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With the rapid growth of the digital economy, data centers have emerged as
significant consumers of electricity. This presents challenges due to their high
energy demand but also brings opportunities for utilizing waste heat. This paper
introduces an operation optimizationmethod for multi-energy systems with data
centers, leveraging the information gap decision theory (IGDT) to consider
various uncertainties from data requests and the environment. First, a model is
established for the operation of a multi-energy system within data centers,
considering the integration of server waste heat recovery technology. Second,
IGDT is employed to address uncertainties of photovoltaic output and data load
requests, thereby formulating an optimal energy management strategy for the
data center park. Case studies demonstrate that the electricity purchase cost
increased by 5.3%, but the total cost decreased by 30.4%, amounting to
5.17 thousand USD after optimization. It indicates that the operational strategy
effectively ensures both efficient and cost-effective power supply for the data
center and the park. Moreover, it successfully mitigates the risks associated with
fluctuations in data load, thus minimizing the possibility of data load
abandonment during uncertain periods.
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1 Introduction

With the rapid development of digital technology, data has emerged as a critical production
resource. Data centers, serving as core facilities for data processing and computing, have become
significant consumers of electricity (Hao et al., 2024). The power demand of global data centers in
2022 ranged from 240 to 340 TWh, accounting for approximately 1%–1.3% of global power
consumption (International Energy Agency, 2022). Given this substantial energy consumption,
implementing advanced energy management practices in data centers to enhance energy
utilization efficiency and reduce energy costs holds significant practical importance.

The electricity consumption of data centers mainly consists of three parts: information
technology (IT) devices, cooling devices, and auxiliary devices (Zhang et al., 2021). Among
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these, IT devices account for approximately 50% of a typical data
center’s energy consumption, with almost all consumed electrical
energy eventually transformed into heat. Cooling devices account
for about 40% of all power consumption in data centers, expelling
the heat generated by IT devices to the outside of the room (He et al.,
2021). IT equipment and cooling equipment generates a significant
quantity of waste heat. Leveraging and recovering the waste heat. For
example, through conversion into electricity, thermal energy, or
cooling output, offers a chance to improve the energy utilization
efficiency of data centers even more.

The coordinated optimization of power consumption between
cooling systems and IT devices has been discussed in (Li et al., 2012),
using the metric of power usage effectiveness (PUE), with excess
heat being directly expelled outdoors. Reference (Chen et al., 2021)
considers cooling devices designed to cool the data center, while
excess heat is efficiently expelled outdoors. To convert the waste heat
generated by data centers into thermal resources, it has been
proposed in (Wan et al., 2021) to utilize absorption chillers to
collect waste heat expelled from server racks and reuse it, thereby
improving the energy efficiency of the data center. Moreover, it has
been suggested in (Davies et al., 2016) to elevate the temperature of
waste heat from data centers using heat pumps to enhance the
quality of waste heat resources and supply heat to district heating
networks. In (He et al., 2018), heat pumps are employed to capture
and reuse the waste heat generated by data centers equipped with
distributed cooling devices, consequently improving the energy
utilization efficiency of the data center park.

In a data center park, there are various forms of energy demand,
including the cooling and electricity needs of data centers, as well as
the heating requirements of residential areas. The integration of
waste heat recovery technology into data centers helps establish a
multi-energy distribution system that provides stable heating
services for the living areas within the park. Moreover, it
promotes the incorporation of distributed energy resources, such
as photovoltaic (PV) power generation, thus fostering the utilization
of renewable energy. It is of great significance for promoting the
sustainable development and energy structure optimization of data
center parks. However, within the multi-energy distribution system
that integrates waste heat recovery technology and PV power
generation, significant uncertainty arises regarding both PV
output and data load requests. This uncertainty presents
challenges for data centers in effectively scheduling and
managing the operational status of various devices within the
park, impacting not only the lifespan of IT and cooling devices
but also potentially leading lead to consequences such as inadequate
cooling supply and data load abandonment.

Thus, in researching operation optimization methods for data
centers, it is essential to consider uncertainty factors and develop
operational strategies that account for uncertainties in both PV
output and data load requests. Various methods can be employed to
address these uncertainties in operation. In (Chen et al., 2014), the
Monte Carlo simulation method is utilized to generate random
scenarios, and stochastic optimization is applied to evaluate power
demand response management in distributed large-scale data
centers. The objective is to minimize total power costs under
uncertain conditions by considering various types of data load
tasks. Reference (Yu et al., 2018) proposes a real-time distributed
optimization scheduling method for data centers, addressing

uncertainties related to electricity prices, distributed power
generation, and data loads. This method fully considers the
flexible transfer of different types of data loads in time and
space, aiming to reduce the operating costs of data center
microgrids. A robust planning model is established for data
center parks with uncertainties to balance the operational
economy, reliability, and planning conservatism in (Wang et al.,
2024). Additionally, reference (Lian et al., 2023) presents a flexible
robust multi-objective optimization strategy, considering
uncertainty in wind power output and data load. The strategy
aims to minimize wind power curtailment, data load
abandonment, and the operating costs of data center microgrids.

However, in practical applications, stochastic optimization often
involves significant computational complexity. Moreover, the
challenge of obtaining accurate probability distribution models
leads to less precise models and scenarios that may not
adequately represent practical conditions. On the other hand,
robust optimization tends to yield conservative solutions with
high operating costs (Wu et al., 2022). At the level of the data
center park, the uncertainty of PV output and data load requests is
significant. For newly built data center parks, the information
provided by historical data is limited, making it difficult to
obtain accurate scenario probability distributions. Additionally,
the demand for data load can fluctuate significantly due to user
needs, unexpected events, and other factors. Consequently,
schedulers may struggle to obtain accurate and complete future
data load request information. Therefore, traditional uncertainty
methods may not be effective in optimizing the operations of multi-
energy distribution systems that integrate data centers.

Information gap decision theory (IGDT) is a decision-making
method designed to handle severe uncertainty. It does not require the
probability distribution of uncertain quantities but instead optimizes
the error of uncertain quantities under predefined objectives, thus
determining the potential impacts of uncertain quantities on the
system (Yeganehkia et al., 2023). During the solving process,
uncertain factors are described as interval variables. It aims to
maximize the range of uncertainty variables while ensuring the
minimum expected target value, thereby maximizing the ability to
mitigate the impact of uncertainty on the solution results. In the
context of wind power generation and load demand uncertainty,
IGDT has been applied in scenarios where wind power and electric
vehicles operate jointly to guarantee the safe and stable operation of
the generator units, as discussed in (Ahmadi et al., 2020). To mitigate
the risks posed by the uncertainty of electricity prices, thermal energy
production, and demand response in virtual power plants, reference
(Zhao et al., 2019) proposed strategies based on IGDT, aiming to
maximize profits while effectively managing and mitigating risks.

Overall, current research primarily focuses on enhancing the
operational flexibility of data center cooling systems to elevate energy
efficiency levels, often overlooking the potential utilization of waste heat
generated by data center operations. Moreover, existing studies
commonly rely on traditional stochastic optimization or robust
optimization methods to devise operational strategies for uncertain
environments, which may fall short of effectively addressing
fluctuations in uncertainty. There is a pressing need to develop an
operation optimization method that considers waste heat recovery and
uncertainties. It would facilitate the formulation of operational strategies
for the multi-energy system in the data center park to maximize both
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economic and energy efficiency while striking a balance between
economic viability and reliability.

In this paper, we propose an operation optimization method for
a multi-energy distribution system in a data center park, which is
based on the IGDT theory and considers waste heat recovery for
heating. Firstly, a model of the waste heat recovery system and
thermal segment in the data center park is established. Subsequently,
the IGDT theory was adopted to handle the uncertainty in PV
output and data load requests to establish an operation optimization
method for data center parks in uncertain scenarios. Finally, the
optimization of data center park operation under uncertain
scenarios was achieved, reducing operating cost under fluctuating
conditions. The main contributions of this paper are as follows:

1) An operation model for data centers equipped with a waste
heat recovery system is established considering the dynamic
thermal behaviors of data servers. This model provides a basis
for energy management and operation optimization of the
multi-energy distribution system in the data center park.

2) Anoperation optimizationmethod based on IGDT is proposed for
the data center park, addressing uncertainties of distributed
generation and computational requests. The robustness of the
obtained operational strategy can be significantly enhanced
without compromising economic and efficiency performance

3) The effectiveness of the proposed method is validated using a
typical multi-energy system in a data center park. Through the
coordinated operation of IT devices and cooling/heating
devices, a synergistic supply of electricity and heat within
the park can be achieved, resulting in a reduction in
operating costs by 30.44%.

The organization of this paper is introduced as follows. Section 2
establishes the waste heat recovery model and the thermal segment
model, in which the space thermal inertia is considered. Section 3
describes the operation optimization method for the data center
park. Case studies based on the modified practical network and the
specifications for data center design are conducted in Section 4.
Finally, conclusions are drawn in Section 5.

2 Models of the multi-energy
distribution system in the data
center park

In this section, the waste heat recovery system model and the
thermal segment model of the multi-energy distribution system in the
data center park were established. The waste heat recovery system
model encompasses operatingmodels for the heat pump, electric boiler,
thermal storage tank, and heat exchanger. Based on the law of energy
conservation, the thermal segment model encompasses two parts: the
thermal inertia model of the data center room and the living area.

2.1 Waste heat recovery system model for
the data center park

A typical data center park is chosen as the primary research
subject. To investigate the process of utilizing waste heat from the

data center, this paper primarily focuses on the heating season for
operational scheduling. Further, heating for the living area of the
data center park is provided based on the strategy. The energy
supply structure is depicted in Figure 1. The system is connected to
the grid and supplemented by a PV system to meet electricity
demands. It includes heat exchanger equipment, a heat pump
unit, an electric boiler, and a thermal storage tank. During the
heating season, waste heat recovery and heating are realized. The
system operates without considering the start-stop cycles of various
energy conversion equipment, and all equipment is operated
continuously.

During the heating season in the data center park, the electricity
demand of the park is met by both the external power grid and the
PV system. The heat pump unit and electric boiler convert electricity
into heat for thermal supply, while the thermal storage tank
regulates the peak and off-peak energy of the park. During
operation, a substantial quantity of electrical energy consumed by
the multitude of IT devices deployed in the data center room is
converted into heat energy. This heat energy is collected through the
waste heat recovery system and transferred through heat exchangers
to collect the heat. The collected heat is then sent to the heat pump
unit, where low-grade heat energy is converted into high-grade heat
energy, as shown in Figure 2. The park is equipped with an electric
boiler, which supplements the heat energy based on the utilization of
the recovered waste heat to fulfill the heating requirements of the
living area within the data center park (Ding et al., 2019). Any excess
heat is discharged outdoors.

Based on the above process, the total energy consumption of the
data center can be summarized by Eq. 1, where the energy
consumption of auxiliary devices can be indicated by a function
of PIT

t .

PDC
t � PIT

t + PCO
t + PL

t (1)
PL
t � PL

0 + χPIT
t (2)

where PDC
t represents the total power consumption of the data

center during period t, PIT
t denotes the power consumption of IT

devices during period t, PCO
t represents the power consumption of

cooling devices during period t, PL
t denotes the power consumption

of auxiliary devices during period t, PL
0 is the fixed part of auxiliary

device consumption, and χ is the coefficient representing the ratio
between the power consumption of auxiliary devices and IT devices.
The operational structure of the data center park with waste heat
recovery is illustrated in Figure 3.

The total power consumption PIT
t of various IT equipment that

can be deployed within a data center can be indicated as (Jian
et al., 2024):

PIT
t � ∑Nk

k�1M
ser
k Pser

k,t (3)
Pser
k,t � Pfixed

k + PCPU
k,t (4)

whereMser
k is the total number of type k servers running in the data

center,Nk is the total number of server types in the data center, Pser
k,t

is the active power consumption per type k server during period t,
Pfixed
k is the fixed power consumption per type k server in the data

center, PCPU
k,t is the active power consumption of the CPU per type k

server during period t.
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Based on dynamic voltage and frequency scaling technology,
the linearized description of CPU energy consumption can be
represented using auxiliary variables as follows (Zhu
et al., 2023):

PCPU
k,t � CCPU∑Ns

s�1bk,t,s fCPU
k,s( )2 (5)

where CCPU is CPU power consumption coefficient, fCPU
k,s is CPU’s

operating frequency of type k servers in the data center, bk,t,s is an
auxiliary variable associated with the data load processed by type k
servers in period t and frequency s.

The power consumption of the cooling devices (PCO
t ) is mainly

composed of four parts: the heat pump, electric boiler, thermal
storage tank, and heat exchanger, shown as follows:

PCO
t � PHP

t + PB
t + PWT

t + PHE
t (6)

where PHP
t is the power consumption of the heat pump during

period t, PB
t is the power consumption of the electric boiler during

period t, PWT
t is the power consumption of the thermal storage tank

during period t, and PHE
t is the power consumption of the heat

FIGURE 1
Structure diagram of energy supply during the heating season in a data center park.

FIGURE 2
Waste heat recovery system diagram.
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exchanger during period t, which is assumed to be constant in
this paper.

1) Heat pump operating model

Based on the principles of the reverse Carnot cycle, a model for
the power consumption of the heat pump equipment is established.
According to the first law of thermodynamics, the heat output of the
heat pump is as follows:

QHP
t � QHE

t /PHP
t (7)

where QHP
t is the heat released by the refrigerant in the condenser

during period t, which is the heat output of the heat pump. QHE
t is the

heat absorbed by the refrigerant in the evaporator during period t,
which is the heat extracted from the environment by the heat exchanger.

In the theoretical cycle of a heat pump system, the coefficient of
performance (COP) of the heat pump can be expressed as follows:

γHP � QHP
t /PHP

t (8)
where γHP is COP of the heat pump.

The COP of the heat pump can be further expressed as:

γHP � QHE
t + PHP

t( )/PHP
t (9)

This gives the electrical power consumed by the heat pump
which can be expressed as:

PHP
t � QHE

t / γHP − 1( ) (10)

A portion of the heat generated by the heat pump gets stored in
the thermal storage tank, while another portion is directly supplied
to the park to meet the heat demand. Eq. 11 constrains the heat
output of the heat pump, ensuring it does not surpass the upper limit
of the heating power:

QHP
t � QHP,S

t + QHP,R
t (11)

0≤QHP
t ≤ �Q

HP
(12)

where QHP,S
t is the thermal storage power of the heat pump during

period t, QHP,R
t is the heat power directly supplied to the park by the

heat pump during period t, and �Q
HP is the upper limit of the heating

power of the heat pump.

2) Electric boiler operating model

The relationship between the heating power and the power
consumption of the electric boiler satisfies:

FIGURE 3
Operational structure diagram of a data center park.
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PB
t � QB

t /ηB + PB,WP
t (13)

where QB
t is the heating power of the electric boiler during period t,

ηB is the energy efficiency of the electric boiler, and PB,WP
t is the rated

power consumption of the electric boiler’s circulating water pump
during period t.

A portion of the heat produced by the electric boiler is stored in
the thermal storage tank, while another portion is directly supplied
to the park to meet the heat demand. Eq. 15 limits the heating power
of the electric boiler, ensuring it does not exceed the upper limit of
the heating power:

QB
t � QB,S

t + QB,R
t (14)

0≤QB
t ≤ �Q

B
(15)

where QB,S
t is the thermal storage power of the electric boiler during

period t, QB,R
t is the heat power directly supplied to the park by the

electric boiler during period t, and �Q
B is the upper limit of the

heating power of the electric boiler.

3) Thermal storage tank operating model

The thermal storage tank reduces system operating energy
consumption and saves operating costs by storing and releasing
heat at different periods. Considering self-loss phenomena, the
energy storage model of the thermal storage tank can be
illustrated as:

WH
t � 1 − εH( )WH

t−1 + QH,S
t αHΔt − QH,R

t βHΔt (16)
where WH

t is the thermal storage capacity of the tank during period
t, εH is the energy loss rate of the tank, QH,S

t and QH,R
t respectively

represent the thermal storage and heat release power during period
t, αH and βH respectively represent the energy storage and
release efficiency.

Equations 17 and (18) impose constraints on the storage of
thermal energy in the tank:

0≤WH
t ≤ �W

H (17)
WH

t0
� WH

T (18)

where �WH is the capacity of the thermal storage tank, t0 is the initial
period of operation, and T represents the final period of operation.

The thermal storage tank cannot simultaneously store and
release heat. The constraints on its storage and release states can
be demonstrated as:

0≤QH,S
t ≤UH,S

t
�Q
H,S

(19)
0≤QH,R

t ≤UH,R
t

�Q
H,R

(20)
UH,S

t + UH,R
t � 1 (21)

where UH,S
t and UH,R

t respectively represent the storage and release
states of the thermal storage tank during period t, while �Q

H,S and
�Q
H,R respectively represent the upper limits of the storage and

release power.
The power consumption of the thermal storage tank in the

storage state is indicated as follows:

PWT
t � UWT

t PWT,rated (22)

where UWT
t is the operating state of the thermal storage tank during

period t, PWT,rated is the rated electrical power of the thermal
storage tank.

4) Heat exchanger operating model

Considering a certain heat recovery efficiency, the heat power
extracted by the heat exchanger during period t is as follows:\

QHE
t � αeffQC

t (23)
where αeff is the heat recovery efficiency of the data center room, and
QC

t is the heat power reduced when the hot air flows through the
evaporator located at the back of the server rack during period t.

2.2 Thermal segment model of the multi-
energy distribution system in the data center

Most existing data centers are predominantly air-cooled,
employing raised floor designs to optimize airflow arrangement
and improve cooling efficiency. In data centers, both recirculated air
and chilled water can serve as waste heat resources. However, data
center rooms typically house multiple air conditioning units, and
utilizing hot return air as a waste heat resource would significantly
increase system complexity. Considering both system complexity
and efficiency factors, this paper assumes that the data center rooms
adopt liquid cooling technology, thereby facilitating waste heat
recovery using chilled water as a resource. The energy balance
relationship of the thermal segment of the data center multi-
energy distribution system is illustrated in Figure 4.

1) Thermal inertia model of data center room

Based on the law of conservation of energy, the total heat
generation power of servers in the data center room is as follows:

QH
t � ∑Nk

k�1M
ser
k Pser

k,t (24)

whereMser
k is the total number of type-k servers running in the data

center, Pser
k,t is the active power consumption per type-k server in the

data center during period t.
When servers are running, the heat they emit will heat the air

flowing through them. Cooling modules are installed at the rear of
each rack to cool the hot air flowing through the servers. The
entrance temperature of the server is approximately the same as the
exit temperature, so there is no traditional cold or hot aisle.
Therefore, the thermal balance equation for the data center room
can be illustrated as (Zhang et al., 2024):

CρVDCdT
DC

dt
� QH − QC (25)

whereC is the specific heat capacity of air, ρ is the air density,VDC is the
volume of air flowing through the server per unit time, TDC is the
temperature at the exit and entrance of the server, QH is the heat
dissipated by the server, QC is the heat power reduced when the hot air
flows through the evaporator located at the back of the server rack.
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Assuming the rate of change of internal energy of air in the data
center remains constant in each time interval, Eq. 24 can be
discretized into the following difference equation:

CρVDCΔTDC
t � QH

t − QC
t (26)

TDC
t+1 � TDC

t + ΔTDC
t (27)

where TDC
t is the temperature of the server outlet and inlet during

period t, whileΔTDC
t represents the temperature change of the server

outlet and inlet during period t.
The temperature at the server outlet and inlet in the data center

must fluctuate within an acceptable range. The constraint is
as follows:

T DC
min ≤TDC

t ≤T DC
max (28)

where T DC
max and T DC

min represent the upper and lower limits of the
temperature at the outlet and inlet of the data center servers,
respectively.

To ensure the normal operation of the servers, the rate of change
of temperature at the outlet and inlet of the data center servers is also
constrained within a certain range. The relevant constraints are
as follows:

R DC
min ≤ΔTDC

t ≤R DC
max (29)

where R DC
max and R DC

min respectively represent the upper and lower
limits of the temperature change at the outlet and inlet of the data
center servers.

2) Heating thermal inertia model of the living area

The thermal balance equation for the indoor area of the living
area is as follows:

CρVUSEdT
USE

dt
� TUSE − TOUT

RUSE
+ QU,H (30)

whereVUSE is the volume of heating air in the living area, TUSE is the
indoor temperature, TOUT is the outdoor temperature, RUSE is the
thermal resistance between the indoor and outdoor environments,
and QU,H is the heating power.

Similarly, Eq. 30 can be discretized into a different equation
as follows:

CρVUSEΔTUSE
t � TUSE

t − TOUT
t( )/RUSE + QU,H

t (31)
TUSE
t+1 � TUSE

t + ΔTUSE
t (32)

where TUSE
t is the indoor temperature during period t, ΔTUSE

t is the
change in indoor temperature during period t.

Constraints related to the acceptable fluctuation range of indoor
temperature in the living area are as follows:

T USE
min ≤TUSE

t ≤T USE
max (33)

where T USE
max and T USE

min represent the upper and lower limits of
indoor temperature, respectively.

To ensure the comfort level of indoor temperature, its rate of
change is also constrained within a certain range. The relevant
constraint is as follows:

R USE
min ≤ΔTUSE

t ≤R USE
max (34)

where R USE
max and R USE

min represent the upper and lower limits of the
rate of change of indoor temperature, respectively.

3 Operation optimization method for
the data center park

In this section, the operational regulation with the data center
park is formulated, in which the waste heat recovery system and the
space thermal inertia are considered. Besides, the PV output and
data load requests have obvious fluctuations in temporal
distribution, which may influence the efficiency of IT devices and
cooling devices. It has the potential to result in inadequate cooling
within data centers, data loss, reduced lifespan of IT devices,
financial losses for data users, and inadequate heating in
residential areas. Information gap decision theory, as a decision-
making approach that does not require probability information to
address uncertainties, can effectively deal with uncertainties in the
data center park, where uncertainties are severe and it is difficult to
form precise probability density functions for uncertain variables to
enhance the operation reliability of the data center park.

FIGURE 4
Energy balance relationship diagram for the thermal segment.
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3.1 Optimization of the multi-energy
distribution system in the data center

Based on the above analysis, integrating waste heat recovery
technology and the flexibility of the system’s thermal process can
enhance the energy utilization efficiency of the data center park,
thereby reducing operating costs.

Assuming that the power supply of the data center can be
provided by both the external grid and local PVs, the objective
function of the optimization scheduling model can be formulated
as follows:

minf � fE + fD (35)
fE � ∑NT

t�1ctP
TL
t (36)

fD � cD∑Nρ

ρ�1λ
dis
ρ (37)

wheref represents the total operating cost and the cost of discarding
data loads within one scheduling period, fE denotes the electricity
cost incurred by the data center within one scheduling period, fD is
the cost of discarding data loads, NT is the total number of
scheduling intervals within one scheduling period, ct represents
the electricity price during period t, cD is the penalty cost per unit of
discarded data load, Nρ represents the total number of data load
types, and λdisρ denotes the amount of discarded data load for data
load type ρ during period t.

PTL
t represents the cost of purchasing electricity for the data

center during period t, which is related to the total power
consumption of the data center:

PDC
t � PPV

t + PTL
t (38)

where PPV
t is the PV output during period t.

In actual operation, the heat storage power of the thermal
storage tank is the sum of the heat storage power of the electric
boiler and the heat pump. The total heating power of the thermal
load supplied to the park is the sum of the heat release power of the
thermal storage tank, the heat supplied directly by the electric boiler,
and the heat supplied directly by the heat pump. The relevant
constraints are as follows:

QH,S
t � QB,S

t + QHP,S
t (39)

QU,H
t � QH,R

t + QB,R
t + QHP,R

t (40)
where QU,H

t is the total heating power supplied to the park during
period t.

In conclusion, the deterministic operational model of the data
center park considering waste heat recovery can be illustrated
as follows:

minf � fE + fD (41)
s.t. 1( ) − 6( ), 10( ) − 24( ), 26( ) − 29( ), 31( ) − 34( ), 38( ) − 40( )

(42)
In this operational model, it is assumed that the predictions of

PV output and data load requests are accurate, and the
corresponding predicted values of PV output and data load
requests are treated as actual values for optimization. However,
in the actual optimization scenario of data center parks, the PV
output and data load requests exhibit significant uncertainty during

operation (Zhao et al., 2023). Therefore, it is necessary to consider
the uncertainty of PV and data load in the park and develop
optimization strategies for the operation of data center parks.

3.2 Operation optimization method for data
center parks based on IGDT

IGDT deals with the uncertainty problem without the
requirement of probability information, representing the
uncertainties as interval variables. It aims to maximize the range
of uncertainty variables while ensuring the minimum expected
target value, thereby maximizing the ability to mitigate the
impact of uncertainty on the solution results. To effectively
address the significant uncertainty within the park, where precise
probability density functions are difficult to formulate, this section
applies IGDT to incorporate the uncertainty of PV output and data
load requests in the data center park.

1) Modeling uncertainty of PV output and data load requests

The fluctuation range of uncertainty in PV output can be
indicated using IGDT as follows:

U αDG, ~P
DG

t( ) � PDG,r
t : PDG,r

t − ~P
DG

t

∣∣∣∣∣ ∣∣∣∣∣≤ αDG ~PDG

t{ } (43)

where αDG is the uncertainty radius of the PV output, its magnitude
is correlated with the prediction error of the PV output, ~P

DG
t is the

predicted value of the PV output during period t, PDG,r
t is the actual

value of the PV output during period t.
The uncertainty range of data load requests can be indicated

as follows:

U αλ, ~λρ,t( ) � λrρ,t: λrρ,t − ~λρ,t
∣∣∣∣∣ ∣∣∣∣∣≤ αλ~λρ,t{ } (44)

where αλ is the uncertainty radius of data load requests, which is
related to the prediction error, ~λρ,t is the predicted data load requests
during period t, λrρ,t is the actual data load requests during period t.

2) Model construction and transformation based on IGDT

Based on the objective function and constraints outlined in
Section 3, the deterministic optimization model to be solved can be
illustrated as follows:

minf � F s,w( ) (45)

s.t.
G s,w( ) � 0
K s,w( )≤ 0{ (46)

where F(s,w) is the objective function, s is the decision variable set,
w is the uncertainty variable set, G(s,w) is the system equality
constraints, and K(s,w) is the system inequality constraints.

The limitations of historical scenario information make it
difficult to obtain accurate scenario probability distributions.
Therefore, IGDT without probabilistic information is utilized in
this paper to analyze the uncertainty of PV outputs and front-end
server data load requests. Decision makers can be categorized into
pessimistic and optimistic types based on their differences in risk
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perception and behavioral habits, and they adopt opposing value
propositions in facing risks. This paper aims to mitigate the impact
of uncertainty in PV output and data load requests on the
operational results of the data center parks. Therefore, a risk
aversion strategy is employed in this paper to construct the
IGDT robust optimization model. The general form of the IGDT
robust model is as follows:

minf � φ (47)

s.t.

maxF s,w( )≤FC

FC � 1 + β( )F0

G s,w( ) � 0
K s,w( )≤ 0
U φ, ~w( ) � w: w − ~w| |≤φ ~w{ }

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(48)

where φ is the uncertainty radius, indicating the magnitude of
fluctuations in uncertain variables, w is the actual values of
uncertain variables, ~w represents the predicted values of
uncertain variables, FC is the maximum expected target value
acceptable to the decision-maker, β is the cost deviation factor,
indicating the extent of the deviation between the maximum
expected target value of IGDT and the optimal target value of
the deterministic model, F0 is the optimal target value of the
deterministic model, U(φ, ~w) is the range of fluctuations in
uncertain variables. During the model-solving process, the upper-
level model seeks the maximum value of uncertainty when the target
is set, while the lower-level model seeks the maximum value of the
objective function when solving the fluctuation of
uncertain variables.

Equations 47 and (48) establish a two-level optimization
problem: the upper model seeks to maximize the uncertainty and
the lower model to maximize the objective function. In the lower
layer model, the purchased power of the system will increase as the
PV output decreases, which leads to an increase in the operating
cost. When the PV output reaches its minimum value, the lower-
level objective function value achieves its maximal value.
Meanwhile, as the data load requirement increases, the power
consumption of the system increases, resulting in an operating
cost increase. From another perspective, the lower-level objective
function value achieves the maximum when the data load request
reaches the maximum value. Combining these two influencing
factors, the maximum value of the lower-level model occurs
when the PV output is minimum and the data load request is
maximum. In this case, the two-level optimization model can be
equivalently converted to a single-level optimization model
as follows:

minf � φ (49)

s.t.

F s,w( )≤FC

FC � 1 + β( )F0

G s,w( ) � 0
K s,w( )≤ 0
φ � εDGαDG + ελαλ

PDG,r
t � 1 − αDG( )~PDG

t

λrρ,t � 1 + αλ( )~λρ,t

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(50)

where φ is the comprehensive uncertainty radius, while εDG and ελ

are the weighting coefficients for the uncertainties of PV output and
data load requests, respectively. They satisfy:

εDG + ελ � 1 (51)

Based on IGDT, the robust optimization model for the data
center park ultimately transforms into a single-layer optimization
model. The process for solving the model is illustrated in Figure 5,
and the detailed steps for solving it are as follows:

Step 1: Input deterministic model data of the data center park,
including information on the composition and parameters of the
devices in the data center, the composition of data loads and
tolerance times, the thermal inertia parameter information of the
data center and living areas within the park, outdoor temperature
information, basic parameters for time-of-use electricity prices, PV
output curve, and data load request curve, etc.

Step 2: Solve the deterministic model of the data center park
considering waste heat recovery to minimize operating costs. Obtain
the optimal value F0 of the deterministic model’s objective function
and set it as the benchmark value.

Step 3: Set the cost deviation factor β for the IGDT, the
acceptable expected target value (1 + β)F0 of the IGDT model,
and define the empirical weighting coefficients for the
uncertainty radius of PV output and data load requests. Replace
the predicted values with the actual values of PV output and data
load requests.

Step 4: Optimize the robust optimization model for the data
center park based on the IGDT to maximize uncertainty. Obtain the
uncertainty radius of PV output and data load requests, the
operating cost of the data center park, and the unit output plan.

4 Case study

In this paper, the case in (Ji et al., 2022) is adopted to verify the
effectiveness of the proposed method. The time is set during the
winter heating season and the other parameters are set according to
the specifications for data center design.

The data center contains a total of 12,000 servers divided into
two types (Ji et al., 2022). The parameters of the cooling and heating
equipment as well as the thermal inertia are shown in Table 1 and 2,
respectively. The variation curve of the outdoor temperature is
shown in Figure 6. The curves of data load requests and PV
output are illustrated in Figure 7. In Figure 7A, the solid blue
line represents the number of data load requests under a
deterministic scenario. The dark blue portion indicates the
numerical range of the number of data load requests under a
cost deviation factor of 0.05. The light blue and dark blue
portions collectively represent the number of data load requests
under a cost deviation factor of 0.1. Similarly, in Figure 7B, the solid
green line represents the PV output curve under a deterministic
scenario. The dark green portion indicates the numerical range of
PV output in the park under a cost deviation factor of 0.05. The light
green and dark green portions collectively represent the numerical
range of PV output in the park under a cost deviation factor of 0.1.
The time-of-use pricing is adopted and the peak, off-peak, and
shoulder electricity prices are USD 0.187/kWh, USD 0.125/kWh,
and USD 0.064/kWh, respectively, as shown in Figure 8. The
residential area’s electricity load is not considered due to its non-
controllable nature. In addition, electric boilers serve as
supplementary heating equipment in the park, which could
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provide heating to the residential area when the heat recovery from
the data center is insufficient.

4.1 Analysis of optimization results

This section begins by analyzing the robust optimization
results of the IGDT considering only the uncertainty of PV
output and only considering the uncertainty of data load
requests. Subsequently, the analysis extends to the robust
optimization results of the data center park when
simultaneously considering the uncertainties of both PV
output and data load requests.

1) Considering only the uncertainty of PV output

When considering only the uncertainty in PV output without
considering the uncertainty of data load requests, robust
optimization based on IGDT is conducted. Corresponding to
different cost deviation factors, which refer to the difference or
deviation between the actual cost and the expected cost during the
decision-making process, the variation of PV output uncertainty
radius is presented in Table 3.

From Table 3, it can be observed that a cost reserve within
0.5% cannot meet the operational requirements of the system in
an uncertain environment, and the operation of the park cannot
accept the prediction deviation of the PV output. However, as the
cost deviation factor gradually increases, the data center park can
gradually accept higher prediction deviations of the PV output.
Moreover, as the set cost deviation factor β increases, the
expected operating cost of the park increases accordingly,

FIGURE 5
Flowchart of robust optimization model based on IGDT.
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along with an increase in the PV output uncertainty. The actual
operating cost of the park increases numerically to the same value
as the expected operating cost of the park until it reaches its
maximum robustness. It is because, in the robust model of the
IGDT, the uncertainty factors harm the reduction of the target

value: the larger the uncertainty radius of the PV output, the
higher the operating cost of the park. Additionally, when the PV
output varies within the interval [(1 − αDG)~PDG

t , (1 + αDG)~PDG
t ],

the operating cost of the park will be lower than the expected
operating cost (1 + β)F0.

TABLE 1 Parameters of the cooling and heating equipment in the park.

Equipment Parameter Value

Heat pump
Rated capacity/kW 3300

Rated COP 1.5

Electric boiler

Rated capacity/kW 2000

COP 0.99

Rated power consumption of the cascade circulating water pump 10

Thermal storage tank

Rated capacity/kWh 2000

Thermal loss rate 1.5

Thermal storage efficiency/% 99.9

Heat release efficiency/% 99.9

Maximum heat storage/release power/kW 2000

Rated power consumption/kW 10

Heat exchanger Rated power consumption 5

TABLE 2 Parameters of thermal inertia in the park.

Parameter Data center Park living area

Volume/m³ 240 4,000

Initial temperature/°C 25 20

Lower temperature limit/°C 25 18

Upper temperature limit/°C 33 26

Temperature variation upper and lower limits/°C/h ±2 ±3

Heat dissipation coefficient - 0.004

FIGURE 6
Curves of data load request and PV: (A) Curve of data load request; (B) Operation curve of PV.
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2) Considering only the uncertainty of data load requests

Without factoring in the uncertainty of PV output, only the
prediction of data load requests is inaccurate. The variation of
uncertainty radius in data load requests for different cost
deviation factors is shown in Table 4.

From Table 4, it can be observed that the reserved cost within
0.5% cannot meet the operational requirements under uncertain
conditions. Similarly, due to the negative impact of uncertainty

factors on the target value in the robust model of IGDT, the larger
the uncertainty radius of data load requests, the higher the operating
cost of the park. Therefore, as the decision maker sets a larger cost
deviation factor β, the uncertainty radius of data load requests
increases, leading to an increase in operating costs until the
robustness is maximized. When the data load requests vary
within the specified interval [(1 − αλ)~λρ,t, (1 + αλ)~λρ,t], the
operating costs of the park will be lower than the expected
operating cost (1 + β)F0.

FIGURE 7
Variations of PV output and data load requests uncertainty radii.

FIGURE 8
CPU operating frequency of IT devices.
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Furthermore, when the cost deviation factor β is in the range of
0.024–0.030, the uncertainty radius of data load requests remains
constant at 0.999. It is due to the limitation of the central processing
unit (CPU) frequency levels of the servers in the data center, where
the reserved cost at that moment cannot allow the servers to operate
at higher frequency levels to handle more data loads, rather than the
uncertainty radius of data load requests reaching the upper limit.
When the cost deviation factor β exceeds 0.33, the uncertainty radius
of data load requests continues to increase.

Figure 9 illustrates the fluctuations in operating cost as the cost
deviation factor varies, and its corresponding variations in PV
power, and data load uncertainty radius. As the cost deviation
factor increases, the operating cost and the uncertainty radius
associated with the PV power and data loads increase

simultaneously. Among them, the PV uncertainty radius
experiences the most rapid variation, whereas conversely, the
data load uncertainty radius undergoes a more gradual change.
This difference arises from the fact that the power consumption of
IT devices in data centers is significantly larger than the installed
capacity of PV power generation, making the fluctuation radius of
PV output larger for a given cost deviation factor. Meanwhile, the
nonlinear relationship between the power consumption of IT
devices and their data load requests introduces the growth rate
fluctuations during the data load uncertainty radius increase. In
summary, variations in the uncertainty radius of PV output and data
load requests exhibit different response characteristics to cost
deviation factor fluctuations. These factors collectively contribute
to a significant impact on operating costs, making it necessary to

TABLE 4 Variation of data load requests uncertainty radius.

Cost deviation factor β Operating costs/thousand USD Data load requests uncertainty radius αλ

<0.005 - -

0.005 11.18 0.0099

0.006 11.18 0.0212

0.009 11.22 0.0263

0.012 11.26 0.0536

0.015 11.29 0.0780

0.018 11.32 0.0884

0.021 11.36 0.0947

0.024 11.39 0.0999

0.027 11.42 0.0999

0.030 11.46 0.0999

0.033 11.49 0.1059

0.036 11.52 0.1278

TABLE 3 Variation of PV output uncertainty radius.

Cost deviation factor β Operating costs/thousand USD PV output uncertainty radius αDG

<0.005 - -

0.005 11.18 0.0215

0.006 11.18 0.0476

0.009 11.22 0.1257

0.012 11.26 0.2039

0.015 11.29 0.2821

0.018 11.32 0.3603

0.021 11.36 0.4384

0.024 11.39 0.5166

0.027 11.42 0.5948

0.030 11.46 0.6729
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simultaneously consider their impact on data center operations
optimization.

3) Considering both the uncertainty of PV output and data load
simultaneously

The uncertainty of PV output and data load requests is assumed
to have the same weighting coefficients. The variation of the

comprehensive uncertainty radius corresponding to different cost
deviation factors is shown in Table 5.

From Table 5, it can be observed that, like the optimization results
considering only PV or data load uncertainties, a cost reserve of 0.5%
cannot meet the operational requirements under uncertain conditions.
Due to the negative impact of uncertainty factors on the reduction of
target value operating costs, the uncertainty radius of uncertain
quantities increases with the increase of the cost deviation factor β.

TABLE 5 Variation of comprehensive uncertainty radius.

Cost deviation
factor β

Expected
operating cost/
thousand USD

Operating
costs/

thousand USD

PV output
uncertainty
radius αDG

Data load requests
uncertainty
radius αλ

Comprehensive
uncertainty radius φ

<0.005 <11.18 - - - -

0.005 11.18 11.18 0.0215 0 0.0108

0.010 11.24 11.24 0.1518 0 0.0759

0.015 11.29 11.29 0.2821 0 0.1410

0.020 11.35 11.35 0.4124 0 0.2062

0.025 11.40 11.40 0.5427 0 0.2713

0.030 11.46 11.46 0.6729 0 0.3365

0.035 11.51 11.51 0.8032 0 0.4016

0.040 11.57 11.57 0.9335 0 0.4667

0.045 11.62 11.62 1 0.0217 0.5108

0.050 11.68 11.68 1 0.0479 0.5240

0.055 11.74 11.74 1 0.0855 0.5428

0.060 11.79 11.79 1 0.0999 0.5500

FIGURE 9
Heat power distribution chart.
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When the cost deviation factor is less than 0.045, only the
uncertainty radius of PV output increases with the deviation factor,
while the uncertainty radius of data load requests remains constant
at zero. When the cost deviation factor exceeds 0.045, the
uncertainty radius of data load requests gradually increases. It is
attributed to the relatively low penetration level of PV systems in the
system, resulting in a low proportion of PV output in the total power
consumption. Consequently, the uncertainty radius of PV output is
more sensitive to changes in the cost deviation factor.

Therefore, considering the maximum values of PV output and
IT devices’ power consumption as the reference values, the
uncertainty weighting coefficients for PV output and data load
requests are redefined. In the deterministic optimization of the
park, the maximum values of PV output and IT device power
consumption are 500 kW and 1227 kW, respectively, with a ratio
of 1:2.454. Hence, the uncertainty weighting coefficients for PV

output and data load requests, denoted as εDG and ελ respectively,
are set to 0.29 and 0.71.

After adjusting the uncertainty weighting coefficients for PV
output and data load requests, a re-analysis of the robust
optimization is conducted. The comprehensive uncertainty
variations corresponding to different cost deviation factors are
shown in Table 6.

From Table 6, it is evident that a 0.5% cost reserve cannot meet
the operational requirements of the system under uncertain
conditions. As the cost deviation factor β increases, the expected
operating cost of the park increases, and the uncertainty radius
increases accordingly, leading to an increase in the operating cost of
the park until it reaches maximum robustness.

Furthermore, when the cost deviation factor is set to 0.100,
the actual operating cost of the park is slightly lower than the
expected operating cost. It is due to the constraints imposed by

TABLE 6 Variation of comprehensive uncertainty radius after adjusting the coefficients.

Cost deviation
factor β

Expected
operating cost/
thousand USD

Operating
costs/

thousand USD

PV output
uncertainty
radius αDG

Data load requests
uncertainty
radius αλ

Comprehensive
uncertainty radius φ

<0.005 <11.18 - - - -

0.005 11.18 11.18 0 0.0099 0.0070

0.010 11.24 11.24 0.1032 0.0217 0.0453

0.020 11.35 11.35 0.3637 0.0217 0.1209

0.030 11.46 11.46 0.6243 0.0217 0.1964

0.040 11.57 11.57 0.8849 0.0217 0.2720

0.050 11.68 11.68 0.9604 0.0663 0.3256

0.060 11.79 11.79 1 0.0999 0.3610

0.070 11.90 11.90 1 0.0999 0.3610

0.080 12.01 12.01 1 0.1517 0.3977

0.090 12.13 12.13 1 0.1613 0.4045

0.100 12.24 12.22 1 0.2237 0.4488

FIGURE 10
Power and state of thermal storage in thermal storage tanks.
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the temperature and temperature variation rate of the data
center, limiting the fluctuation range of uncertain factors and
preventing the operating cost from reaching the expected value.
When the cost deviation factors are set to the same value, the
uncertainty radius of the PV output is generally greater than that
of the data load request, and it reaches 1 when the deviation
factor is set to 0.6. This is because the uncertainty radius of the
PV output is more pronounced compared to the IT devices’
power consumption, as the PV output values are relatively low.
The comprehensive uncertainty radius is numerically close to
the uncertainty radius of the data load request, indicating that

the overall park is mainly affected by the uncertainty of the data
load request.

4.2 Analysis of the system operating strategy

To validate the effectiveness of the above methods, 100 scenarios
were randomly selected with cost deviation factors less than 0.1,
indicating a PV output uncertainty radius less than 1, and a data load
request uncertainty radius less than 0.2237. Three comparison
schemes were set up as follows:

FIGURE 11
Variation of the temperature at the inlet and outlet of data center servers.

FIGURE 12
Variation of the indoor temperature in the living area.
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Scheme 1: Disregarding the influence of uncertainty factors, with
a cost deviation factor set to 0, deterministic optimization
scheduling is conducted for the data center using the predicted
values of PV output and data load requests.

Scheme 2: Considering the influence of uncertainty factors including
PV output and data load requests, with a cost deviation factor set to 0.05,
optimization scheduling is conducted for the data center.

Scheme 3: Considering the influence of uncertainty factors
including PV output and data load requests, with a cost
deviation factor set to 0.1, optimization scheduling is conducted
for the data center.

1) Analysis of the operational strategies

Figure 10 depicts the variation in CPU frequency of the data
center’s IT devices for Scheme. It is evident from the graph that CPU
frequency is closely associated with the volume of data load
processing. As the data load processing increases, the CPU
frequency also rises. Additionally, it can be observed that under
this strategy, the variation in server CPU frequency is relatively
stable, without frequent fluctuations. This stability ensures the
smooth operation of IT devices, thereby guaranteeing stable
performance.

FIGURE 13
Total operating costs of the data center park.

FIGURE 14
Outdoor temperature.
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Figure 11 illustrates the distribution of heat power in the living
area under Scheme 3. From the graph, it can be observed that within
the scheduling cycle, due to the low economic cost of waste heat
recovery, the heat pump becomes the main heating method,
ensuring the basic heating demand of the park. However, when
the waste heat from the computer room alone cannot meet the
heating demand, electric boilers will undertake part of the heating
tasks to ensure that the heating load always receives sufficient
heat supply.

Figure 12 illustrates the fluctuation of the power supplied by
the thermal storage tank and the corresponding heat storage state
during the day. During the early morning hours with lower
electricity prices, heat is stored in the thermal storage tanks.
Conversely, during the morning peak hours with a higher
electricity price, the stored heat is released, contributing to the
reduction of the operating costs of the data center park. In
addition, during the peak heat load demand in the evening,
the heat storage tanks are utilized in combination with heat
pumps and electric boilers to effectively meet the required
thermal load. This operational strategy ensures a stable supply
of heating demand in the park while fully leveraging the
economic advantages of waste heat recovery, thereby achieving
efficient energy utilization.

2) Analysis of the operation effectiveness

Figure 13 depicts the variation of the temperatures at the inlet and
outlet of data center servers for Scheme 3. It is evident from the graph
that temperatures at the inlet and outlet of servers fluctuate between
25°C and 33°C. Moreover, due to the optimization method proposed in
this paper, which limits the rate of temperature change of the servers
within a certain range, the temperature variation of the servers shown in
the graph remains relatively stable, without significant fluctuations. This
stability avoids the occurrence of temperature exceedance in the server
room, thereby guaranteeing stable performance.

Figure 14 depicts the variation of indoor temperatures in the living
area for Scheme 3. From the graph, it is evident that the indoor
temperatures in the living area remain within a comfortable range
for humans, fluctuating between 18°C and 21°C. Additionally, it can
be observed that under this strategy, the indoor temperatures in the
living area exhibit relative stability, with minimal fluctuations. This
stability ensures the comfort of individuals within the rooms, thereby
guaranteeing the suitability of temperature for daily living activities.

Table 7 shows the comparison of operating costs for the three
schemes in the data center park. In this study, the penalty cost for
abandoning each request is set to 0.069 USD, and the shortfall in heat
load is supplemented by electric boilers. From the operation results, upon
accounting for the uncertainty of both PV output and data load requests,
the IT devices in the data center operate at a higher frequency to
accommodate the fluctuation in data load. It leads to an increase in
electricity costs for IT devices and an increase in the power of heat

TABLE 7 Comparison of operating costs in three scenarios for data center park.

Operating costs Scheme 1 Scheme 2 Scheme 3

Mean Maximum Mean Maximum Mean Maximum

Electricity cost of IT devices/USD 2991.17 3031.41 3045.64 3097.70 3483.53 3577.39

Electricity cost of heat pump/USD 4098.53 4098.53 4320.05 4320.05 5062.15 5062.15

Total electricity cost/USD 11073.96 11330.64 11139.32 11402.81 11664.78 11957.75

Cost of data load abandonment/USD 5864.54 10042.01 2805.08 5683.76 0 0

Cost of heat load supplementation/USD 51.34 76.00 72.32 102.48 145.94 208.41

Total cost/thousand USD 16.99 21.08 14.02 16.80 11.82 12.07

FIGURE 15
Electricity price.
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recovery. Additionally, the electricity costs for heat pumps also rise. Due
to the low penetration rate of PV, the total electricity purchasing costs still
increase under the fluctuation of PV output. Moreover, considering the
uncertainty of data load results in improved computational capacity,
significantly reducing the amount of discarded data load and
consequently lowering the cost associated with data load
abandonment. In Scheme 3, all data load requests can be processed,
thus avoiding data abandonment.

However, when considering the uncertainty of data load, the power
consumption of IT devices in the data center increases, and the expected
power of heat recovery also increases. When the actual data load
processing quantity is less than the expected value, due to the higher
CPU operating frequency, the reduction in heat recovery power is more
significant compared to Scheme 1. Consequently, the cost of
supplementing heat load also increases. Additionally, if heat recovery
is not considered and heat pumps are replaced with electric boilers for
heating, the heating costs for the three schemes would increase by
899.45 USD, 946.44 USD, and 1103.86 USD, respectively. It indicates
that heat recovery can effectively reduce the operating costs of data
centers. Ultimately, Scheme 3 exhibits the lowest total operating cost for
the data center park, demonstrating that optimizing the operation of data
center parks considering uncertainty can reduce the cost of data load
abandonment and make data centers operate more reliably and
economically.

Figure 15 depicts the scatter plot comparing the operating costs of
the data center park under three schemes across 100 randomly selected
scenarios. The blue dots correspond to the deterministic operational
scheme, while the orange and purple dots represent schemes considering
uncertainty with cost deviation factors of 0.05 and 0.1, respectively. It can
be observed from the graph that the operating costs are significantly
influenced by uncertainty. When uncertainty is high, the operating costs
of Scheme 1 are considerably elevated, whereas Scenario 3 demonstrates
greater economic efficiency. These results underscore the importance of
considering uncertainty factors in the management of data center park
operations to derive the optimal operational strategy.

5 Conclusion

Waste heat recycling in data centers can provide energy to
the living quarters of the data center park, resulting in a
significant improvement in energy efficiency. This paper
proposes an IGDT-based operation optimization method for
multi-energy distribution systems in integrated data centers,
considering the uncertainties of PV output and data load
requests. Firstly, a deterministic model has been developed to
capture the detailed thermal characteristics of the data center
and the waste heat recovery system. Subsequently, IGDT is
employed to handle the uncertainties in the PV output and
data load requests. The case studies demonstrate that despite a
5.3% increase in electricity purchase costs, the total expenses
decreased by 30.4%, amounting to 5.17 thousand USD. This
indicates that the proposed method can significantly reduce the
operating cost and data task abandonment under fluctuating
conditions.

Several directions remain to be investigated in future works.
First, considering the spatial and temporal regulation potential of
data centers, the peak load shifting can be realized to save electricity
purchase cost and improve energy utilization. Additionally, the
efficiency of cooling systems is intricately linked to the placement
of IT devices. Therefore, it is imperative to consider the impact of IT
device placement in the optimization process.
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