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Relay protection rejection and misoperation exist in the existing distribution
network, which will affect the fault diagnosis results. To diagnose faults in
distribution networks, this paper presents a fault diagnosis method for the
distribution network based on the D-S evidence theory Bayesian network.
First, the collected relay protection information is divided into two categories,
protection information and circuit breaker information; the corresponding
Bayesian network model is established based on their respective action logic,
and the corresponding component failure probability is obtained by Bayesian
backward inference. Second, the fault probabilities obtained from the two
Bayesian networks are fused by the D-S evidence theory, and the obtained
fault probabilities are used to diagnose the faulty component. Then, using the
Bayesian network corresponding to the faulty component to perform Bayesian
forward inference, the protection devices and circuit breakers are identified for
misoperation or rejection to achieve the fault diagnosis of the distribution
network. Finally, the correctness and reliability of the proposed diagnosis
method are verified through the analysis of arithmetic cases.
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1 Introduction

More and more distributed power sources and new types of loads are widely connected
to the distribution network with the “double-carbon” goal. The dispatch center receives a
large amount of alarm information from the Supervisory Control and Data Acquisition
(SCADA) secondary equipment when faults occur in the distribution network, which
increases the difficulty for operation and maintenance personnel to analyze the cause and
process of the distribution network fault (Ferreira et al., 2016; Xialin et al., 2019).

Fault diagnosis of the power grid refers to the diagnosis of components through specific
action data on protection devices and circuit breakers in the fault area, as well as the analysis
of the action behaviors for protective devices and circuit breakers. The current typical grid
fault diagnosis methods are Petri nets (Biao et al., 2019; YANG et al., 2020), artificial neural
networks (Dongyuan et al., 2014; Guojiang et al., 2014), expert systems (Dongmei et al.,
2014; Xuechen et al., 2017), rough set theory (Sun et al., 2013; Wenwu et al., 2021), analytic
models (Daobing et al., 2024; Yuyang et al., 2021), multi-source information fusion
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(Weixing et al., 2021; Yu et al., 2021), and Bayesian networks (LUO
and TONG, 2015; Pengzhe et al., 2021). Zhang et al. (2021)
presented a method of partition fault diagnosis based on the
improved probabilistic neural network (PNN) and gray relational
analysis (GRA) integral, aiming at the problem of large-power grid
fault diagnosis. (Zhang et al. (2023) proposed a quantitative
representation method for alarm information and used the
quantified alarm information as classification features based on
the quantity and time-series distribution characteristics of alarm
information during faults. A novel hybrid method of combining
variational mode decomposition (VMD) and a convolutional neural
network (CNN) for fault location and fault type identification is
proposed by Zhang et al. (2022). The methods described by Wang
et al. (2022) can distinguish false faults caused by measurement
tampering attacks.

The above methods can realize the fault diagnosis of the power
grid, but the method used cannot reflect the role of relay protection
action information, and it is not easy to understand. The Bayesian
network is a probability graph model used to represent the
dependency relationships between variables and can be used to
infer the states of other variables. At the same time, this graph theory
representation is intuitive and easy to understand, which helps
understand the interaction between relay protections. Luo and
Tong (2015) evaluated the reliability of the action status and
occurrence time of protection and circuit breakers in the power
grid and introduced the concept of reliability in the Bayesian
inference process to achieve power grid fault diagnosis. This
method only considers the impact of SCADA system relay

protection action information on fault diagnosis and does not
analyze the incorrect action of relay protection. Zhang et al.
(2021) built a Bayesian network model to realize the
identification of relay protection rejection and misoperation and
deduce the action sequence of each protection device and circuit
breaker when the power grid faults. The Bayesian network structure
in this method will make the information on the circuit breaker have
less influence on the component fault judgment, which may
misjudge when the circuit breaker fails to act for some reasons.
He et al. (2011) used specific segmentation methods to segment the
power grid and introduced the concept of overlap degree for D-S
evidence fusion, then diagnosed the sub networks in different
regions based on relay protection action information, and
integrated the diagnostic results of each network to achieve fault
diagnosis of the power grid.

To avoid the influence of incorrect action of the protection and
circuit breaker on fault diagnosis, a new fault diagnosis of the
distribution network based on D-S evidence theory is proposed
in this paper. Compared with the previously proposed fault
diagnosis method, the main contributions are as follows:

• The relay protection information is divided into two
categories, protection action information and circuit
breaker action information, and the Bayesian network
model is established according to their respective action
logic, which effectively avoids the problem of circuit
breaker information having little influence on component
fault judgment in a traditional Bayesian network model.

FIGURE 1
Topology and protection configuration of the distribution network.
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• The fusion of fault diagnosis information from two Bayesian
network models using D-S evidence theory improves the
accuracy of fault diagnosis.

The rest of the paper is structured as follows: Section 2
presents the rules for building Bayesian network models and
their drawbacks; Section 3 presents the improvement in the

FIGURE 2
Bayesian network model for relay protection of the distribution network.

FIGURE 3
Bayesian network model of protecting information.
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Bayesian network model and implementation of fault diagnosis
using D-S evidence theory; Section 4 presents the simulation
results for different fault scenarios; and finally, Section 5
concludes the paper.

2 Bayesian network model for relay
protection in distribution networks

2.1 Topological structure and protection
configuration

Research on power grid fault diagnosis for the distribution
network shown in Figure 1 analyzes the local power system relay
protection information and power grid topology structure. At
present, the main protection used in the distribution network is
longitudinal differential protection, while the backup protection
adopts zero-sequence overcurrent protection at both ends and
distance protection at both ends.

2.2 Principle of protection action

This paper focuses on the analysis of lines and buses in the
distribution network. We take the left side of protection L5-6Lm, L5-
6Ln, and L5-6Lf of line L5-6 as examples to introduce the relevant line
protection action principle in Figure 1. L5-6Lm is the main
protection, which is only responsible for protecting its own lines,
i.e., lines L5-6; L5-6Ln is a near-backup protection, which also
protects the line itself; when the main protection L5-6Lm is
rejected for some reason, the near-backup protection L5-6Ln
operates to protect its own line; and L5-6Lf is the remote backup
protection, which normally operates in the event of a fault in an

adjacent element. When the adjacent bus B6 fails and its main
protection does not operate, L5-6Lf acts as the remote backup
protection to isolate the fault. All three types of protection will
trigger CB5-6 trips when activated.

For bus protection, B6m is the main protection, which is only
responsible for protecting the bus itself, i.e., B6, When a fault occurs on
bus B6, busmain protection B6m acts to trigger CB6-5, CB6-7, and CB6-25
trips; the backup protection of the bus is served by the backup
protection of the adjacent line of the bus, i.e., the remote backup
protection of lines L5-6,CB6-25, and L6-7 serves as the backup protection
of bus B6.

2.3 Bayesian network principle

A Bayesian network is a directed acyclic graph based on the
structure of the network. Each node represents a variable in the
network, the directed arc represents the relationship between
variables, and the conditional probability between each node and
its child nodes represents the dependency relationship between
variables. The mathematical description is as follows. If X = {x1,
x2, . . ., xn} is defined, where x1, x2, and xn are the nodes in the
Bayesian network, then, the joint probability of the occurrence of
multiple nodes p(x1, x2, . . . , xn) is

p x1, x2,/xn( ) � ∏n
i�1

p xi | π xi( )( ), (1)

where π(xi) represents the set of parent nodes of xi in Eq. 1.
For a node xi in a Bayesian network with m elementary

events {e1, e2, . . ., ek}, assuming that the event results E = {x1, . . .
xi-1, xi+1 . . . , xn} for all nodes related to node xi have been
obtained, the conditional probability of the sth event es of node xi
occurring is shown in Eq. 2.

p xi � es | E( ) � p xi � es, E( )
p E( )

� p xi � es( )∏n
j�1,j ≠ ip xj | π xj( )( )

∑m
k�1

p xi � ek( )∏n
j�1,j ≠ ip xj | π xj( )( )[ ]

. (2)

FIGURE 4
Bayesian network model of circuit breaker information.

TABLE 1 Failure prior probability for element nodes.

Component
Line Bus

Fault prior probability 0.0208 0.0137
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2.4 Bayesian network model for relay
protection in distribution networks

When a fault occurs, there is not only a temporal
relationship but also a certain logical relationship between

protection device action and circuit breaker action in the
relay protection of distribution networks. Normally, the
distribution network protection will act after a component
failure, and it will cause the circuit breaker to trip after the
protection has acted, thus enabling fault isolation. Based on the

TABLE 2 Rejection and misoperation probability of the relay protection device and circuit breaker.

Probability of failure
Protection of the line Protection of the bus Circuit breaker

Misoperation 0.0024 0.0007 0.0048

Rejection 0.0007 0.0308 0.0083

FIGURE 5
Flow of judging the fault component based on D-S evidence theory.
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relay protection action logics, the Bayesian network model for relay
protection is shown in Figure 2. The network nodes are connected to
each other according to the relay protection action logic in the following
order: “component–main protection–near-backup protection–near-end
breaker–far-backup protection–far-end breaker.”. The state of each node
is represented by “0” and “1” in the Bayesian network model. For
component nodes, the “normal”working state is indicated by “0” and the
“fault” state by “1;” for circuit breakers and protection nodes, their
“inactive” state is indicated by “0” and their “active” state by “1.”

The component nodes of a traditional Bayesian network model
structure are only connected to protection nodes, and circuit breaker
nodes only play a role in connecting various types of protection
nodes, which makes the action information on circuit breakers have
less influence on the diagnostic role of faulty components in the
Bayesian network.

3 Fault diagnosis of the distribution
network based on the D-S evidence
theory Bayesian network

In this section, we improve the structure of the traditional
Bayesian network model to enhance the influence of circuit
breaker information on component fault diagnosis. The results of

the backward inference of each Bayesian network are fused using
D-S evidence theory to calculate the fault probability of each
component in the fault area and infer the faulty component.
Then, Bayesian forward inference is used to obtain the protection
device and circuit breaker for rejection and misoperation.

3.1 Improved Bayesian network
model structure

The information obtained in traditional SCADA systems can be
divided into two main categories, one for protection action
information and the other for circuit breaker action information,

FIGURE 6
Part topology of the DC distribution network and its protection configuration.

TABLE 3 Relay protection action information in scene 1.

Number Time Circuit breaker/
protection

State

1 17:20:
42:560

L6-7m Operation

2 17:20:
42:623

CB7-6 Tripped

3 17:20:
42:676

CB6-7 Tripped

FIGURE 7
Bayesian network model for protection information on line L6-7.
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so Bayesian networks can be built for each of these two types of
information.

1) The Bayesian network model corresponding to the protection
action information is shown in Figure 3. The connection
sequence of the structure is “component–main
protection–near-backup protection–far-backup protection.”

2) The Bayesian network model corresponding to the circuit
breaker action information is shown in Figure 4. The
connection sequence of its structure is “component–near-
end circuit breaker (triggered by the action of main
protection or near-backup protection)–far-end circuit
breaker (triggered by the action of far-backup protection).”

In the case of a distribution network, when the main protection
(near backup protection) is triggered and the near-end circuit
breaker does not trip, the remote backup protection operates to
isolate the fault by tripping the remote-end circuit breaker. In this
scenario, the remote-end circuit breaker node is considered a leaf
node in the Bayesian network model. However, when the state of the
remote backup protection node is “1,” the diagnostic result for the
faulty component remains the same, regardless of whether the
remote-end circuit breaker node is in state “1” or “0.” Therefore,
this paper proposes a novel Bayesian network model that classifies
the nodes in the traditional relay protection Bayesian network model
based on the type of information, distinguishing between protection
information and circuit breaker information. The model is
established according to the respective operating logics. This
approach allows for a more intuitive analysis of the faulty
components and reduces the dependency of circuit breaker nodes

on protection nodes in the Bayesian network. Moreover, even in
cases where some protection information is missing, the
investigation of suspected faulty components within the fault area
can still be carried out based on circuit breaker information.

According to expert knowledge, test data, and equipment
history information, the Bayesian network is assigned to
determine the prior probability of each component node and
the conditional probability of relay protection node in a power
system. The probability assignment of component nodes is
shown in Table 1, and the conditional probability assignment
of relay protection devices and circuit breaker nodes is shown in
Table 2 (Yiquan et al., 2020). The conditional probabilities of the
protection nodes of various components of the power system are
similar, the conditional probabilities of several types of relay
protection can be easily selected, and the conditional probability
values of the remaining nodes in the system network can be
calculated by analogy.

3.2 D-S evidence theory

The two types of information Bayesian network models are
used to obtain the component failure probabilities under the
respective network models by Bayesian backward inference,
which requires the application of D-S evidence theory for
failure probability fusion.

The D-S evidence theory is a theory of imprecise reasoning that
can transform propositions into mathematical sets for analysis.
Assuming that there is a problem that needs to be judged, if all
the consequences that can be caused by a specific event can be
exhaustively listed, it is denoted as setU. In D-S evidence theory,U is

FIGURE 8
Bayesian network model for circuit breaker information on line
L6-7.

TABLE 4 Relay protection action information in scene 2.

Number Time Circuit breaker/
protection

State

1 13:44:
17:247

B6m Operation

2 13:44:
17:276

CB6-25 Tripped

3 13:44:
17:295

CB6-5 Tripped

4 13:44:
17:312

CB6-7 Tripped

TABLE 5 Relay protection action information in scene 3.

Number Time Circuit breaker/
protection

State

1 15:27:
33:768

L6-7m Operation

2 15:27:
33:806

CB6-7 Tripped

3 15:27:
33:897

L7-8Rf Operation

4 15:27:
33:943

CB8-7 Tripped

TABLE 6 Analysis of diagnostic results in scene 3.

Component Methods Diagnostic result

Mt (%) Mp (%)

L6-7 97.52 99.06 L6-7 fault
CB7-6 reject

L7-8 73.54 20.14

B7 11.71 1.42
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called the identification framework, and the elements in U are finite
and incompatible with each other.

If the function m: 2U→[0,1] satisfies the condition

1) m(∅) � 0, ∅ is an empty set
2) ∑

A⊂U
m(A) � 1

Then,m(A) is called the basic probability assignment function of
A. A function Bel: 2U→[0,1] that satisfies the condition: Bel(A) =∑m(B)(∀A ⊂ U) is defined, which represents the sum of the basic
probability assignments of all subsets in the recognition framework.
This function is called a trust function onU. If K is an element on set
U and its basic probability assignment function is greater than 0,
then K can be considered the focal element of the trust function Bel.
A likelihood function Plc(A) � ∑m(B) is defined, and we can note
that Plc(A) ≥ Belc(A), where Bel(A) is the lower limit ofA and Pl(A) is
the upper limit of A.

Assuming that set U has trust functions Bel1 and Bel2, and its
basic probability assignment functions arem1 andm2,A1,A2, . . . ,Ak

and B1, B2, . . . , Br are the corresponding focal elements.When K < 1,
the combination rule of D-S evidence theory is shown in Eq. 3.

m C( ) �

∑
i,j

Ai∩Bj�C

m1 A1( )m2 Bj( )

1 −K
∀C ⊂ U,C ≠∅

0 C ≠∅

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
, (3)

where K < 1; K is the conflict factor, which expresses the degree
of conflict between different lines of evidence and can be divided
into two situations.

(1) When K ≠ 1, thenm determines a basic probability assignment.

FIGURE 9
Comparison of calculation results between the two methods in scene 3.

TABLE 7 Analysis of diagnostic results in scene 4.

Number Time Circuit breaker/
protection

State

1 19:17:
29:510

L6-7Rm Operation

2 19:17:
29:626

CB7-6 Tripped

3 19:17:
29:772

L5-6Lf Operation

4 19:17:
29:852

L6-25Rf Operation

5 19:17:
29:972

CB5-6 Tripped

6 19:17:
30:074

CB25-6 Tripped
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(2) When K = 1, it can be determined that m1 and m2 are
mutually exclusive and cannot be fused using D-S
evidence theory.

3.3 Identifying faulty components

The Bayesian network model of protecting information and
circuit breaker information corresponds to two mutually
independent lines of evidence in D-S evidence theory; each line
of evidence will derive a corresponding probability of fault
information by Bayesian backward inference, combining the two-
component fault probability information according to the D-S
evidence theory rules. The fused equation is shown in Eq. 4.

P X � 1( ) � PCB X � 1( ) × PP X � 1( )
PCB X � 1( ) × PP X � 1( )[ ] +
PCB X � 0( ) × PP X � 0( )[ ]( )

, (4)

where PP and PCB represent the probability values under the Bayesian
network model for protection information and circuit breaker
information, respectively; X represents the corresponding parent node
of each Bayesian network, i.e., the component node (bus or line node).

Since each component of the power system network can build its
own Bayesian network, each component can only appear in its own
Bayesian network. The fault probability of each component fused

after backward inference is defined as an; the threshold for line faults
is 0.8 (Yiquan et al., 2020) and for bus faults is 0.6 (Luo and Tong,
2015). It is determined that the component is a faulty component
when an is greater than or equal to the threshold of the
corresponding component. The fault component judgment
process based on D-S evidence theory is shown in Figure 5.

3.4 Analysis of the action behavior of
protective devices and circuit breakers

The posterior probability of each node in the faulty component
is found corresponding to the protection information Bayesian
network model and circuit breaker information Bayesian network
model, according to Bayesian forward inference with prior
probability assignment, i.e., the expected action probability of
each protection device node and circuit breaker node in the case
of component failure is known. The specific steps are as follows.

Step 1: The protection information Bayesian network model and
circuit breaker information Bayesian network model
corresponding to the identified faulty component are
found, and the parent node (component node) is set in
both Bayesian network models to state “1,” i.e., the
component is faulty.

FIGURE 10
Comparison of calculation results between the two methods in scene 4.
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Step 2: The forward inference of the Bayesian algorithm is made
for the Bayesian network model of protection information
and circuit breaker information to calculate the action
expectation of the corresponding protection device and
circuit breaker in the case of faults.

Step 3: The expected action probability of the protection device
and circuit breaker obtained through Bayesian forward
inference is compared with the actual situation E of the
protection device and circuit breaker action to obtain the
difference Δm, which is the basis for judging the action of
protective devices and circuit breakers. The discrimination
method is shown in (Eq. 5).

−a≤Δm ≤ b
Δm ≤ − a
Δm ≥ b

⎧⎪⎨⎪⎩
Normal

Misoperation
Rejection

, (5)

where a, b∈(0,1), and a + b = 1, where both a and b are taken as 0.5 in
this paper.

4 Example analysis

Based on the MATLAB R2018a simulation platform, part of
the distribution network structure shown in Figure 1 is selected to
verify the correctness of the proposed method, and its topology
structure is shown in Figure 6. Meanwhile, the traditional
Bayesian network algorithm is compared with the information
fusion method based on the Bayesian network proposed in
this paper.

4.1 Normal operation of relay protection

In the case of the normal operation of relay protection, this
paper designs line faults (scene 1) and bus faults (scene 2) to verify
the superiority of the method proposed.

Scene 1: Line L6-7 fault, CB6-7 and CB7-6 tripped; specific relay
protection action information is shown in Table 3.

A brief explanation of the method proposed in this paper
according to scene 1 is provided as an example. There is only
one component in the fault area according to the topology structure
of the distribution network and relay protection action information,
i.e., line L6-7; two Bayesian network models of line L6-7 are shown in
Figures 7, 8, and the final fault probability obtained was 89.89%
through the D-S evidence fusion method, while the fault probability
obtained by the traditional method was 98.65%. For line faults, the

method proposed in this paper improves the accuracy by 8.76%
compared to traditional methods.

Scene 2: Bus B6 fault, CB6-5, CB6-7, and CB6-25 tripped. The
specific relay protection action information is shown in Table 4.

For fault scene 2, the same method as in fault scene 1 was used to
establish a Bayesian network model, resulting in a bus fault
probability of 99.99%, while the result obtained using the
traditional Bayesian inference method was 95.06%. The method
proposed in this paper improves the accuracy by 4.93% compared to
traditional methods. The method in this paper is better than the
traditional method in a normal situation, where there is no rejection
or misoperation of the relay protection from the fault probability
results of the line and bus.

4.2 Abnormal operation of relay protection

Incorrect parameter settings of relay protection, aging or
damage of the relay protection equipment itself, and other factors
may cause relay protection to reject and misoperate. This paper sets
three types of fault scenes to verify the accuracy of fault diagnosis
under the abnormal operation of relay protection.

Scene 3: Line L6-7 fault, CB7-6 refused to operate, relevant backup
protection acted and triggers the circuit breaker to trip. The specific
relay protection action information is shown in Table 5.

There are four components in the fault area according to the
topology structure of the distribution network and relay protection
action information, i.e., line L6-7, line L7-8, and bus B7. The
corresponding Bayesian network models are built for these
components, and their probabilities are calculated for the traditional
method (Mt) and the proposed method in this paper (Mp). A
comparison of the two methods is shown in Figure 9 and Table 6.

The Bayesian network of protection information and circuit
breaker information corresponding to the fault component does
forward inference, according to the rules of relay protection
behavior criterion after determining the fault element is line L6-7.
The results of the protection and circuit breaker behavior
calculations show that CB7-6 is rejection. The fault diagnosis
result is the line L6-7 fault, and CB7-6 refuses to operate, which is
consistent with the present scene.

TABLE 8 Analysis of diagnostic results in scene 4.

Component Methods Diagnostic result

M1 (%) M2 (%)

L5-6 67.43 58.24 L6-7 fault
L6-7Lm reject

L6-7 96.92 99.95

L6-25 67.43 58.24

B6 37.14 3.89

TABLE 9 Relay protection action information in scene 5.

Number Time Circuit breaker/
protection

State

1 08:45:
26:121

L5-6Rp Operation

2 08:45:
26:245

CB6-5 Tripped

3 08:45:
26:327

L6-25Rf Operation

4 08:45:
26:486

L6-7Rf Operation

5 08:45:
26:537

CB7-6 Tripped

6 08:45:
26:623

CB25-6 Tripped
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Scene 4: Line L6-7 fault, main protection L6-7Lm refuses to
operate, and the relevant backup protection operates and triggers
the circuit breaker to trip; the specific relay protection action
information is shown in Table 7. The results of the component
fault and comparison of two methods are shown in Figure 10 and
Table 8, respectively.

Scene 5: Bus B6 fault, B6m refuses to operate, relevant
backup protection acted and triggered the circuit breaker to
trip; the specific relay protection action information is shown
in Table 9. The results of the component fault and comparison
of two methods are shown in Figure 11 and Table 10,
respectively.

When abnormal operation of relay protection occurs, the
comparison of the calculation results of the above fault scenes
shows that the method proposed in this paper can not only
improve the fault probability value of faulty components but also

reduce the fault probability value of non-faulty components, making
fault diagnosis more favorable.

4.3 Component fault diagnosis in the
absence of relay protection information

During the transmission of relay protection action
information to the SCADA system, multiple data routes may
result in missing information in the SCADA system, which can
have an impact on component fault diagnosis. For this reason,
some relay protection information loss in scenes 3–5 is used as an
example. Table 11 shows the fault diagnosis results of the
three methods.

The calculation results given in Table 11 show that when
some relay protection information is missing, the traditional
method can no longer diagnose the fault, while the proposed
method can diagnose the fault component. For fault scene 4,
the SCADA system is missing circuit breaker action
information, i.e., CB5-6 information is missing. Traditional
fault diagnosis methods cannot identify fault lines due to
the absence of circuit breaker action information, but this
method can identify faults, and the same is true for
fault scene 5. It shows that the proposed method has better
anti-interference ability and robustness than the
traditional algorithm.

FIGURE 11
Comparison of calculation results between the two methods in scene 5.

TABLE 10 Analysis of diagnostic results in scene 5.

Component Methods Diagnostic results

Mt (%) Mp (%)

L6-7 53.64 42.36 B6 fault
B6m reject

L6-25 53.64 42.36

B6 80.99 91.34
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5 Conclusion

This article proposes a distribution network fault diagnosis
based on D-S evidence theory, which realizes the diagnosis of
components and relay protection behavior after a fault occurs in
the distribution network. The following conclusions
are obtained.

(1) Based on the action logic of the protection and circuit breaker,
Bayesian network models were established separately,
increasing the number of Bayesian networks to enable the
independent analysis of fault diagnosis results from two levels,
protection information and circuit breaker information,
thereby improving the accuracy of fault diagnosis.

(2) The distributed fault diagnosis of “distributed diagnosis,
centralized fusion” is realized by combining two Bayesian
networks with D-S evidence theory.

(3) It can not only diagnose the fault when the relay protection is
not correct but also diagnose the fault component correctly
when the relay protection information is missing and has
strong robustness.

This article mainly focuses on the fusion method of D-S
evidence theory and applies Bayesian network inference in
the actual fault diagnosis of power grids. However, as the
research deepens, the impact of fault timing on the
diagnosis results has not been considered in the fault
diagnosis process of this article. It should be focused on in
the next research work.
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TABLE 11 Fault diagnosis results for the bus with a lack of information.

Scene
Missing

information
Component Mt Mp

Probability
value (%)

Diagnostic
result

Probability
value (%)

Diagnostic
result

3 L7-8Rf L6-7 89.84 L6-7 fault 95.64 L6-7 fault

L7-8 53.24 45.36

B7 56.38 49.71

4 CB5-6 L5-6 32.36 Undetected fault 24.55 L6-7 fault

L6-7 57.68 88.76

L6-25 32.36 24.55

B6 23.86 19.62

5 L6-7Rf L6-7 46.82 Undetected fault 35.19 B6 fault

L6-25 46.82 35.19

B6 47.75 81.16
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