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Traditional photovoltaic (PV) forecasting methods often overlook the impact of
the correlation between different power fluctuations and weather factors on
short-term forecasting accuracy. To address this, this paper proposes a PV output
forecasting method based on Variational Mode Decomposition (VMD)
disturbance feature extraction and the WaveNet model. First, to extract
different feature variations of the output and enhance the model’s ability to
capture PV power fluctuation details, VMD is used to decompose the PV output
time series, obtaining IMFs modes representing output disturbances and quasi-
clear sky IMF modes. Then, to reveal power changes, especially the underlying
patterns of disturbances and their relationship with weather factors, K-means
clustering is applied to the IMF modes representing output disturbances,
clustering the disturbance IMFs into different power change feature clusters.
This is combined with Spearman correlation analysis of weather factors and the
construction of an experimental dataset. Finally, to enhance the model’s learning
ability and improve short-term output forecasting accuracy, the WaveNet model
is employed during the forecasting phase. Separate WaveNet models are
constructed and trained with the corresponding datasets, and the total PV
output forecast is obtained by superimposing the predictions of different IMF
modes. Experimental results are compared with traditional methods,
demonstrating a significant improvement in forecasting accuracy, with a Mean
Absolute Percentage Error (MAPE) error of 6.94%, highlighting the effectiveness
of our method and providing strong technical support for the refined
management and intelligent forecasting of PV energy.
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1 Introduction

As a clean and renewable energy source, PV power generation plays an increasingly
important role in the global energy transition and the development of renewable energy.
Traditional PV output prediction methods mainly rely on artificial intelligence methods
and numerical weather forecasting to predict future PV output. However, changes in
lighting conditions often have a significant impact on the output time series, especially in
cases of abrupt changes in short-term lighting due to weather variations, resulting in large
fluctuations in PV power. In recent years, researchers have actively explored various
methods to predict PV output accurately and anticipate power fluctuations. With the
advancement of computer technology, data-driven artificial intelligence algorithms have
been widely applied in PV power prediction (Miao et al., 2023; Dong et al., 2024).

OPEN ACCESS

EDITED BY

Yang Yang,
Nanjing University of Posts and
Telecommunications, China

REVIEWED BY

Linfei Yin,
Guangxi University, China
Yushuai Li,
Aalborg University, Denmark

*CORRESPONDENCE

ShouSheng Zhao,
zhao_shou_sheng@163.com

RECEIVED 24 April 2024
ACCEPTED 09 July 2024
PUBLISHED 27 November 2024

CITATION

Zhao S, Yang X, Li K, Li X, Qi W and Huang X
(2024), Photovoltaic output prediction based
on VMD disturbance feature extraction
and WaveNet.
Front. Energy Res. 12:1422728.
doi: 10.3389/fenrg.2024.1422728

COPYRIGHT

© 2024 Zhao, Yang, Li, Li, Qi and Huang. This is
an open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.

Frontiers in Energy Research frontiersin.org01

TYPE Original Research
PUBLISHED 27 November 2024
DOI 10.3389/fenrg.2024.1422728

https://www.frontiersin.org/articles/10.3389/fenrg.2024.1422728/full
https://www.frontiersin.org/articles/10.3389/fenrg.2024.1422728/full
https://www.frontiersin.org/articles/10.3389/fenrg.2024.1422728/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fenrg.2024.1422728&domain=pdf&date_stamp=2024-11-27
mailto:zhao_shou_sheng@163.com
mailto:zhao_shou_sheng@163.com
https://doi.org/10.3389/fenrg.2024.1422728
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#editorial-board
https://www.frontiersin.org/journals/energy-research#editorial-board
https://doi.org/10.3389/fenrg.2024.1422728


For short-term PV forecasting, literature (Dong et al., 2023)
introduced a method based on the Improved Grey Wolf
Optimization (IGWO) algorithm and Spiking Neural Network
(SNN) for short-term PV output prediction. In the field of ultra-
short-term PV power forecasting based on deep learning, Raiker
proposed an ultra-short-term PV power forecasting model based on
optimal frequency-domain decomposition and deep learning. The
model uses convolutional neural networks to predict the low-
frequency and high-frequency components separately, and then
reconstructs the final prediction result through addition,
significantly improving prediction accuracy and time efficiency
(Raiker et al., 2021). Addressing the issue of data quality
dependence in PV power model prediction, another literature
(Wang et al., 2022) proposed a combination prediction method
for ultra-short-term PV power generation by integrating Singular
Spectrum Analysis and Local Emotion Reconstruction Neural
Network. Recognizing the tendency of traditional Extreme
Learning Machines to fall into local optimums and the
characteristics of environmental changes causing PV output
fluctuations, literature (Cheng et al., 2023) constructed a PV
output short-term prediction model by employing an Adaptive
Noise Complete Ensemble Empirical Mode Decomposition
(CEEMDAN) algorithm combined with chimp optimization
algorithm (Ceyhun and Hakan, 2021; Leiming et al., 2023) to
optimize the Extreme Learning Machine neural network
(Muqaddas et al., 2022). Utilizing the CEEMDAN algorithm,
critical environmental factors affecting PV output power are
decomposed to obtain local features of data signals at different
time scales, reducing the non-stationarity of environmental factor
sequences. Then, each decomposed subsequence and historical PV
data sequence are used as inputs to the Extreme Learning Machine
prediction model optimized by the chimp optimization algorithm
for prediction. To address the incompleteness in considering the
volatility of PV output and meteorological factors, literature (Bian
and Sun, 2021) proposed an improved Typical Meteorological Year
(TMY) method to generate representative meteorological data. This
method constructs a dataset by selecting specific monthly data that
best represent long-term average meteorological characteristics.
Specifically, it uses metrics like Root Mean Square Error (RMSE)
and correlation coefficients to choose the months with the smallest
errors and highest correlations, forming a complete TMY dataset.
This dataset, combined with the Generalized Regression Neural
Network (GRNN) (Zhuang et al., 2019), is used for PV power
prediction, thereby improving the accuracy and reliability of the
predictions. Another literature (Jin et al., 2024) utilized clustering
algorithms to cluster raw data and implemented PV power
prediction using Long Short-Term Memory (LSTM) neural
networks. They also employed an improved Sparrow Search
Algorithm for neural network hyperparameter optimization,
achieving optimization for different power feature scenarios. In
enhancing the accuracy of PV output interval prediction,
literature (Zhang C. et al., 2023) introduced a PV output interval
prediction model based on Improved Ensemble Empirical Mode
Decomposition and Quasi-Affine Transformation optimized
Bidirectional Long Short-Term Memory neural networks (Zhu
et al., 2020; Zhang et al., 2024). Additionally, literature (Wu
et al., 2023) proposed a support vector machine PV power
interval short-term prediction model based on Ensemble

Empirical Mode Decomposition and Chaos Ant-Lion Algorithm.
In terms of spatial correlation analysis, M. Zhang proposed a short-
term solar power forecasting method based on an optimal graph
structure that considers surrounding spatio-temporal correlations.
This method improves forecasting performance by utilizing spatial
information from neighboring photovoltaic stations combined with
a graph convolutional network (Zhang M. et al., 2023). In terms of
hybrid forecasting methods, X. Zhang proposed a new digital twin
(DT) supported PV power prediction framework. This framework
ensures reliable data transmission and leverages the advantages of
both digital physical models and neural network models, thereby
improving prediction accuracy (Zhang X. et al., 2023). In the field of
deep learning networks based on satellite cloud images, Cheng
proposed a graph learning framework. This framework generates
directed graphs by simulating cloud movements and applies a
spatio-temporal graph neural network, effectively improving the
accuracy of photovoltaic power prediction while reducing image
input redundancy (Cheng et al., 2022).

Although the aforementioned methods have achieved promising
prediction results, they still have some limitations. Firstly, these
methods may not fully capture all the factors affecting PV output
when dealing with complex weather conditions and sudden
environmental changes. Therefore, it is necessary to enhance the
ability to identify weather changes, environmental conditions, and
internal noise to more accurately capture the root causes of PV
output fluctuations. Secondly, these methods have not deeply
studied the characteristics and variation patterns of various
output fluctuations. These methods also have not thoroughly
considered the correlations between various disturbances and
weather factors, resulting in a need for improved prediction
accuracy under changing weather conditions. Therefore, there is
a need to establish more comprehensive predictive models that
consider various factors’ influences to enhance the understanding
and predictive ability of PV output fluctuations.

To address the low prediction accuracy of existing PV power
prediction techniques and the weak correlation between
meteorological factors and power fluctuations, this paper
proposes a PV output prediction method based on VMD and
WaveNet. Firstly, to extract different feature variations of the
output, VMD (Meng et al., 2023; Parri et al., 2024; Wang and
Ma, 2024; Yagang et al., 2024) is utilized to decompose the PV
output time series, obtaining Intrinsic Mode Functions (IMFs)
modes representing output disturbances and quasi-clear sky IMF
modes. Subsequently, K-means clustering is applied to the IMFs
modes representing output disturbances to cluster the disturbance
IMFs into different power change feature clusters (Sleiman and Su,
2024). Spearman correlation analysis is then conducted on different
feature clusters combined with weather factors to construct an
experimental dataset. Lastly, to enhance the model’s learning
ability, a WaveNet model (Pramono et al., 2019; Deng et al.,
2022; Wang H. et al., 2023; Wang Y. et al., 2023) is employed in
the prediction phase. WaveNet is selected due to its superior
capabilities in handling time-series data. It effectively processes
long-term dependencies through its dilated convolution structure,
captures multi-scale temporal features with its deep convolutional
layers, and maintains robustness and stability with residual
connections. Moreover, WaveNet’s ability to model non-linear
relationships makes it particularly suited for PV output
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prediction, which involves complex interactions between various
factors. Based on the input of the corresponding feature IMF time
series and combined with relevant meteorological data, WaveNet
models are separately constructed for training and prediction. The
predicted results of different IMF modes are then superimposed to
obtain the total PV output prediction. The effectiveness and
accuracy of the proposed method are validated using historical
data from a PV station in Zhejiang, China.

2 Power feature extraction

2.1 VMD power feature decomposition

VMD is a method used for decomposing signals and extracting
different frequency features. In this paper, VMD is employed to
decompose the PV output time series into different IMFs modes,
which reflect varying patterns at different time scales. VMD
decomposes the original time series data into multiple IMFs with
different frequency characteristics, thereby better representing the
feature variations of the output. This facilitates the analysis of quasi-
clear sky and output disturbance characteristics, clustering them into
feature clusters, laying the foundation for subsequent PV output
prediction.

During the VMD decomposition, the sum of the expected
bandwidths for each power IMF mode is minimized, with the
constraint that the sum of all decomposition modes equals the
original output feature signal sequence. The constrained variational
problem is formulated as follows (Equation 1):

min
uk{ }, wk{ }

∑
k
∂t δ t( ) + j

pt( )*uk t( )[ ]e−jwkt
������ ������2

2

{ }
s.t. ∑

k

uk � f

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (1)

In the equation, f represents the original time series, δ(t) is the
Dirac distribution function, {uk}={u1,. . .,uk} and {wk}:={w1, . . . ,wk}
are shorthand symbols for all modes and their corresponding center
frequencies, respectively. e−jωkt represents the exponential term at the
respective center frequency wk for mode uk.

By introducing Lagrange multipliers to transform the inequality
constraint into an equality constraint, and then solving the above
equation, the solution formula for mode uk can be obtained as follows
(Equation 2):

ûn+1
k w( ) � f̂ w( ) − ∑i≠kûi w( ) + λ̂ w( )

2

1 + 2α w − wk( )2 (2)

In the equation, α is a quadratic penalty factor used to balance
the trade-off between the objective function and the degree of
violation of the constraint. By penalizing the constraint, the
algorithm is encouraged to converge towards solutions that
satisfy the constraint. λ is the Lagrange multiplier operator.

The formula for the center frequency wk is (Equation 3):

wn+1
k � ∫∞

0
w ûk w( )| |2dw∫∞

0
ûk w( )| |2dw (3)

In PV output prediction, quasi-clear sky IMFs and output
disturbance IMFs have different physical meanings and predictive

patterns. Quasi-clear sky IMFs mainly reflect the basic
characteristics of PV output under clear sky conditions, while
output disturbance IMFs reflect the influence of other factors
(such as cloud cover, temperature changes, etc.) on PV output.
Separating quasi-clear sky and output disturbance IMFs can allow
the prediction model to capture different types of variations more
finely, thereby improving prediction accuracy.

2.2 Disturbance IMF clustering

After obtaining the quasi-clear sky IMF and various disturbance
IMFs, clustering operations are performed on the disturbance IMFs.
K-means is a clustering algorithm (Sleiman and Su, 2024) that
partitions data points into different clusters based on their feature
similarity. In this paper, K-means is used to cluster the IMFs modes
representing PV output disturbances, grouping these modes into
different clusters of power change features to better understand and
describe the operating characteristics of PV power generation
systems. The specific algorithm process is as follows:

1) Initialize the centroids for the disturbance IMF clusters and
select the number of clusters, K.

2) Assign samples D and calculate the Euclidean distance
between each sample point and the cluster centroids Ci.
Find the optimal distance and assign the sample points to
the feature clusters corresponding to Ci (Equation 4):

d x, Ci( ) �
�������������∑m

j�1 xj − Cij( )2√
(4)

In the equation, Ci represents the ith cluster centroid, m is the
dimensionality of the data objects, and Cij denote the jth attribute
values of x and Ci, respectively.

3) Update the cluster centroids by computing the mean and squared
error of all points in each cluster. Update the centroids and repeat
step 2). The calculation formula is as follows (Equation 5):

∑k

i�1∑x ∈ Ci
d x, Ci( )| |2 (5)

4) When the cluster centroids no longer change or reach the
maximum number of iterations, stop the loop, update the
clustering results, and calculate evaluation metrics. For
different numbers of clusters K. For the disturbance IMFs,
this paper calculates the Davies-Bouldin index (DBI) and the
silhouette coefficient index (SC) to select the optimal index and
its corresponding number of clusters KK as well as the
corresponding clustering situation as the clustering result.

2.3 Spearman correlation analysis

Spearman correlation is a non-parametric method used to
measure the monotonic relationship between two variables. It is
robust and not influenced by outliers, making it suitable for various
types of data analysis, particularly effective in detecting nonlinear
relationships.
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By employing Spearman correlation analysis, we can assess the
degree of association between different IMF feature clusters and
weather features. This helps identify which weather factors have a
significant impact on different PV output features, aiding in the
selection of the most relevant features to guide model construction
and prediction processes. The formula for calculating the Spearman
correlation coefficient is as follows (Equation 6):

ρ � 1 − 6∑d2
i

n n2 − 1( ) (6)

In the equation, ρ represents the Spearman correlation
coefficient, di denotes the difference between the ranks of each
corresponding pair (i.e., the difference between the rankings of IMF
variables and weather feature variables), n is the number of
data pairs.

3 WaveNet model

The WaveNet model, based on convolutional neural networks
(CNNs) with different structures, is essentially a probabilistic
autoregressive model for time series data. It has shown good
performance in audio analysis applications, utilizing its strong
capability in handling time-series features to improve short-term
forecasting effects. In PV prediction, the WaveNet model can
effectively capture the temporal features and nonlinear
relationships in PV output data, thereby enhancing prediction
accuracy and generalization capability.

The basic module of WaveNet mainly consists of dilated
convolutional structures, residual connections, and gating unit
structures, as shown in Figure 1. The input layer uses causal
convolutions to preserve the positional information of the

model’s time-series feature input, preventing the model from
seeing the entire temporal information at once during learning.
Its convolutional structure includes causal convolutions and dilated
convolutions, connecting convolutional layers with different
dilation rates to obtain an ultra-long receptive field, extracting
time-series features of different lengths of PV output changes,
analyzed by the causal convolutional layers. The computation of
the model’s gating units is shown in Equation 7, and the calculation
formula for the input-output of a single filter in the dilated
convolutional layer is shown in Equation 8.

z � tanh Wf*x( ) ⊙ σ Wg*x( ) (7)

In the equation, x represents the input time series to the gating
unit, Wf and Wg are the corresponding weight parameters for the
gating mechanism input.

y � x t( )*f t( ) � ∑K−1
n�0

f t( )x t − dn( ) (8)

In the equation, y represents the output of a single filter in the
dilated convolutional layer, x(t)x(t) is the time series input to the
dilated convolutional layer, f(t) is the filter with a kernel size of k, d is
the convolutional dilation rate, and n is the convolutional
kernel index.

The complete WaveNet model is formed by stacking multiple
basic dilated convolutional layers, which process very long time
series data through stacking multiple identical parameterized basic
structures. The lower layers of the convolutional structure learn
short-term patterns, while long-term patterns are learned by higher
layers of convolutional layers. Additionally, a residual network
structure is employed to address the problem of gradient
vanishing and exploding during training caused by excessive
model depth. The model’s output is fused using skip connections,
which combine the feature quantities extracted at different
convolutional layer levels, and the final prediction result is
outputted through multiple causal convolutions.

4 PV output prediction based
on WaveNet

Based on the above methods, this paper proposes a PV output
prediction method based on VMD disturbance feature extraction
andWaveNet model. The structure of the prediction model is shown
in Figure 2.

First, to extract the different feature changes in the output, this
paper adopts VMD to decompose the PV output time series,
obtaining the IMFs modes representing output disturbances and
quasi-clear sky IMF modes. The input for this stage is the historical
PV output data, and the output is the decomposed IMFs modes.

The PV power generation varies rhythmically with the
alternation of day and night. During the day, when the sunlight
intensity is high, the power generation increases. Conversely, during
the night, when the sunlight diminishes, the power generation
decreases. This rhythmic variation is an inherent characteristic of
PV power generation induced by the rotation and revolution of the
Earth. However, sudden changes in meteorological conditions can
affect the output power of the PV system, causing irregular

FIGURE 1
The structure diagram of the WaveNet model.
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fluctuations. By using VMD to extract quasi-clear sky curves and
disturbance curves, as shown in Figure 3, this paper reveals that the
quasi-clear sky curve reflects the regular changes in the output of the
PV system, while the disturbance curve reflects the irregular

fluctuations caused by changes in meteorological conditions. By
decomposing and analyzing regular and irregular variations, a better
understanding of the characteristics and variation patterns of the PV
system’s output can be achieved.

FIGURE 2
Flowchart of photovoltaic output prediction based on VMD disturbance feature extraction and WaveNet neural network.

FIGURE 3
Example diagram of VMD feature decomposition.
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Next, the IMFs modes representing the output disturbance are
subjected to K-means clustering to cluster the disturbance IMFs
according to their power variation characteristics and plot their
cluster centroids. The input for this stage is the IMFs modes
representing output disturbances, and the output is the clustered
disturbance IMFs and their centroids. This clustering method helps
capture different types of power fluctuation patterns in the
experimental dataset. By analyzing these clustered feature
clusters, we can better understand the impact of different types
of disturbances on PV output, providing more information and
features for subsequent prediction models.

Establishing the experimental dataset is a crucial step in PV
output prediction research. The input for this stage is the clustered
disturbance IMFs and historical meteorological data, and the
output is the experimental dataset for model training and
validation. By clustering the disturbance IMFs into different
power variation feature clusters and conducting Spearman
correlation analysis based on their cluster centroids, optimal
weather features for each feature cluster are selected, facilitating
the construction of an experimental dataset for model training and
validation. In the experimental dataset, each feature cluster
represents a type of power fluctuation pattern and contains
relevant weather data samples for that pattern. Constructing the
dataset in this way helps train the model to better adapt to different
types of power variation scenarios.

Finally, to further enhance the model’s learning capability, the
WaveNet recurrent neural network is employed in the prediction
stage. The input for this stage is the experimental dataset
consisting of feature IMF time series data and relevant
meteorological data, and the output is the predicted PV output
for each IMF mode. By combining the corresponding feature IMF
time series data with relevant meteorological data, a WaveNet
model is constructed for training and prediction. WaveNet is a
convolutional neural network structure composed of a series of
convolutional layers, each containing multiple convolutional
kernels. These kernels have gradually expanding receptive
fields, allowing the network to capture rich information at
different time scales. During the prediction process, the
corresponding feature IMF time series data is combined with
relevant meteorological data to train and predict using the
WaveNet model. WaveNet can effectively handle time series
data and extract important feature information, aiding in
better understanding the spatiotemporal structure and related
properties of the data. WaveNet itself has strong nonlinear
modeling capabilities, capable of capturing complex patterns
and regularities in time series data. By employing the WaveNet
model in the prediction stage, PV output time series data can be
better processed, thereby improving prediction accuracy and
generalization capability.

Once the model training is completed, the predicted results of
different IMF modes are aggregated to obtain the predicted total PV
output. The input for this stage is the predicted outputs of different
IMF modes, and the output is the aggregated total predicted PV
output. This approach combines the different feature IMF time
series data and utilizes the model’s learning capabilities for each
IMF, resulting in a more comprehensive prediction of the total
output of the PV system, further improving the accuracy and
reliability of the prediction results.

5 Case study

To validate the effectiveness of the proposed PV output
prediction method based on VMD disturbance feature extraction
and WaveNet model, historical data from a PV station in Zhejiang,
China, was used as the experimental dataset. The historical PV
output data covers the fourth quarter of the year 2022, from
1 October 2022, 0:00 to 31 December 2022, 23:55. The data is
sampled at a frequency of 5 min per point, and the output data is in
units of watts.

5.1 Evaluation metrics

The forecasting part of the experiment focuses on turbine output
prediction. The results are evaluated using RMSE, Mean Absolute
Error (MAE), andMAPE as the evaluationmetrics. The formulas for
these metrics are (Equations 9–11):

eRMSE �

���������������
1
N

∑T+N
t�T+1

αst − α̂st( )2√√
(9)

eMAE � 1
N

∑T+N
t�T+1

αst − α̂st
∣∣∣∣ ∣∣∣∣ (10)

eMAPE � 1
N

∑T+N
t�T+1

αst − α̂st
αst

∣∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣∣ (11)

In power output prediction, αst � ps
t represents the actual value

of the output, while âst � p̂s
t represents the predicted value of the

PV output.

5.2 Decomposition of output using VMD

First, the historical output time series is decomposed using VMD
to extract and analyze different modes of output variations. In VMD,
the parameter α controls the balance between the smoothness of
decomposition and the fitting of data. To better fit the data, the

FIGURE 4
Number of clusters for disturbance IMFs clustering at different k.
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experimental setting for the fitting coefficient alpha is set to 10. During
the VMD operation, the experiment initially sets the number of
modes, k, to 3, 5, 7, 9, 11, etc., and then applies K-means
clustering to the obtained disturbance IMFs for different values of
k. The number of clustered disturbance IMFs for different values of k
is shown in Figure 4.

From Figure 4, it can be observed that as the number of VMD
decompositions, k, increases, the subsequent clustering numbers
stabilize starting from k = 7. It can be seen that increasing the
number of decompositions does not change or improve the
clustering effect. Therefore, in this experiment, the number of
modes, k, is set to 7. The VMD decomposition diagram of the
PV output is shown in Figure 5.

According to Figure 5, VMD decomposes the output into seven
characteristic IMFs. IMF1 represents the clear-sky curve of the day,
reflecting the output curve unaffected by weather conditions. IMF4 and
IMF5 represent high-amplitude low-frequency disturbances caused by
changes in cloud cover, while IMF2 and IMF6 represent high-amplitude
mid-frequency disturbances caused by changes in cloud cover.
IMF3 and IMF7 represent low-amplitude high-frequency
disturbances caused by changes in cloud cover and the PV system
itself. The Residue represents the noise component of the PV system.

5.3 Disturbance IMF clustering

Next, K-means clustering was applied to the disturbance IMF
modes excluding the clear-sky IMF. The clustering SC and DBI
scores are shown in Figure 6, and the centroids of the clusters are
depicted in Figure 7.

According to Figure 6, when K = 3, both the DBI index and SC
index are optimal, indicating the best clustering effect. That is, the
disturbance IMF is mainly divided into three categories, and the IMF

time series data of the same category are used to construct the
prediction model for training in subsequent predictions. Figure 7
shows the cluster centroids of the disturbance IMF, and the
clustering results are consistent with the conclusions of VMD
decomposition. By identifying different disturbance feature
classes, the variation patterns and periodic influences of PV
power output disturbances can be explored. Combined with
historical meteorological data, further analysis of weather change
patterns can improve the accuracy of PV power output prediction.

5.4 Spearman correlation analysis

After obtaining the clustering results from K-means, the
Spearman correlation analysis was conducted between the class
clear-sky IMF curve and the clustering center lines of disturbance
clusters 1, 2, and 3, respectively, with historical weather data. The
correlation analysis results are shown in Table 1.

From the data in Table 1, it can be analyzed that there is a very
high Spearman correlation between the clear sky IMF and
irradiance, indicating a significant correlation between the clear
sky IMF and irradiance. However, the Spearman correlations
between the disturbance IMF clusters 1, 2, and 3 and various
meteorological parameters are relatively low, suggesting weak
associations between them and the meteorological parameters.
Specifically, disturbance IMF cluster 2 has the lowest Spearman
correlation coefficients with all meteorological parameters,
indicating the weakest connection with each meteorological
parameter. In contrast, disturbance IMF cluster 1 shows relatively

FIGURE 5
The VMD decomposition diagram of PV power output.

FIGURE 6
Evaluation indices for K-means clustering.

FIGURE 7
The central line of uphill climbing clustering.
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high Spearman correlations with irradiance and surface
temperature, while disturbance IMF cluster 3 exhibits relatively
high correlation with humidity, indicating that meteorological
factors have the greatest influence on disturbance IMF cluster 3.
Based on this analysis, this study selects the optimal meteorological
factors for each power cluster to construct the experimental dataset.

5.5 WaveNet prediction model

During the prediction phase, WaveNet prediction models were
separately constructed for the class-sunny-day IMF and the power
IMFs within each disturbance IMF cluster. Predictions were made for
each IMF component, and these predictions were then aggregated to
obtain the overall PV power output prediction. In the experiment, the
above steps were organized into an experimental dataset. The dataset

was divided into training and testing sets, with the last 3 days’ data
reserved for testing and the remaining data used for training.

In the comparative experiment, the models were divided into
three categories: CNN-based models, RNN-based models, and
hybrid models. The reason for selecting these three categories is
to comprehensively evaluate the performance of different types of
neural networks in PV power output prediction. CNN-based models
excel at handling short-term complex fluctuations and can quickly
capture local features in time series data; RNN-based models have
advantages in dealing with long-term dependencies and can better
capture long-term trends in time series data; hybrid models combine
the strengths of both CNNs and RNNs, enabling them to handle
both short-term fluctuations and long-term trends. Each category
included versions with and without VMD decomposition and
Spearman correlation analysis. The specific models included:
VMD-TCN, VMD-LSTM, VMD-GRU, VMD-CNN-LSTM,

TABLE 1 The results of Spearman analysis.

Irradiance Pressure Surface temperature Humidity Wind speed at 70 m

clear-sky IMF 0.9002 0.1907 0.4905 0.7965 0.3008

clusters 1 0.0367 0.0449 0.0063 0.0279 0.0131

clusters 2 0.0153 0.0166 0.0029 0.0242 0.0101

clusters 3 0.4094 0.1705 0.3072 0.2609 0.0398

FIGURE 8
Comparison chart of predicted actual values vs. predicted values.
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VMD-CNN-GRU, VMD-Transformer, and their counterparts
without decomposition. Additionally, this study proposed the
VMD-WaveNet prediction model. The performance of these
models was evaluated by comparing the actual and predicted
outputs, as shown in Figure 8, analyzing the performance of
different methods in PV power output prediction.

Figure 8 shows the comparison between the actual PV power
output (blue solid line) and the predictions from two models: VMD-
WaveNet (red dashed line) and WaveNet (green dashed line) over
3 days. The VMD-WaveNet model is closer to the actual values most
of the time, especially at the two main peaks around 150 min and
430 min, where it captures the fluctuations in the actual output more
accurately, while the WaveNet model shows larger errors at these
peaks. The zoomed-in plot further illustrates the details within the
100 to 200 min time period, where the VMD-WaveNet model is
closer to the actual values than the WaveNet model, particularly
during periods of large fluctuations, demonstrating higher predictive
accuracy. At several peaks and troughs, the VMD-WaveNet model
better tracks the changes in actual output, whereas the WaveNet
model exhibits greater prediction errors at these points. Overall, the
VMD-WaveNet model outperforms the WaveNet model in
capturing both the overall trend and local fluctuations in PV
power output predictions, indicating that the incorporation of
VMD decomposition and Spearman correlation analysis
significantly enhances the performance of the PV output
prediction model.

According to the results in Table 2, CNN-based models such as
WaveNet perform well in short-term predictions and can quickly
respond to rapid changes in PV power.

Traditional LSTM and GRU models have advantages in
handling long-term dependencies. However, models without
VMD processing exhibit deficiencies in noise handling and
feature extraction, leading to lower prediction accuracy. The
RMSE of VMD-LSTM is 88.56W, significantly better than the
183.04W of the undecorated LSTM; similarly, VMD-GRU has an
RMSE of 76.93W, compared to the 169.77W of the undecorated
GRU, demonstrating the effectiveness of VMD decomposition in
these models. Hybrid models such as VMD-CNN-LSTM and
VMD-Transformer combine the strengths of CNN and RNN,
performing well in handling both short-term fluctuations and
long-term trends. The RMSE of VMD-Transformer is 42.09W,

better than the 132.31W of the undecorated Transformer, further
proving the value of VMD processing.

Compared to other RNN, CNN, and hybrid models, the
WaveNet model excels in handling time series data. By utilizing
the structure of convolutional neural networks, WaveNet performs
exceptionally well in dealing with short-term complex fluctuations
and long-term dependencies. Although the prediction accuracy of
the WaveNet without VMD processing is slightly inferior to that of
VMD-WaveNet, its RMSE is still 75.22W. Notably, the RMSE of
WaveNet is the lowest among all models without VMD processing:
LSTM has an RMSE of 183.04W, GRU has an RMSE of 169.77W,
TCN has an RMSE of 121.86W, and Transformer has an RMSE of
132.31W. This indicates that WaveNet excels in capturing short-
term fluctuations and long-term dependencies even without VMD
processing, surpassing other traditional RNN and hybrid models,
highlighting its advantages in time series data processing.

The VMD-WaveNet model combines the advantages of VMD
decomposition with WaveNet’s powerful time series processing
capabilities. By extracting features of different frequencies
through VMD decomposition and conducting Spearman
correlation analysis with meteorological data, it can more
accurately capture the short-term fluctuations and long-term
trends of PV power output. Figure 8 shows that the VMD-
WaveNet model significantly outperforms the undecorated
WaveNet model in predicting multiple peaks and valleys,
especially near the main peaks at 150 min and 430 min, where
the VMD-WaveNet model is closer to the actual values.
Additionally, the evaluation metrics in Table 2 further confirm
this, with the VMD-WaveNet model achieving an RMSE of
27.01W, an MAE of 10.90W, and a MAPE of 6.94%, all
significantly better than other models. This demonstrates that the
VMD-WaveNet model, through more refined feature extraction and
comprehensive consideration of multiple relevant factors,
significantly improves the accuracy and stability of PV output
prediction, showing the best predictive performance.

6 Conclusion

The existing short-term forecasting techniques for PV power
face challenges such as low prediction accuracy and weak correlation

TABLE 2 Evaluation metrics for prediction results.

Group Model RMSE
/(W)

MAE
/(W)

MAPE
/(%)

Model RMSE
/(W)

MAE
/(W)

MAPE
/(%)

CNN-based proposed 27.01 10.90 6.94 WaveNet 75.22 32.69 7.17

CNN-based VMD-TCN 47.41 20.34 6.99 TCN 121.86 45.67 7.32

RNN-based VMD-LSTM 88.56 35.89 7.28 LSTM 183.04 68.42 7.42

RNN-based VMD-GRU 76.93 30.56 7.25 GRU 169.77 62.43 7.39

Hybrid models VMD-CNN-LSTM 70.52 24.76 7.22 CNN-LSTM 152.69 58.27 7.36

Hybrid models VMD-CNN-GRU 44.93 15.68 7.10 CNN-GRU 141.28 54.32 7.34

Hybrid models VMD-Transformer 42.09 14.76 7.02 Transformer 132.31 50.89 7.33
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between meteorological factors and power fluctuations. To address
these issues, this paper proposes a PV power prediction method
based on VMD for disturbance feature extraction and
WaveNet model.

To capture the diverse features of PV power output, VMD is
applied to decompose the PV power time series into IMFs
representing disturbance and clear-sky components. The clear-
sky curve reflects regular variations in PV output, while the
disturbance curve reflects irregular fluctuations caused by
changes in meteorological conditions.

To better understand the impact of different disturbance types
on PV output and provide more information and features for the
model, the IMFs representing power disturbances are clustered
using K-means clustering based on their power change
characteristics. Through analysis of these clustered feature
clusters and Spearman correlation analysis of weather factors,
different types of power fluctuation patterns are explored more
accurately, thereby enhancing the predictive performance of
the model.

In the prediction stage, a WaveNet model is employed. By
combining the corresponding feature IMF time series data with
Spearman-correlated meteorological data, a WaveNet model is
constructed for training and prediction. The WaveNet model can
effectively capture features and patterns in time series data,
considering the temporal correlation and non-linear
characteristics of the data, thus improving the accuracy and
generalization ability of PV power prediction.

In the experimental section, evaluation metrics are computed,
and the predicted data from different models are compared with the
ground truth data to validate the computational accuracy and
effectiveness of the proposed method for PV power prediction.
The results demonstrate that the model provides effective
predictions of PV power output, thereby supporting operational
management of PV stations.
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