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A Ground Coupled Heat Pump (GCHP) is a highly energy efficient heating,
ventilation, and air conditioning (HVAC) system that utilises the ground as the
heat source when heating and as the heat sink when cooling. This paper
investigates GCHP systems with horizontal Ground Heat Exchangers (GHEs) in
the rural industry, exemplifying the technology for poultry (chicken) sheds in
Australia. This investigation aims to provide an Artificial Neural Network (ANN)
model that can be used for GCHP design at various locations with different
climates. To this extent, a Transient System Simulation Tool (TRNSYS) model for a
typical horizontal GHE applied in a rural farm was first verified. Using this model,
over 700,000 hourly performance data items were obtained, covering over
80 different yearly loading patterns under three different climate conditions.
The simulated performance data was then used to train the ANN. As a result, the
trained ANN can predict the performance of GCHP systems with identical
(multiple) GHEs even under climatic conditions (and locations) that have not
been specifically trained for. Unlike other works, the newly introduced ANN
model is accurate even with limited types of input data, with high accuracy (less
than 5% error inmost cases tested). This ANNmodel is 100 times computationally
faster than TRNSYS simulations and 10,000 times faster than finite
element models.
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Highlights

• ANNs are used to predict the COP and GHE inlet and outlet temperatures.
• With only three types of input data, the error is less than 10% in most cases tested.
• The ANNs can be 100 times faster than TRNSYS and 10,000 times faster than
FEM models.

• The ANNs models can be applied to similar cases for various locations.
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1 Introduction

Ground Coupled Heat Pump (GCHP) systems are renewable
technologies and highly energy efficient Heating Ventilation and Air
Conditioning (HVAC) systems that utilise the ground as a heat
source or sink. The ground acts as the heat source when delivering
heating and as a heat sink when providing space cooling. Recent
years have witnessed an increase in applications of GCHP systems in
the United States, Europe, Canada, China, Korea, and Australia
(Omer, 2008; Yi et al., 2008; Self et al., 2013; Han and Yu, 2016; Lund
and Boyd, 2016; Rees, 2016; Zhou et al., 2016; Lu et al., 2017).
Ground Heat Exchangers (GHEs) are typically used to exchange
heat with the ground. These are composed of high-density
polyethylene (HDPE) pipes with a heat transfer (or carrier) fluid.
GHEs can take numerous forms, including vertical boreholes,
horizontal trenches, energy piles, energy retaining walls, and
energy tunnels (Narsilio and Aye, 2018). Among them, vertical
boreholes and horizontal trenches are the two most commonly
utilised GHEs. While vertical boreholes can be installed under
almost any ground and site conditions, horizontal trenches are
typically used in suburban and rural areas at a depth of 1–2 m
below the surface, as they usually require a large field of land to
install them, but the capital cost is typically lower than that for
drilling vertical boreholes. Since the heat exchangers are close to the
ground surface, their thermal performances can be impacted by the
daily and seasonal variation of the air temperature (Bidarmaghz
et al., 2016a; Jensen-Page et al., 2018) and soil moisture content, the
latter affecting the thermal conductivity of the ground (Demir et al.,
2009; Beier and Holloway, 2015). A well-designed GCHP system
with horizontal GHEs can typically operate at a coefficient of
performance (COP) between 3 and 5 (Colangelo et al., 2005;
Esen et al., 2007; Tarnawski et al., 2009; Johnston et al., 2011;
Norway et al., 2012; Go et al., 2016; Zhou et al., 2018). The COP is
defined as the ratio of heating (or cooling) supplied to the energy
required to operate the GCHP. This means that for 3 to 5 kWh of
energy removed/injected into the ground, only 1 kWh energy of
electricity is consumed by the GCHP. Limitations of GCHP systems
include high upfront construction costs mainly by the GHE
installation (drilling/earthworks), as well as the embodied energy
and associated greenhouse gas (GHG) emissions, odours and
volatile compounds (e.g., ammonia gas, hydrogen sulphide, and
mercaptans). However, these can be reduced by coupling GCHPs
with other energy sources to form a hybrid system (Kjellsson et al.,
2010; Eslami-Nejad and Bernier, 2011; Aditya et al., 2018). Previous
studies indicated that a hybrid GCHP system is not only financially
attractive but also helps to balance the thermal loads in the ground
(Yi et al., 2008; Man et al., 2010; Kuzmic et al., 2016).

Current applications of GCHP systems span a wide range of
end uses, including commercial office buildings, residential
buildings, schools, hospitals, and underground metro stations
(Omer, 2008; Yi et al., 2008; Self et al., 2013; Han and Yu, 2016;
Lund and Boyd, 2016; Rees, 2016; Zhou et al., 2016; Lu et al.,
2017). However, there is very limited focus on applying this
relatively new technology in the rural industry, which could
potentially be largely beneficial. For example, agriculture and
its related processing industry in Australia, contributes to 12% of
the national Gross Domestic Product (National Famer’s
Federation, 2016). Within the Australian agriculture sector,

this paper will primarily focus on the poultry industry, with
over 600 million chickens raised yearly (Australian Bureau of
Statistics, 2016). One of the major costs for poultry farmers and
to the environment is the energy required to heat and cool large
poultry breeding houses (estimated at A$80 million per year)
(Zhou et al., 2017). The uniqueness of the heating and cooling
load profiles of chicken broiler houses (a.k.a. sheds), together
with the high risk of storing a high volume of combustible gas and
the lack of access to (cheap) natural gas in rural areas where these
houses are located, make the GCHP or shallow geothermal
alternative a very attractive option. Its adoption can transform
the poultry farming industry by significantly reducing energy
consumption (and energy bills to farmers), GHG emissions, and
chicken mortality (Choi et al., 2012), thus notably impacting the
economics and environmental performance of the Australian
poultry industry. As the rural industries’ unique loading
patterns can be highly different from those of residential,
commercial, and public buildings, detailed analyses are
required to achieve an appropriate design of GCHP systems
specifically for the rural industry.

In engineering practice, commercial software packages,
including Ground Loop Design (GLD) and GLHEPRO (stands
for ground loop heat exchanger) have been widely used in the
analysis and design of GCHP systems (Q. Lu, 2018). Understanding
the hourly performance of GCHP systems is important when
detailed design or analysis are required. While hourly
performance calculations are available for GCHP systems with
vertical boreholes in both GLD and GLHE Pro, such a function
is only just becoming available for GCHP systems with horizontal
GHEs (only annual averages are outputted). One possible
explanation for this limitation is that commercial software
packages normally use simpler analytical models (for vertical
GHEs) to provide quick calculations. While infinite line source,
infinite cylindrical source, and finite line source models are popular
in modelling vertical GHEs, these models cannot be directly used for
horizontal GHEs. Hence, the applications of such similar
sophisticated analytical methods in horizontal GHEs are
currently limited and can be more difficult to be applied in
commercial software (Zeng et al., 2002; Bandos et al., 2009;
Philippe et al., 2009). This is mainly because the performance of
the horizontal GHEs is highly affected by the configuration of the
pipes and climate and geological conditions, which are difficult to
cover in a generalised analytical model (Yuan et al., 2012).

When a detailed analysis is required, researchers have developed
numerical simulation models to analyse GCHP systems with
horizontal GHEs. As an example, Transient System Simulation
Tool (TRNSYS) simulations are widely used in various types of
building energy simulations (Magnier and Haghighat, 2010; Webb
et al., 2018) and to predict the performance of GCHPs and GHEs
(Safa et al., 2015). By using full implicit finite difference methods to
solve three-dimensional meshed soil and GHE models, this
approach can be implemented in the common practice of
GCHPs with vertical or horizontal GHEs and can be modified to
simulate complex GCHP applications such as GCHPs with dual
sources or solar-assisted GCHPs (Trillat-Berdal et al., 2007; Chargui
et al., 2012; Chargui and Sammouda, 2014; Weeratunge et al., 2018).
Apart from TRNSYS, researchers have also developed other
numerical simulation models and approaches, including Finite
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TABLE 1 Summary of published research regarding ANN for GCHP systems.

System type Reference Notes Usage Best performing
tool

Geothermal district
heating system

Keçebaş and Yabanova, 2012;
(Keçebaş and Yabanova, 2012)

6 plate heat exchangers Energy and exergy efficiencies and
exergy destructions for thermal
optimization

FFNN

Şahin and Yazıcı, 2012; (Şahin and
Yazıcı, 2012)

6 plate heat exchangers Energy and exergy analysis FFNN

Keçebaş et al., 2012; (Keçebaş et al.,
2012)

Geothermal well Exergy prediction FFNN

Keçebaş et al., 2013; (Keçebaş et al.,
2013)

6 plate heat exchangers Energy analysis FFNN

Arat and Arslan, 2017; (Arat and
Arslan, 2017)

Aided by a geothermal heat pump Prediction and optimization FFNN

Ground source heat
pump

Esen et al., 2008a; (Esen et al., 2008b) Horizontal GHEs Performance prediction ANFIS

Xie et al., 2008; (Xie et al., 2008) Groundwater heat pump Performance prediction FFNN

Esen and Inalli, 2009; (Esen and Inalli,
2009)

Vertical GHE (30 m–90 m deep) Performance prediction ANFIS

Wang, 2013; (Wang et al., 2013) Ground-coupled heat pump Performance prediction ANN based on improved
Radical Basis Function

Fannou et al., 2014; (Fannou et al.,
2014)

Direct expansion geothermal heat
pump

Performance prediction FFNN

Sun et al., 2015; (Sun et al., 2015) Geothermal well (54 m deep) Performance prediction ANFIS

Benli, 2016; (Benli, 2016) Vertical GHE (60 m deep),
horizontal GHE (246 m long)

Performance prediction FFNN

Makasis et al., 2018; (Makasis et al.,
2018)

Energy pile design Exergy prediction Multiple linear regression

Park et al., 2018; (Park et al., 2018) Vertical GHE (200 m deep) Performance prediction Multiple linear regression

Zhang et al., 2018; (Zhang et al., 2018) Distributed thermal response test,
vertical GHE

Thermal conductivity prediction FFNN

Hybrid ground
source heat pump

Gang and Wang, 2013; (Gang and
Wang, 2013)

Cooling tower, vertical GHE (60 m
deep)

Temperature prediction FFNN

Gang et al., 2014; (Gang et al., 2014) Cooling tower, vertical GHE (60 m
deep)

Performance prediction FFNN

Esen et al., 2017; (Esen et al., 2017) Horizontal and vertical slinky GHE,
solar-assisted

Performance prediction ANFIS

Other systems Bassam et al., 2010; (Bassam et al.,
2010)

Geothermal borehole Temperature prediction FFNN

Arslan, 2011; (Arslan, 2011) Kalina cycle system for geothermal
fields of low and medium enthalpy

Pump power prediction FFNN

Morales et al., 2015; (Morales et al.,
2015)

Absorption heat transformer Prediction and optimization FFNN

Hamdan et al., 2016; (Hamdan et al.,
2014)

Flat-plate solar air collector Temperature prediction NARX

Qi et al., 2016; (Qi et al., 2016) Shower cooling tower Performance prediction Wavelet neural network

Shojaeefard et al., 2017; (Shojaeefard
et al., 2017)

Compact heat exchanger Performance prediction Recurrent neural network

Islam and Morimoto, 2017; (Islam
and Morimoto, 2017)

Pillar cooler system Inside air temperature prediction FFNN

Alhamid and Saito, 2018; (Alhamid
and Saito, 2018)

Absorption chiller Performance prediction FFNN

(Continued on following page)
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Element Modelling and Computational Fluid Dynamics
(Tarnawski and Leong, 1993; Colangelo et al., 2005; Tarnawski
et al., 2009; Wu et al., 2010; Norway et al., 2012; Chong et al.,
2013; Go et al., 2016; Esen et al., 2017). Numerical simulation
results can be in good agreement with the respective experiments
and hence contribute to the optimum design of horizontal GHEs.
However, current numerical simulation models, including
TRNSYS simulations, are usually time-consuming, resource-
demanding, and case-specific, which could limit their
application in engineering practice.

Statistical and machine learning models represent potential
approaches to accelerate simulations and ultimately design, with
only a marginal compromise on accuracy.Recent years have
witnessed substantial advancements in the field of artificial
intelligence (AI)(Ahmad et al., 2021; Benzidia et al., 2021; Li
and Li, 2023), especially in deep learning and natural language
processing, showcasing notable progress across various academic
and industrial spheres. In energy industry, attentions have been
drawn to the application of machine learning technologies into
energy production forecast, energy consumption forecast and
energy consumption optimisation (Narciso and Martins, 2020).
As summarised in Table 1, a wide range of applications of
statistical and machine learning models have been adopted in
energy systems, specifically Artificial Neural Networks (ANNs)
(Kalogirou, 2000; Esen et al., 2008b; Esen and Inalli, 2009; Cai
et al., 2014; Afram et al., 2017; Guo et al., 2018; Makasis et al.,
2018; Wang et al., 2018). Well-designed and properly trained
ANNs can provide reasonably accurate results almost instantly
when applied in GCHP systems. As shown in Table 1, different
types of neural networks and machine learning tools have been
tested on GCHP systems, including Feedforward Neuron
Networks (FFNN), Adaptive Neuro Fuzzy Inference Systems
(ANFIS), Nonlinear Autoregressive Exogenous models
(NARX), and Extreme Learning Machines. While FFNN has
been identified as the best-performing tool for the
performance prediction of GCHPs, NARX is very good in
time-series predictions, including prediction of temperature
and load series. However, there is very limited research
currently available regarding the application of ANNs in
GCHP systems with horizontal GHEs, with none found that
consider rural industries’ unique loading conditions.
Moreover, current ANN applications in GCHP systems are
mostly based on case-specific studies, meaning they cannot be
generalised and applied to different cases than those for which
they were created.

Within the handful of pioneering ANN studies dealing with
horizontal GHEs currently available in the literature, Esen et al. and
Benli’s ANN models are the only ones that can predict the COP of
water-to-air GCHPs with horizontal GHEs using pre-processed
input data (Esen et al., 2008a; Benli, 2016; Esen et al., 2017).
Their results show the ANN can predict the COP well when
enough input data are given. Their methodologies require three
to five types of input data, including, at a minimum, the inlet air,
outlet air, and ground temperatures. In their most recent work, Esen
and coworkers (Esen et al., 2017) utilised ground temperatures at
seven different depths, inlet air, outlet air, ambient air, tank water,
inlet water, and outlet temperatures as inputs to the predictive
model. However, these input data cannot be acquired easily, and
more importantly, it would be arguably simpler and faster to find the
COP via the heat pump specifications if these data are accessible.
Moreover, the input data required by current ANNs can typically be
part of the output needed for GCHP system design, making these
works, while insightful, of limited use in practice. Last, the ANNs
found in the literature have limited applicability for broader
utilisation, as their validity is mostly shown for the case with
which they were studied/trained.

This study aims to provide an ANN methodology that can
predict and tremendously accelerate the design of GCHPs with
horizontal GHEs (using numerical simulations) under loading
conditions in rural industries and with limited input data types.
A Transient System Simulation Tool (TRNSYS) model for a typical
horizontal GHE field arrangement (details in Section 3.1) is
developed and verified, and the resulting simulated performance
data are used to train the ANNs. The trained ANNs are then used to
predict the performance of GCHPs with identical GHEs but varying
the number of GHEs in other locations that are not in the training
dataset to showcase its applicability for broader utilisation.

TABLE 1 (Continued) Summary of published research regarding ANN for GCHP systems.

System type Reference Notes Usage Best performing
tool

Guo et al., 2018; (Guo et al., 2018) Building heating system Energy demand prediction Extreme learning machine

Aghadavoodi and Shahgholian, 2018;
(Aghadavoodi and Shahgholian,
2018)

Combustion loop control system Closed loop identification NARX

Koschwitz et al., 2018; (Koschwitz
et al., 2018)

Nonresidential building Load prediction NARX

FIGURE 1
Diagram of hybrid geothermal systems for poultry shed. Each
trench is 75 m long and contains 300 m of HDPE pipe (highlighted
in red).
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2 Rural industries’ heating loads
patterns and locations

As mentioned in the Introduction, since the rural industries’
thermal loading patterns can be substantially different from those of
commercial and residential building applications, the GCHP design
requires careful and detailed analysis. As an example of these unique
loading patterns and to exemplify the study for temperate climate
regions, in this investigation, a chicken shed building in Peats Ridge,
New South Wales (NSW), Australia, is adopted. The schematic of
the typical test broiler house (or shed) with a hybrid GCHP system is

depicted in Figure 1. The system consists of several identical single-
speed GCHPs with a 20 kW heating capacity are utilised to provide
the required thermal energy. Each heat pump has a fixed ground
heat exchanger field configuration formed by four horizontal
trenches. The length for each trench is 75 m, rendering a pipe
length of about 300 m per trench. The details of the system are
further illustrated in Section 3.1.

A building energy simulation model was developed for the shed
using a transient system simulation software TRNSYS 18, which
simulates the heating and cooling loads for the shed. The location
and parameters used for the simulation are summarised in Table 2.
For this study, the shed is used for six chicken-raising cycles per year
(from chicks to chicken for meat) as per typical broiler house
operation, with the first raising cycle for the chickens assumed to
start on the 1st of January. Each cycle is assumed to last 7 weeks, with
a 2-week break time between batches (Zhou et al., 2018).

A previous study identified that although there is a high cooling
demand, cooling can be economically provided via evaporative
coolers (Zhou et al., 2017). Hence, the primary focus of this
work is to provide heating via a hybrid geothermal-gas system.
Figure 2 shows the simulated heating power demand of the shed
based on the building energy consumption model developed. It was
estimated that the annual heating energy of the shed is 58,477 kWh
with a peak heating power demand of 208 kW. During each heating
cycle, the heating demand is usually at its maximum at the start of
each cycle when the least metabolic heat is generated by chickens
and, the required indoor temperature is at its maximum (typically
31°C). The heating demand decreases later in each cycle owing to the
increase in metabolic heat generated by chickens and the lower
indoor temperature requirement corresponding to the age of the
cycle (typically to a minimum of 19°C within 21 days of the start of
the cycle).

To provide the heating load demand for the building, a hybrid
GCHP system with horizontal GHEs is employed. As the initial
installation cost of GHEs can be relatively high, the chosen hybrid
geothermal-gas system help to reduce the capital cost while
maintaining most benefits of the geothermal (GCHP) technology.
In this hybrid system, the heating is delivered by several identical
GCHPs connected in parallel to a main header pipe. Each GCHP is
coupled to several GHEs connected in parallel as well. The LPG gas
burners installed in the shed can top up the heating when needed. A
“shave factor” S is used to describe the capacity portion of the GCHP
in the hybrid system. It is defined as the ratio of the installed capacity
of the GCHP of the system to the peak heating demand of the load to
be satisfied by the hybrid system (Alavy et al., 2013; Mikhaylova
et al., 2016):

TABLE 2 Typical broiler house dimensions and temperate climate case-study location.

Dimensions Width: 18.3 m, length: 138.7 m, Height: 2.7 to 4.3 m

Wall/Roof Material No windows; Insulation with thin layers of metal cladding

Insulation thickness: 0.075 m, thermal conductivity: 0.039 Wm−1K−1, density: 16 kgm−3, specific heat: 340 Jkg−1K−1

Orientation Long axis (Length) across North-South

Location Peats Ridge, NSW, Australia (33°23′49″S, 150°24′09″E)

Climate Data Typical Meteorological Year (TMY) data (Meteotest, 2016)

FIGURE 2
Hourly heating demand of chicken shed: (A) yearly loading
pattern showing six batches (B) detail of these six heating cycles over
1 year, starting week 1, 10, 19, 28, 37, and 46 respectively.
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S � Installed capacity of GCHP
Peak heating load

× 100% (1)

In this study, a 0% shave factor represents a full gas system and
100%, a full GCHP system. A shave factor of 40% in this GCHP-gas
hybrid system of 208 kW peak load means that the installed capacity
of the GCHPs is 83 kW, and the installed capacity of a gas burners
will be the difference between the peak heating load and the GCHP
installed capacity, that is, 125 kW, which is only operational when
the demand exceeds 83 kW.

To further investigate this hybrid system, other locations across
Australia under different climate conditions are analysed following
similar approaches. These places are significant due to their prominence
in the poultry industry. Together with the one mentioned above, these
three locations represent conditions in Queensland (QLD), New South

Wales (NSW), and Victoria (VIC) (Figure 3). The three states analysed
in this study are known for housing a significant portion of Australia’s
poultry farms and production facilities, accounting for 74.4% of
Australia’s overall broiler production with different climate
conditions (Australian Chicken Meat Federation ACMF Inc, 2016;
The Bureau of Meteorology & CSIRO, 2016). The peak heating loads
and annual energy demand are 228 kW and 73,456 kWh for
Mornington Peninsula, VIC, and 164 kW and 34,149 kWh for
sunshine Coast, QLD.

The latest average annual temperatures (maximum, minimum,
and average) are summarised in Table 3. For the building side, all
other factors besides the climatic conditions associated with the
different locations, such as the shed envelope, orientation, and
ventilation conditions, are kept constant in this study to ensure a
representative comparison between them.

FIGURE 3
Chicken industry profile in Australia (Australian Chicken Meat Federation ACMF Inc, 2016).

TABLE 3 Simulation locations and key climate data (DOM, 2018).

Location Coordinates Annual mean maximum
temperature (°C)

Annual mean minimum
temperature (°C)

Undisturbed ground
temperature (°C)

Central Coast, NSW 33°23′49″S
150°24′09″E

21.9 11.6 16.1

Mornington
Peninsula, VIC

38°17′7″S 145°5′36″E 18.9 10.1 14.4

Sunshine Coast, QLD 26°51′36″S
152°57′36″E

25.3 17.0 19.9

Warracknabeal, VIC
(Test case)

36° 6′ 7″ S 142° 40′
12″ E

22.4 8.7 14.5

Murray Ridge, SA (Test
case)

35° 7′ 1.2″ S 139° 16′
1.2″ E

23.0 9.9 15.8

Gaborone, Botswana
(Test case)

24° 39′ 29″ S 25° 54′
44″ E

29.0 13.4 20.6
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Besides the three discussed locations for training (and testing),
three additional test cases, one in Warracknabeal (Victoria), one in
Murray Ridge (South Australia), and an extra one in Gaborone
(Botswana, annual average temperature 20.6°C) were adopted to
further check the accuracy of the ANN model results and flexibility
to accommodate different site conditions. The data relating to these
test cases are not part of the training dataset (Table 3) and can
therefore be used to evaluate the accuracy of the prediction ANN
model after it has been trained.

3 TRNSYS simulations

In this study, a TRNSYS simulation model is developed for the
poultry industry and is utilised to simulate over 700,000 hourly
performance data items covering over 80 different yearly thermal
loading patterns (by varying the shave factors) under three different
climate conditions. The simulation data from the completed
TRNSYS models are then used to train the ANNs.

3.1 TRNSYS simulation model

To generate data to train the ANN, a typical poultry shed in
Australia equipped with a hybrid GCHP system to provide the
required heating is utilised (Zhou et al., 2018). As mentioned in
Section 2, the hybrid system comprises several identical GCHPs with
horizontal GHEs and gas burners. The sizing and configuration of
the GCHPs and the gas burners within the hybrid system vary based
on the thermal demand and the different shave factors determining
it. The TRNSYS model is used to evaluate the hourly performance of
the GCHPs for each of these cases of different thermal load and
configurations. A Typical Meteorological Year (TMY) dataset was
used as the boundary condition of the soil surface. The soil is meshed
three-dimensionally, and a fully implicit finite difference method is
utilised in the modelling. For all the models, a sandy clay soil is
assumed with an average thermal conductivity of about 2WK−1m−1.

In the modelled systems, several identical single-speed GCHPs
with a 20 kW heating capacity are utilised to provide the required
thermal energy. Each heat pump has a fixed ground heat exchanger
field configuration formed by four horizontal trenches. Each trench
is dug at a depth of 1.5 m below the ground surface, and there are
four straight pipes in each trench with a 300-mm separation between
each pipe. The length for each trench is 75 m, rendering a pipe
length of about 300 m per trench. As an example of an overall
system, to provide 208 kW of peak heating in total at a shave factor
of 38% (therefore requiring 80 kW), four 20 kW heat pumps are
installed, each with its own ground heat exchanger field in four
trenches (i.e., 16 trenches in total). For simplicity, the thermal
conductivity of the soil was assumed the same for different
locations; however, the ground temperature reflects that of each
site (see Table 3). It is also assumed that all trenches are placed
sufficiently apart from each other to minimise any thermal
interference between them.

The operation of the heat pumps is controlled by the hourly
loading demand. When the operation of a new heat pump is
required, the one with the lowest accumulated hours of operation
will start. For example, in the 208 kW total capacity case above (with

80 kW provided by the GCHPs, i.e., S = 38%), when the loads
increase from 19 kW to 35 kW, the operation of a second 20 kW
heat pump is required. At this time, the system will compare the
accumulated hours of operation from the three heat pumps that are
not operating and turn on the one with the lowest accumulated
hours of operation. In this way, the loads can be relatively evenly
divided amongst all the heat pumps throughout the life of the
system. For heating demands over 80 kW, all four GCHPs will be
in operation, and the gas burners will provide the balance of the
required load.

Figure 4 shows the configuration of the TRNSYS model for each
GCHP. This model simulates one water-to-water GCHP (Type 927)
with a short-distance (5 m) buried head pipe (Type 951) and a
horizontal ground heat exchanger (Type 997) composed of the four
75-m long trenches (recall Figure 1). In the TRNSYS simulation,
horizontal ground heat exchanger are governed by a fully 3-D
rectangular conduction model of the ground, which considers the
insulation and the impact of energy storage in the ground.The
thermal loads generated from TRNSYS are imported to the water
heat exchanger (Type 682) to simulate the loading from the building.
A control unit (Type 1502) together with the Typical Meteorological
Year TMY weather data (Type 15–6) generated from Meteonorm, a
widely used weather analysis software package, complete the
TRNSYS model of the smallest GCHP component (20 kW) of
the hybrid system. Further details of the physics, including
governing pheonomena can be found in TRNSYS manual,
availble online on TRNSYS website support page.

In this TRNSYS model, only one heat pump is simulated with a
fixed load input (heating loads are inputted from outside files with
data generated). However, for one particular scenario, each of the
GCHPs involved receives a unique loading pattern based on the
system’s operation. For example, when the shave factor is 100% in
the NSW training case, 208 kW peak loads need to be covered by
11 GCHPs (of 20 kW capacity each).

Accordingly, 80 different loading patterns for the GCHP are
generated as inputs, depending on when each heat pump needs to be
turned on or off. Therefore, considering that simulations have been
conducted for different shave factors and locations and for each
shaved factor multiple GCHPs might be needed with different
loading patterns, over 30 simulations are considered for the
training case in NSW and 25 for each of the training cases in
VIC and QLD. Therefore more than 80 simulations (each with
unique loading patterns/conditions) and over 700,000 h of

FIGURE 4
Schematic of the TRNSYS model.
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simulation data are generated and will be used to train the ANNs, as
explained in Section 4.

3.2 Simulation results from TRNSYS

Following the discussion on the methodology and data
mentioned in previous section, this section presents the
simulation results from TRNSYS. These results are used in the
prediction model both as inputs as well as outputs (to train the
prediction model as well as compare the results to evaluate its
accuracy). These include a loading pattern as an example for the
inputs and the simulated hourly COP and inlet and outlet
temperatures of the GHEs as examples for the outputs.

As an example, Figure 5 shows one of the 80 loading patterns
used for the simulation of one GCHP (connected to a set of four
trenches, the GHE field) in a hybrid GCHP-gas system in NSW with
a shave factor of 25% (or 52 kW of GCHP capacity for a total peak
demand of the entire system at 208 kW; see Section 2).

Figure 6 shows the results of the simulation based on the loading
pattern in Figure 5 and weather in Peats Ridge, NSW. As seen, the

GHE inlet and outlet temperatures (or LWT and EWT1,
respectively) vary with the loading and seasons as expected. The
maximum is about 20.3°C, and the minimum is about 5.8°C. When

FIGURE 5
Hourly heating load pattern example for 20 kW capacity GCHP:
(A) overall yearly load, and (B) detail of lowest (Batch 1, January, in
blue) and highest (Batch 4, July, in red) GCHP run fraction batch loads.

FIGURE 6
Typical TRNSYS simulation results: (A) hourly COP of an
individual heat pump COPGSHPhr , (B) GHE inlet and outlet
temperatures, (C) detail of temperatures from the start of the
third batch.

1 EWT = entering water temperature (into the GCHP from the GHEs); LWT =

leaving water temperature (out of the GCHP and to the GHEs).
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there is loading, the GHE outlet temperature is higher than the GHE
inlet temperature by 1°C–2°C. The resulting COPGSHPhr is about
4 under full loading conditions (Figure 6). However, when it is under
partial loading, there is a decrease in the COPGSHPhr to about 2,
which is expected.

The simulations used within this work model 1 year of operation
of the system using the TMY data. In order, however, to test that the
tools and insights from this work are also representative of a long-
term performance analysis, a longer 10-year simulation was also
undertaken using annually repeating TMY data. The results show
that the COPGSHPhr and the GHE inlet and outlet temperature
profiles are identical for each year of simulation (Figure 7).
Therefore, 1-year simulation results are used throughout this
study and are considered representative of the long-term system
performance. These results differ from typical vertical systems, as
imbalanced loads will have long-term accumulated effects on the
ground, which could impact the performance of GCHP systems with
vertical GHEs. A more thorough discussion of this observation is
provided in Section 5.

The next section presents the ANNmodels (which use the above
results from TRNSYS for training, validation, and testing) and their
simulation results, including: COPGSHPhr and the inlet and outlet
temperature for the GHEs.

4 ANN models of GCHPs and GHEs

An artificial neural network (ANN) is a mathematical approach
that simulates a network of artificial neurons to mimic the human
brain. With a well-trained ANN, a computer can be taught to solve
problems, including generalisation, classification, forecasting, and
even decision-making [83]. In this study, two ANN models are
developed and implemented using MATLAB: 1) a feedforward
artificial neural network (FFNN) is used to predict the
performance of the GCHPs in terms of COPGSHPhr, and 2) a
nonlinear autoregressive network with exogenous inputs (NARX)
network is used to predict the inlet and outlet temperatures of the
horizontal GHEs. In this study, the term ANN is used as a general
description of this method, and FFNN/NARX refers to the specific
model, which is replaceable in most cases. The training input data
include only three types of input: the loads, accumulated loads, and

the outdoor temperature. Yet, the trained ANN can still predict the
performance of the GCHPs and horizontal GHEs reasonably well,
which can significantly reduce the need for time-consuming
numerical simulations. Details of these models are included next.

4.1 Modelling of GCHPs with FFNN

The FFNN statistical model, also referred to as a multilayer
perceptron (MLP) or simply artificial neural network (ANN) in
some studies, is by far the most popular machine learning tool used
in energy-related fields. It is versatile and may model complex
systems with great accuracy, including but not limited to
geothermal district heating systems (Keçebaş and Yabanova,
2012; Keçebaş et al., 2013; Arat and Arslan, 2017), geothermal
walls (Bassam et al., 2010), and GCHP or hybrid GCHP systems
(Benli, 2016). In this work, an FFNN is developed to predict the COP
of the GCHPs (COPGSHPhr), as shown schematically in Figure 10.

4.1.1 Input layer (feature variables)
Although various types of datasets can be set as feature variables,

such as the inlet air, outlet air (on the building side of the GCHP),
ground, and the inlet and outlet GHE water temperatures (on the
ground side of the GCHP), the complexity of acquiring themmaymake
the FFNN not feasible in engineering practice. Instead, in this study, the
input layer comprises three neurons which represent the three easy-to-
acquire influencing factors for the performance of the GCHPs: the
hourly loads (which are typically known), the hourly accumulated loads,
and the moving average monthly outdoor temperature [which can be
readily obtained from the Typical Meteorological Year (TMY,
Meteonorm) when designing a system or via weather stations or
sensors when optimising scheduling of the system dynamically].

Hourly heating loads: The simulated hourly heating loads that
will be delivered by the GCHPs to the building. As explained in
Section 2 and Section 3, these hourly loads between GCHPs vary
based on the control strategy, the shave factor adopted, and the
operating conditions of each GCHP.

Adjusted accumulated heating loads: Since the continuing
heating operation of the heat pumps can impact the
performance, the hourly loads, showing the demand at a specific
point in time, are not sufficient to fully capture the problem and
train the network. Thus, the accumulated thermal loads are
introduced to represent the short-term effects of heating the
ground and its recovery. In this study, this value is estimated
based on the hourly heating loads and the ground conductive
heat flux (Carslaw and Jaeger, 1959; Wang and Bras, 1999;
Larwa, 2018). As the GHE pipes are buried 1.5 m deep, the
conductive heat flux is the primary heat flux at this depth and
can range from 6 to 14 W/m2 depending on the moisture content of
the soil (Larwa, 2018). In this study, the ground heat flux fg is
assumed to be 10 W/m2. Since the area of the GHE trench field in
this study is about 1,500 m2 (four trenches per GCHP), the estimated
heat flux is 15,000 W.

AQi+1 � AQi + Qi−fg, AQi + Qi−fg > 0
0, AQi + Qi−fg ≤ 0{ (2)

where AQi is the adjusted accumulated load in the ith hour, andQi is
the heating load in the ith hour.

FIGURE 7
Correlations between a 2nd year and 10th year COPGSHPhr .
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Outdoor ambient air temperature: This input represents the
variation introduced to the performance of the heat pumps owing to
the seasonality. The air temperature can be used with some delay to
represent the ground temperature (and therefore the neutral ground
condition) (Kusuda and Achenbach, 1965; Baggs, 1983). In this
work, a moving average monthly outdoor temperature is introduced
to simply but effectively represent the effects of the daily and
seasonal variation. By applying a 2-week delay, the moving
average monthly outdoor temperature showed a reasonably good
correlation to the TRNSYS simulated ground temperature
at 1.5 m deep.

4.1.2 Hidden layer
The hidden layer is used as an intermediary between the input

and output to enable the predictions and transformation of the
input to output. In this study, the hidden layer comprises 1 layer
of 10 neurons of a feedforward network. The transfer functions in
the hidden layer are sigmoid functions, which are most
commonly utilised throughout the literature and make it
possible to solve nonlinear problems. As shown in Section 4.4,
10 is found to be the optimum number for the neurons in the
hidden layer.

4.1.3 Output layer
The aim of the FFNN is to predict the performance of each

GCHP. In this case, the output layer has only one neuron, which
carries the hourly COP of the modelled GCHP (COPGSHPhr)
(Figure 8). This output is important for the design assessment
and optimisation of GCHP systems.

4.2 Modelling of horizontal GHEs with NARX

The NARX architecture is well-suited for circumstances with the
presence of long-term dependencies, outperforming certain
variations of recurrent neural networks (Lin et al., 1996), which
can be advantageous in many time-series prediction problems. As a
result, NARX networks work well in prediction problems in which
temporal patterns may be present and negatively influence some of
the other models.

4.2.1 Input layers
The initial input variables are the same as the input variables in

the NARX for GCHPs as in the FFNN section. To establish a
continuous time series analysis, the output inlet and outlet
temperatures of the model from the previous time step serves as
the new input for the current time step.

4.2.2 Hidden layer
The hidden layer comprises 1 layer of 10 neurons of a NARX

network. As the base architecture of the NARX network is a
feedforward network, this layer also follows the same reasoning as
that of the FFNN model of Section 5.1, also with 10 neurons and
sigmoid transfer functions.

4.2.3 Output layer
The aim of the NARX network is to predict the inlet and outlet

temperatures of the GHEs. In this case, the output layer has two
neurons representing the hourly inlet and outlet temperatures of the
GHEs (Figure 9). The values of these parameters are used in each
following iteration of the NARX calculations for the time series (i.e., the
temperatures for time t are used to compute the temperatures for time
t + 1). These results are important when evaluating the design length of
GHEs and can directly impact the COP of GCHPs.

4.3 Learning algorithm, training and
testing samples

There are different learning algorithms to train and test the
FFNN and NARX, including Levenberg-Marquardt and BFGS
Quasi-Newton (Martinez and Martinez, 2015). In this study, the
Levenberg-Marquardt method is selected owing to its popularity
and high speed. The simulated data from the TRNSYS simulation
are used to train and test both the FFNN and NARX models. As
explained in Section 3, there are different thermal loading conditions
for heat pumps under different shave factors and climate conditions.
This covers in total over 80 different operational conditions across
three locations in Australia (Table 3). The trained FFNN and NARX
models are then tested by several operational conditions in other
three locations (Table 3). The Root Mean Square Error (RMSE) and

FIGURE 8
Structure of a FFNNmodel to calculate the COP of 20 kWGCHP.

FIGURE 9
Structure of the NARX model for GHE.
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Absolute Square Error (MAE) are used to quantify the performance
of these models.

4.4 Prediction results from ANNs

Based on the models and algorithm mentioned above, this
section presents the prediction results from the two ANN
networks. The first FFNN model predicts the COPGSHPhr and the
second NARX model the hourly inlet and outlet temperature of the
corresponding horizontal GHEs (GHE inlet and GHE outlet) in
many other untrained test locations (Table 3).

4.4.1 COP prediction from FFNN
This section presents the results comparing the FFNN

predictions with the respective time-consuming TRNSYS

simulations. As an example, Figure 10 shows this comparison for
the test case in VIC and 100% shave factor (Case 4 in Table 4). The
results from the FFNN prediction of the COPGSHPhr compare
reasonably well with the simulation results from TRNSYS. Apart
from the data points when the heat pump is not in operation (when
COPGSHPhr is zero), 84% of the data points fall within the ±10% error
band. These results suggest that the FFNN model may not be able to
understand the impact of weather conditions on COPGSHPhr

extremely well at this stage.
A more holistic view of the testing results considering 11 other

cases (and including both FFNN and NARX results discussed later)
can be seen in Table 4, showing the RMSE and Mean Absolute
Square Error (MAE). The results are reasonably consistent in all the
test cases. Moreover, Figure 11A shows the COPGSHPhr distribution
of all the variations (changes in S) for the three testing locations.
Similar to Case 4, the results are in a reasonable agreement with
TRNSYS simulation, with about 80% of the data having an error
less than ±10%.

All the results presented here are based on having 10 neurons in
the hidden layer. Figure 12 shows the RMSE with the number of
neurons in the hidden layer for all cases, showing that the optimum
number of neurons that minimises the error is about 10.

4.4.2 Temperature predictions from NARX
The results for the temperature predictions using NARX are

overall very promising. As shown in Figure 13A (Case 5, with a
25% shave factor test case in SA), the prediction results for the
GHE inlet temperature from the NARX models compares well
with the simulation results from the TRNSYS simulations for the
test farm in VIC. The results are in a reasonable agreement with
the TRNSYS simulation, with about 95% of the data having an
error of less than ± 5%. Moreover, when considering all the
testing cases, 98% of the results have an error of less than 1°C, and

FIGURE 10
Hourly COP from TRNSYS simulation vs. ANN prediction (100%
shave factor test case in VIC).

TABLE 4 RMSE and MAE for test cases.

Test cases COPGSHPhr GHE inlet GHE outlet

No. Location Shave Factor RMSE (−) MAE (−) RMSE (°C) MAE (°C) RMSE (°C) MAE (°C)

1 Victoria 25% 0.085 0.061 0.287 0.069 0.150 0.038

2 50% 0.112 0.080 0.359 0.097 0.184 0.050

3 75% 0.072 0.056 0.411 0.116 0.210 0.058

4 100% 0.069 0.053 0.437 0.124 0.224 0.061

5 South Australia 25% 0.107 0.076 0.279 0.064 0.146 0.036

6 50% 0.086 0.066 0.344 0.087 0.177 0.044

7 75% 0.078 0.062 0.391 0.102 0.201 0.051

8 100% 0.076 0.061 0.483 0.120 0.256 0.058

9 Botswana 25% 0.079 0.054 0.298 0.061 0.155 0.031

10 50% 0.091 0.070 0.339 0.076 0.176 0.038

11 75% 0.079 0.063 0.362 0.082 0.188 0.040

12 100% 0.074 0.058 0.372 0.084 0.192 0.040

Average 0.084 0.063 0.364 0.090 0.188 0.045
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96.3% of the data points fall into the ±5% error range as depicted
in Figure 11B, which shows the GHE inlet error distribution of all
testing cases. The results also show a reasonable consistency in all
the test cases, with a slightly lower error when the shave factor is
low (Table 4).

Figure 13B presents the analogous results for the GHE outlet
temperature (Case 5, with a 25% shave factor test case in SA),
showing that the prediction results of the from the NARX prediction
compare very well with those obtained via the TRNSYS simulation.
Approximately 99% of the results have an error of less than 1°C, and
approximately 98% of the data points fall into the ± 5% error range.
When considering the overall analysis and all other testing cases
(Table 4), the results also show reasonable consistency, with a
slightly lower error when the shave factor is low. Figure 11C
shows the GHE outlet error distribution of all 12 testing cases.

5 Discussions

Following the results presented above, this section further
discusses the key findings, limitations, and highlights of this study.

5.1 Highlights of this study

Our approach champions the principle of Occam’s Razor, which
advocates for using the simplest tool to solve complex problems. In
this context, our expertise in mechanical and geotechnical
engineering has led us to employ the NARX model with inputs
that physically linked with the phenomena we are investigating,
which has proven to yield accurate predictions.

The two ANN prediction models can obtain the COP (FFNN
model) and the GHE inlet and outlet temperatures (NARX model)
of hybrid GCHP systems with horizontal GHEs in rural industries.
The models only require three input parameters and have been
shown to perform reasonably well.While the architecture of our
Artificial Neural Network (ANN) model is simple, it is the training
with dataset that physically linked with the phenomena of the NARX
model within this framework that sets our approach apart. By
leveraging our expert knowledge and experience, we have
designed a straightforward set of inputs that effectively captures
the intricacies of GCHP performance in various locations. This
ultimately enhances the capability of our approach to accurately
predict GCHP performance in these settings.

Looking at the results closely, an interesting observation is that
there seems to be a trend for the FFNN to underestimate the COP
during the peak of winter when the heat pump is under full loading.
This is possibly caused by the limited sets of feature variables. As the
performance of GCHPs is determined by the inlet and outlet
temperatures of the building side and the ground side, the
feature variables may not contain enough information for a
perfect prediction. If the inlet and outlet temperatures are used
as inputs, the prediction of the performance of the GCHPs could be
improved. However, this will make the FFNN less practical as the
GHE inlet and outlet temperatures are normally difficult to obtain.

Another highlight of this work is that the ANNs have been tested
with a broad selection of cases. Trained with the simulated dataset in
three locations from TRNSYS, the ANNs can predict the
performance of the GCHPs and the horizontal GHEs in other
untrained locations reasonably well. This suggests a
generalisation ability for the ANN model that can potentially be
widely used in prediction, optimisation, and control problems. Even
though one limitation is that the ANN is only for a 75-m-long trench

FIGURE 11
Error distribution for all testing cases: (A) COPGSHPhr , (B)GHE inlet
temperature, (C) GHE outlet temperature.

FIGURE 12
RMSE for different numbers of neurons in hidden layer.
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with 300 m of pipes, it can still benefit the designers as a comparison
metric or by comprising the loops for one heat pump by a
combination of several 75-m trenches. Since hourly simulation
data for horizontal GHES are not available in any commercial
software at this stage, the results from this ANN can provide the
designers with some confidence.

Finally, a comparison between the computational time of the
ANN, TRNSYS simulation and finite element simulation are shown
in Table 5. This table summarised the computational time of 1-year
simulation (time step in 1 hour) for the inlet and outlet temperature
of horizontal GHEs. A typical personal computer was used to run
these simulations (Windows 7, i7-5600UCPU, 16 GB of RAM), for a
fair comparison and to showcase the methodology’s accessibility.
The ANN and TRNSYS model were as described previously in
this paper.

The Finite Element Modelling (FEM) model was developed in
COMSOL Multiphysics (Bidarmaghz, 2015) and is based on the
coupling of the governing equations of heat transfer (energy
balance) and fluid flow (momentum and continuity) similarly as
in (Bidarmaghz et al., 2016b; Jensen-Page et al., 2018) but with
horizontal GHEs. The heat transfer mechanism in this model is
primarily the heat conduction in the soil, the pipe walls, and partly in
the carrying fluid and the heat convection in the carrying fluid. The
FEM model is solved with similar boundary conditions as the
TRNSYS model (i.e., adiabatic conditions on four sides of the
field, The outdoor temperature on the top and the undisturbed
ground temperature at the bottom). The details of the FEM model
can be found in the recent research (Zhou et al., 2021).

In terms of a direct comparison with other approaches, we must
emphasize the limitations of commercial software in predicting
hourly temperature for horizontal GHEs. Additionally, widely-
used simulation software such as COMSOL and TRNSYS require
significantly longer time (up to 10,000 times more) and input-
intensive processes, making them less practical for predicting GCHP
performance.

We firmly believe that our approach, with its successful
implementation of the NARX model and focused inputs, offers a
more capable solution for accurately predicting GCHP performance
in various locations.

5.2 Limitations and recommendations for
future studies

Even though the COPGSHPhr can possibly be estimated from the
GCHP technical specification sheets based on the temperature
returning to the heat pump (outlet), these specifications are
estimates and overly simplified, and can suffer from
compounding errors (i.e., carrying forward errors in estimating
the outlet temperature). Given the reason above, the use of two
different ANN models, the first one for the prediction of COPGSHPhr

and the second one for the temperatures, seems to be a better
alternative.

This investigation proposed a NARX model that can predict the
inlet and outlet temperatures, and from a statistical perspective, the
results can be considered reasonably good as 99% of the results have
an error less than 1°C. However, since the temperature difference
(ΔΤ) between inlet and outlet is an important parameter for the
performance of the system and ΔT for these systems is typically in
the range of 1°C–5°C, errors from the NARX predictions can be
propagated in the ΔΤ calculations and be significant. However, it is
worth noting that the error of 1°C of the NARX predictions for the
inlet temperature and outlet temperature of GHEs does not
necessarily represent a high error in the temperature difference,
as both inlet and outlet temperatures can be equally over- or
under-predicted.

FIGURE 13
Hourly GHE temperatures from TRNSYS simulation and ANN: (A) GHE inlet, (B) GHE outlet.

TABLE 5 Computational time comparison for ANN, TRNSYS, and FEM
simulation.

One year simulation Computational time (mins)

ANN 0.5 to 1

TRNSYS 80 to 100

FEM in COMSOL Multiphysics 8,000 to 10,000 (estimated)
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To further enhance the applicability and validity of using
machine learning approaches with horizontal geothermal systems,
future work aims to incorporate more complex (deep) neural
network architectures as well as other predictive models. This
work focused on relatively simple ANN architectures, as more
complex models can be more time-demanding, harder to adopt
by engineers, scientists, and practitioners, and often too specific for a
wider adoption. However, these models can also significantly
increase accuracy and therefore a comprehensive comparison can
be beneficial. Another potential avenue for expansion is
implementing on-line training, which can be relevant in a
context of a system controller.

Additionally, future studies can investigate the impact of
temperature difference on the accuracy of the predictions. This
will help to provide a more comprehensive understanding of the
analysis of GCHP and GHE systems. Furthermore, studies can be
extended with consideration of thermal conductivity, initial ground
temperature as well as trench distance, as these parameters directly
affect the performance of the GHEs.

6 Conclusion

This article presented an investigation of the applicability of a
hybrid GCHP system with horizontal GHEs in the poultry industry
with unique heating dominant thermal load requirements. A
TRNSYS simulation model for the performance of the system
was developed and utilised to generate data for the ANN model.
Statistical machine learning approaches (Artificial Neural Networks
ANN) were adopted and fine-tuned to accelerate
computational times.

In horizontal GCHP systems, no annual cumulative effects were
observed since the natural thermal recharge of the horizontal GHEs
is sufficient to restore the ground to its initial state, even under
extremely imbalanced load conditions. This allows for the
simulation of only 1 year of operation to provide insight into
long-term system performance. It was also observed that there is
a decreasing trend in the performance of the GCHP system when the
shave factor is increasing. This may be counterintuitive, but it has
been proven to be the effect of the partial load on the heat
pump. This observation also suggests that, when designing a
hybrid geothermal system, the sizing of the GCHP needs to be
analysed in detail.

Since hourly simulation data for horizontal GHEs are not
available in commercial software at this stage and numerical
approaches, including TRNSYS simulations or FEM, can be
computationally expensive, two different ANNs for the prediction
of the performance of GCHPs and horizontal GHEs were developed
and introduced. Trained with the simulated dataset from the
TRNSYS results for three different locations, the ANNs can
predict the performance of the GCHPs in other untrained
(previously unseen) locations reasonably well (less than 5% error
in COP for most cases) and the performance of horizontal GHEs
reasonably well (less than 3% error in GHE water temperature error
for most cases). This suggests that the ANN models developed here
can potentially be widely used in prediction, optimisation, and
control problems for similar sites and conditions.

A computational time comparison of the ANN predictions and
TRNSYS and FEM simulations was presented. The results showed
ANNs can predict reasonably well and 100 times faster than
TRNSYS simulations and approximately 10,000 times faster than
FEM simulations. Overall, it is believed that this work will contribute
to the wider application of ANNs in GCHP systems.
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