-
Transformer model still demonstrated excellent performance,
achieving an MAE of 0.79% and an RMSE of 0.94% for its
SOC prediction results. The maximum error was only 3.63%.
These data not only validate the model’s adaptability under
different operating conditions but also further reinforce the
effectiveness of the KF-SA-Transformer model in the field of
SOC prediction.

4 Conclusion

This paper introduces a method for predicting the SOC of
lithium-ion battery energy storage systems using a hybrid neural
network comprising the KF-SA-Transformer architecture. The
approach takes current, voltage, and temperature data as inputs,
first utilizes a Kalman filter for noise reduction, and then forwards
the filtered data to a sparse autoencoder for feature extraction,
effectively reducing the data dimensionality. Finally, the
Transformer model leverages these low-dimensional features to
establish a mapping relationship with the SOC, thereby
significantly enhancing the accuracy and overall performance of
SOC predictions.

Under identical driving cycle conditions, the KF-SA-
Transformer model exhibits significant advantages compared
to other models. Moreover, the application of the KF-SA-
Transformer model has also yielded favorable results in
various other driving cycle conditions. While the model
performs exceptionally well on the selected lithium-ion
battery dataset, its generalization capabilities to other battery
types or varying operating conditions remain to be further
validated. Therefore, future research could explore avenues
such as enhancing dataset diversity, incorporating datasets

from multiple battery models for model training, employing
data augmentation techniques, or adopting an ensemble of
multiple models to further improve the model’s generalization
abilities and foster wider applications and advancements in the
field of SOC prediction.
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FIGURE 7
SOC prediction results of the mixed driving cycle (A) prediction results (B) error curve.
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