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Short-term power load forecasting is the basis for ensuring the safe and stable
operation of the power system. However, because power load forecasting is
affected by weather, economy, geography, and other factors, it has strong
instability and nonlinearity, making it difficult to improve the accuracy of
short-term power load forecasting. To solve the above problems, a load
forecasting method combining empirical modal decomposition (EMD) and
long short-term memory neural network (LSTM) has been proposed. The
original signal is first decomposed into a series of eigenmode functions and a
residual quantity using the EMD algorithm. Subsequently, all the components are
fed into the LSTM network. To further improve the load prediction accuracy, a
self-attention mechanism is introduced for large component signals to further
explore the internal correlation of the data, and the Sparrow Optimisation
Algorithm (SSA) is used to optimize the LSTM hyperparameters. Combining
EMD, LSTM, self-attention mechanism (SAM), and SSA, the EMD-SSA- SAM
-LSTM method for short-term power load forecasting is further proposed.
The results show that the coefficient of determination (R2) of the method is
0.98, themean absolute error (MAE) is 0.013, the rootmean square error (RMSE) is
0.018, and the mean absolute percentage error (MAPE) is 2.57%, which verifies
that the proposedmodel can improve the accuracy of load forecasting, and has a
certain application prospect.
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1 Introduction

Accurate short-term power load forecasting is crucial to the economical, safe, and stable
operation of the power system. In recent years, with the continuous development of clean
energy, distributed energy in the power grid is increasing, resulting in new energy
consumption in the power grid, transformer heavy overload and main transformer
reverse power delivery and other problems are becoming more serious. To solve the
above problems, the relevant departments of the State Grid should formulate an orderly
power consumption plan, and reasonably arrange the power generation, transmission, and
power supply, and these plans are highly dependent on the accurate power load forecast.
Therefore, it is important to improve the accuracy of power load forecasting.
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Since short-term power loads are commonly used in daily or
weekly scheduling plans, which have a guiding effect on the grid
scheduling department, most domestic and international
researchers are committed to improving the accuracy of short-
term power load forecasting. Traditional load forecasting
methods include exponential smoothing, autoregressive
integral sliding average model, multiple linear regression, and
Weighted Moving Average (Chapagain and Kittipiyakul, 2018;
Lee et al., 2018; Rosnalini et al., 2019; Nuo et al., 2023). Although
these methods have good interpretability and fast computational
speed, these methods are less robust and perform poorly in
predicting large amounts of data and sudden power loads
(Nuo et al., 2023). With the development of deep learning and
the improvement of computer arithmetic power, deep learning
has become a mainstream load forecasting method. Deep
learning-based time series prediction methods include
Convolutional Neural Networks (CNN), Recurrent Neural
Networks (RNN) (Kang et al., 2020), Long Short-Term
Memory (LSTM) (Gan et al., 2017; Kong et al., 2018), and
Transformer, among others. The above methods are either
capable of extracting features of time series or enabling
memory of time series through gating units, all of which make
them sensitive to time series data. Moreover, LSTM is the most
commonly used load forecasting algorithm because it can solve
the gradient explosion and gradient vanishing phenomena in
RNN by extracting the time series features through input gates,
memory gates, and output gates (Torres et al., 2021). For
example, Xu Wu et al. added the Global Context Transformer
module to LSTM for short-term wind power prediction while
cleaning the data, and improved the prediction error in 12h and
24 h prediction, respectively (Wu et al., 2023). Wang Ye et al.
used a multilayer inflated LSTM network combined with an
attention mechanism for short-term power load forecasting
and finally verified the effectiveness of the proposed method
(Ye et al., 2023).

Due to the poor generalisation ability of individual LSTM
models and the numerous hyperparameters of LSTM that are
difficult to tune, some researchers have worked on combining
LSTM with other methods. One common practice is to combine
LSTM with other neural networks for time series prediction. For
example, Ding Guili et al., 2023 combined a convolutional neural
network with the pooling of multilayer spatial pyramids and LSTM
with the allocation of attention mechanism for short-term power
prediction of wind farm clusters and finally proved experimentally
that the method can effectively improve the prediction accuracy of
wind farm clusters under excessive weather. Zhong Bin proposed
combining an artificial neural network, LSTM, and Transformer for
power load prediction and finally verified the effectiveness of the
method through multiple datasets (Bin, 2023). Jun Tang et al., 2024
combined the local attention mechanism with LSTM for short-term
load prediction of total electron content in the ionosphere, and the
time series prediction method was able to have good prediction
stability under different geomagnetic conditions and different
months. Another approach is to combine LSTM with signal
decomposition methods. For example, Cheng Nuo et al. proposed
the combination of variational modal decomposition, Prophet, and
LSTM for electric vehicle load forecasting, which can effectively
improve load forecasting accuracy compared with traditional

methods (Nuo et al., 2023). Zhiyi Zhou et al. combined empirical
modal decomposition (EMD) and LSTM for short-term wind power
prediction, which can effectively improve the accuracy of wind
power prediction (Zhou et al., 2023).

To improve the load prediction accuracy in one step, some
approaches combine optimization algorithms with LSTM to
optimize the hyperparameters of LSTM. For example, Zhang
Daohua et al. Use Bayesian optimization of hyperparameters of
CNN-BiLSTM for smart grid load forecasting (Xiao et al., 2024a).
Yong Mao Zhu et al. used a particle swarm optimization algorithm
to optimize the hyperparameters of LSTM for power load
forecasting and demonstrated that the method can improve load
forecasting accuracy (Xiao et al., 2024b). Based on the above studies,
considering the inherent nonlinearity of power loads themselves and
the fact that EMD can decompose non-smooth signals into a series
of intrinsic modal functions (Zhou et al., 2023), the article combines
EMD with LSTM for load forecasting to reduce the nonlinearity of
loads. In addition, for large component signals article also
introduces Self-Attention Mechanism (SAM) and Sparrow Search
Algorithm (SSA), which are used to further explore the relationship
between different batches of data and to enhance the generalisation
ability of the model, respectively, and finally form the EMD-SSA-
SAM-LSTM method for load prediction. The contributions of this
paper are as follows:

1) Combining EMD with deep learning algorithms reduces the
bilinearity and instability of raw load data.

2) Introducing SSA to optimise hyperparameters of deep learning
algorithms to improve generalisation of load
forecasting models.

3) Combine SAM with LSTM to further mine the correlation
between different batches of samples.

The remaining parts of this paper are arranged as follows: the
second part mainly introduces the theoretical background of the
load forecasting method in this paper, the third part introduces the
overall framework of the load forecasting method in this paper, the
fourth part is the experiments and analyses of the EMD-SSA-SAM-
LSTM forecasting model, and the fifth part asks for a summary of
the paper.

2 Introduction to the theory of EMD-
SSA-attention-LSTM approach

In this section, the principle of EMD and SSA, the model
architecture of Attention and LSTM are introduced.

2.1 Empirical modal decomposition principle

The raw load data is firstly input into EMD and decomposed
into several smoothed signals. Where EMD is mainly used to analyze
non-stationary and non-linear signals (Zhou et al., 2023). The raw
signal is decomposed into a series of eigenmode functions and a
residual term. The computational equation is given below

A � IMF1 + IMF2 + · · · + IMFm + Residual (1)
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where A is the original signal, IMFm is the mth eigenmode function,
and Residual is the residual term.

The schematic diagram of the first eigenmode function obtained
by EMD decomposition is shown in Figure 1, where the black curve
is the real curve of the load noted as S1, the red curve is the curve of
the extreme value and the curve of the very small value of the real
value of the load noted as S2 and S3, respectively, and the blue curve

is the average of the curves of the very large value and the very small
value of the curve noted as S4. The specific decomposition steps are
as follows:

1) For a given original signal, find the maximum and minimum
value points, and form the maximum and minimum value
envelopes to obtain S2 and S3;

FIGURE 1
EMD decomposition principle.

FIGURE 2
Self-attention mechanism principle flowchart.
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2) Average the maximum and minimum envelopes to obtain S4;
3) Subtract S4 from the original signal to obtain a new signal

called S5, if S5 meets the requirements of the eigenmode
function, the decomposition is completed, and S5 is used as
the first eigenmode function. Otherwise, continue the above
steps with S5 until the first eigenmode function is obtained;

4) Subtract the first eigenmode function from the original signal
to form a new signal, and use the new signal as the original
signal in the above operation. Finally, a series of eigenmode
functions and a residual term are obtained, i.e., several signals
that are smoother than the original signal.

2.2 Principles of the self-
attention mechanism

The decomposed signal is divided into a large component signal
and a small component signal, where the large component signal
and the small component signal differ by one order of magnitude,
and the large component signal is input to the SAM and the small
component signal is input to the LSTM. Among them is the
Attention Mechanism, which is an approach to mimic human
attentional behavior and is used in deep learning to process
sequential and other structured data (Vaswani et al., 2017). For
time series data, the core idea of the attention mechanism is to
extract the data that is relevant to the current data, while giving
smaller weights to irrelevant data to determine the query, keyword,
and answer matrices through training.

The schematic diagram of the multiple heads attention
mechanism is shown in Figure 2, where Q, K, and V denote
Query, Key, and Value respectively. Denotes query, keyword, and
answer respectively. Multiple heads denote the number of multiple
heads of the self-attention mechanism. The expression formula is
as follows.

Q � WQX (2)
K � WKX (3)
V � WVX (4)

Where X denotes the input vector and WQ,WK, and WV denote
the initialized weight matrices of Q, K, and V.

Finally, the result of the dot product attentionmechanism can be
calculated based on the Q, K, and V vector values as shown in the
following equation.

Attention Q,K,V( ) � softmax
QKT��
dk

√( )V (5)

where dk denotes the word vector dimension of Q and K.
Secondly, the computational procedure for the multiple

attention mechanism is as follows.

MultiHead � Concat head1, head2,/, headn( )W0 (6)
headi � Attention QWQ

i , KW
K
i , VW

V
i( ) (7)

where headn denotes the nth level of multi-head operation. After the
self-attention mechanism for joining the LSTM layer after the self-
attention mechanism layer a fully connected layer is added.

2.3 LSTM

The EMD-decomposed small signals and the SAM-composed
large-component signals are input into different LSTM models for
prediction, respectively. Among them, the LSTMmodel is developed
from RNN, which avoids the problems of gradient vanishing and
gradient explosion in RNN backpropagation to a certain extent
(Torres et al., 2021).

The LSTM minimal cell is shown in Figure 3, where σ is a
sigmoid function, Ct is the memory information output by this cell,
ht is the output of this cell, Ct-1 is the memory information output by
the previous cell, ht-1 is the output of the previous cell,mt denotes the
input data of this cell, and tanh is an activation function.

Where the sigmoid function and the tanh function as

σ x( ) � 1
1 + exp −x( ) (8)

tanh x( ) � exp x( ) − exp −x( )
exp x( ) + exp −x( ) (9)

The input information of this cell and the output information of
the previous cell are superimposed and the useless information is
filtered out by the sigmoid function as

ft � σ Wf · ht−1, xt[ ] + bf( ) (10)

whereWf and bf are the weight matrix and bias matrix, respectively.
The input gate determines the extent to which the current input

data enters the cell state, and the data updates the cell state through
the input gate which is.

it � σ Wi · ht−1, xt[ ] + bi( ) (11)
C̃t � tanh Wc · ht−1, xt[ ] + bc( ) (12)

The memory information of this cell is updated through the
superposition of the forgetting gate and the input gate, as follows.

Ct � ft · Ct−1 + it · C̃t (13)

The output of the LSTM unit is integrated by a stack of updated
memory information and input information, which can be
expressed as.

FIGURE 3
LSTM minimal cell.
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ot � σ Wo ht−1, xt[ ] + bo( ) (14)
ht � ot · tanh Ct( ) (15)

The output of each LSTM unit is linked to the next layer of a
neural network to finally get the output of the model.

2.4 Principle of sparrow search algorithm

SSA is a population intelligence optimization algorithm that
mimics sparrow foraging. In this paper, the sparrow search
algorithm is used to optimize the hyperparameters of LSTM. The
specific principles of sparrow search will be described below.

As shown in Eq. 16, using the matrix X to represent the sparrow
population.

X �
x11 x12 / x1d

x21 x22 / x2d

..

. ..
. ..

. ..
.

xn1 xn2 / xnd

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (16)

Where n denotes the number of sparrow populations, d denotes
the number of LSTM hyperparameters to be optimized, and x
denotes each sparrow in the sparrow population.

Based on the hyperparameters of each set of LSTMs, n fitness
function values can be obtained, which can be expressed as.

Fx �
f x11, x12,/, x1d( )
f x21, x22,/, x2d( )

..

.

f xn1, xn2,/, xnd( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (17)

FIGURE 4
Program flow chart.
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Within this set of fitness functions, there is a best fitness
function, that is, a set of hyperparameters of the LSTM for which
the fitness function takes the smallest value, which can be
described as

best1 � xn1, xn2,/xnd[ ] (18)

After that, the sparrow population will be divided into two kinds,
the sparrows that are closer to the best fitness function are called
discoverers, and the sparrows that are farther away from the best
fitness function are called followers. After obtaining the best fitness
function, the position of the discoverer and the follower will be
changed, where the position of the discoverer is updated as follows

xt+1
i,j �

xt
i,j · exp

−1
α · itermax

( ) if R2 < ST

xt
i,j + Q if R2 ≥ ST

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (19)

Where itermax denotes the set maximum number of iterations set
in the sparrow search algorithm, α denotes a uniform random
number of [0,1], Q denotes a standard normal random number,
R2 denotes that a predator is a random number of [0,1], ST denotes
the value of the warning that the finder has found the predator, xi,
jt+1 denotes the position after the update, and xi, jt denotes the
position before the update.

The follower positions have been updated as follows

xt+1
i,j �

Q · exp xt
worst-x

t
i,j

i2
( ) if i> n

2

xt
best-

1
d
∑d
j�1

xt
i,j-x

t
best

∣∣∣∣∣ ∣∣∣∣∣ · rand -1, 1( ) otherwise

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩ (20)

Where xtworst denotes the sparrow that represents the least
adapted sparrow in the current population and xtbest denotes the
best adapted sparrow in the current population.

Eventually, a set of LSTM parameters for optimal fitness is found
through continuous iterative updating.

3 EMD-SSA-SAM-LSTM based load
forecasting model

3.1 Short-term electricity load
forecasting framework

The specific process is shown in Figure 4 as a flow chart of the
procedure, where a is the current iteration number of SSA, which
can be divided into four steps:

Step 1: First, the raw load data is decomposed into several small
component signals and one large component signal using EMD;
Each component is spliced with the feature data and subjected to

FIGURE 5
Model input data shape.
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data deletion, addition and normalisation, where the normalisation
process uses the maximum-minimum-value normalisation method
to normalise the data to [0,1]; And the initial LSTM load prediction
model framework is constructed.

Step 2: Secondly, the decomposed signals are divided into large-
component signals and small-component signals, and the small-
component signals are predicted using the traditional LSTM model;
The dataset is divided into a training set and a validation set, and the
data from the training set is used to train the LSTM model by the
Adam’s Gradient Descent Algorithm; then the loads are predicted
on the small-component signals using the trained model. It is worth
mentioning that Adam is one of the most popular and commonly
used optimisers for neural network training, which adjusts the
learning rate based on historical gradient information and
combines the advantages of AdaGrad and RMSProp to improve

the efficiency of model training. And the dropout layer is introduced
in the model training process to prevent the normalisation
phenomenon.

Step 3: Again, the SSA-SAM-LSTM model is used for
prediction for large component signals; first determine whether
SSA reaches the maximum number of iterations, and if it fails to do
so, update the parameters of the LSTM model to be optimized
through SSA, use the SAM-LSTM model for load prediction, and
record the optimal fitness value and corresponding model
parameters in the current sparrow population; if the maximum
number of iterations has been reached, then use the LSTM model
parameters under the optimal fitness value for load prediction to
obtain the load prediction results under large component. Number
of iterations, then use the LSTM model parameters under the best
fitness value for load prediction and obtain the load prediction
results under a large fraction.

Step 4: Finally, the load forecast results of the small component
are combined with the load forecast results of the large component
to obtain the final load forecast results.

3.2 Model inputs and outputs

The shape of the input data for the model is shown in Figure 5,
where the horizontal axis is the number of features F, the vertical axis

FIGURE 6
Heat map for correlation analysis.

TABLE 1 Evaluation indicators after adding different characteristics.

Metrics features R2 MAE RMSE

R_X 0.95 0.024 0.031

Week 0.96 0.023 0.029

Quarter 0.94 0.030 0.036

All 0.96 0.024 0.030
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is the time step T, and the vertical axis is the length of the
input data S.

If time is considered as a dimension, the input to the model is
three-dimensional data, while the input to the model at a given point
in time is two-dimensional data, and one of the dimensions of that
two-dimensional data is the number of features F = 6 consisting of
historical load data and feature data, where the feature data include
temperature, rainfall, date, and day of the week data, among others;
The other dimension is the length of the input data S = 96, with one
data point taken every 15 min, i.e., 1 day’s load. The amount of data
entered into the model at a time is 96*6, i.e., a matrix of 96 rows
and 6 columns.

The output of the model is load data for the day ahead, i.e.
96 load points are obtained each time the load forecasting
model is used.

4 Example analysis of EMD-SSA-SAM-
LSTM based prediction model
algorithms

To verify the effectiveness of the EMD-SSA-SAM-LSTM method,
the article uses the load data from Question A of the Ninth
Electrotechnical Mathematical Modelling Competition for the
experiment. The experiment uses Pycharm compiler and is
implemented in the Anaconda environment with Tensorflow-gpu
deep learning framework version 2.6.0 and RXT3070Ti graphics card.

4.1 Feature selection

In this paper, 3 years of load data were used, with one data point
every 15 min, i.e., 96 data points per day. To avoid data redundancy,

the Pearson correlation coefficient method [25] was used to correlate
the input features.

The correlation analysis of the input features is shown in
Figure 6, where Load denotes the load data, Day denotes the date
data, T_h denotes the maximum temperature in a day, T_l denotes
the minimum temperature in a day, T_p denotes the average
temperature in a day, R_x denotes the rainfall in a day, Week
denotes the weekly data and Quarter denotes the seasonal data.
From the heat map, it can be seen that the correlation coefficient
between the rainfall data and the load data is 0.069, which is a low
correlation, therefore, the rainfall data is removed from the
input features.

For experimental comparisons, four model evaluation metrics
are used in the paper, namely, the coefficient of determination (R2),
the mean absolute error (MAE), the root mean square error (RMSE),
and the mean absolute percentage error (MAPE) (Li et al., 2023), as
follows:x.

1) R2:

R2 � 1-
∑n
i�1

yi-yi
,( )2

∑n
i�1

yi-yi
,,( )2 (21)

2) MAE:

MAE � 1
n
∑n
i�1

yi
,-yi

∣∣∣∣ ∣∣∣∣ (22)

3) RMSE:

FIGURE 7
Raw load waveform.
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RMSE �
����������
1
n
∑n
i�1

yi
,-yi( )2√

(23)

4) MAPE:

MAPE �
�������������
1
n
∑n
i�1

yi
,-yi( )/yi

2

√
(24)

Where n denotes the number of predictions, yi’’ denotes the
predicted value, yi denotes the actual value, and yi’’ denotes the
average of the true values.

The evaluation indexes of the load forecasting model under
different features are shown in Table 1, where the feature terms
indicate the features added to the basic features. From Table 1, it
can be seen that the R2 of adding weekly features to the basic
features is 0.96, the MAE is 0.023 and the RMSE is 0.029 as
compared to the load prediction error under other features.
Finally, the load, daily maximum temperature, daily minimum
date and day of the week were selected as input features for
the model.

4.2 Analysis of projected results

As Figure 7 shows the original load waveform, Figure 8 shows
the waveform after empirical modal decomposition. Where IMF1 to
IMF4 are the decomposed eigenmode functions and IMF5 is the
residual quantity.

The final prediction results are shown in Figure 9, where the red
line indicates the curve predicted by this model, which is closest to
the true value.

As shown in Table 2 for the evaluation metrics of the different
models, it can be seen that the EMD-SSA-SAM-LSTM method has an
R2 of 0.98, an MAE of 0.015, an RMSE of 0.019, and a MAPE of 2.04%.
There is a maximum coefficient of determination and minimum error.
It is verified that the model can improve the load forecasting accuracy.

5 Conclusion

In this paper, a load forecasting model combining the EMD
method, SSA, and LSTM neural network is proposed to improve

FIGURE 8
EMD decomposition.
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short-term load forecasting accuracy. Firstly, EMD is used to
separate the base load from the randomly fluctuating load, which
reduces the nonlinearity of the load. The large component load data
is fed into SAM-LSTM and the small component signals are fed into
LSTM. To further improve the load prediction accuracy, a sparrow
search algorithm is introduced for SAM-LSTM to optimize the
hyperparameters of LSTM. Finally, the large-component signal is
combined with the small-component signal to obtain the final
prediction result.

This paper verifies the validity of the model using the dataset
of Question A of the Ninth Electrotechnical Mathematical
Modelling Competition, and the results show that the R2 of
the proposed EMD-SSA-SAM-LSTM method is 0.98, the MAE
is 0.013, the RMSE is 0.018, and the MAPE is 2.57%. Having
maximum R2 and minimum error can improve the load

forecasting accuracy. This method also has some shortcomings
and cannot consider the reduction of model training time, we will
try to research in the direction of reducing the time of model
training and prediction in the future.
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FIGURE 9
Comparison of load forecast results.

TABLE 2 Model evaluation indicators.

Metrics models R2 MAE RMSE MAPE

LSTM 0.958 0.021 0.025 0.0439

SSA-LSTM 0.965 0.017 0.024 0.0314

SAM-LSTM 0.971 0.017 0.022 0.0317

EMD-SSA-SAM-LSTM 0.980 0.013 0.018 0.0257

Bold values shows the model evaluation metrics of the method proposed in this paper.
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