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This work presents a representative application of the newly developed “nth-order
feature adjoint sensitivity analysis methodology for response-coupled forward/
adjoint linear systems” (abbreviated as “nth-FASAM-L”), which enables the most
efficient computation of exactly obtained mathematical expressions of arbitrarily
high-order (nth-order) sensitivities of a generic system response with respect to
all of the parameters (including boundary and initial conditions) underlying the
respective forward/adjoint systems. The nth-FASAM-L has been developed to
treat responses of linear systems that simultaneously depend on both the forward
and adjoint state functions. Such systems cannot be considered particular cases
of nonlinear systems, as illustrated in this work by analyzing an analytically
solvable model of the energy distribution of the “contributon flux” of neutrons
in a mixture of materials. The unparalleled efficiency and accuracy of the nth-
FASAM-L stem from the maximal reduction in the number of adjoint
computations (which are “large-scale” computations) for determining the
exact expressions of arbitrarily high-order sensitivities since the number of
large-scale computations when applying the nth-FASAM-N is proportional to
the number of model features as opposed to the number of model parameters
(which are considerablymore than the number of features). Hence, the higher the
order of computed sensitivities, the more efficient the nth-FASAM-N becomes
compared to any other methodology. Furthermore, as illustrated in this work, the
probability of encountering identically vanishing sensitivities is much higher when
using the nth-FASAM-L than other methods.
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1 Introduction

The accompanying work (“part I”) has presented the newly developed mathematical
framework, the “nth-order feature adjoint sensitivity analysis methodology for response-
coupled forward/adjoint linear systems” (abbreviated as “nth-FASAM-L”), conceived by
Cacuci (2024c). This work illustrates the application of the nth-FASAM-L to a representative
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energy-dependent neutron-slowing down model of fundamental
importance to reactor physics. The physical considerations
underlying this model are presented in Section 2, which briefly
reviews the concept of “contributon-flux density response” and
particularizes this concept within the modeling of neutron
slowing down in a mixture of materials. This physical model is
of fundamental importance in nuclear reactor physics and enables
the derivation of exact closed-form results for the application of the
nth-FASAM-L. Section 2 also defines the “features” inherent to this
model, which enable the advantageous application of the nth-
FASAM-L. By definition, there are considerably fewer “feature
functions” of the primary model parameters than there are
primary model parameters.

Section 3 presents the first-order adjoint sensitivity analysis of
the contributon flux with respect to the features and primary model
parameters of the slowing-down model, comparing the application
of the 1st-FASAM-L versus the first-order comprehensive adjoint
sensitivity analysis methodology for response-coupled forward/
adjoint linear systems (1st-CASAM-L). Using either the 1st-
FASAM-L or 1st-CASAM-L involves solving the same operator
equations and boundary conditions within the respective 1st-
LASS but with differing source terms. For the computation of the
first-order sensitivities, the 1st-FASAM-L enjoys only a slight
computational advantage since it requires only one quadrature
per component of the feature function, whereas the 1st-CASAM-
L requires one quadrature per primary model parameter.

Section 4 presents the second-order adjoint sensitivity analysis
of the contributon flux with respect to the features and primary
model parameters of the slowing-down model, comparing the
application of the 2nd-FASAM-L versus the 2nd-CASAM-L. It is
shown that the 2nd-FASAM-L requires as many large-scale “adjoint”
computations as there are non-vanishing first-order response
sensitivities with respect to the components of the feature
functions, whereas the 2nd-CASAM-L requires as many large-
scale computations as there are non-vanishing first-order
response sensitivities with respect to the primary model
parameters. Hence, the 2nd-FASAM-L is inherently more efficient
than the 2nd-CASAM-L. In particular, one of the three distinct
second-order sensitivities with respect to the model’s features
vanishes identically within the 2nd-FASAM-L but none of the ca.
100 second-order sensitivities with respect to the primary model
parameters vanish within the 2nd-CASAM-L.

Section 5 presents the third-order adjoint sensitivity analysis of
the contributon flux with respect to the features and primary model
parameters of the slowing-down model, comparing the application
of the 3rd-FASAM-L versus the 3rd-CASAM-L. For computing the
exact expressions of the third-order contributon-response
sensitivities, the 3rd-FASAM-L requires only two large-scale
computations, whereas the 3rd-CASAM-L would require
hundreds of large-scale computations.

The concluding discussion presented in Section 6 emphasizes
the fact that the unparalleled efficiency of the nth-FASAM-N
increases as the order of computed sensitivities increases, and the
probability of encountering vanishing sensitivities is much higher
when using the nth-FASAM-L rather than any other methodology.
Both the nth-FASAM-L and nth-CASAM-L overcome the limitation
of dimensionality in the sensitivity analysis of linear systems, being
incomparably more efficient and more accurate than any other

method (statistical, finite differences, etc.) for computing exact
expressions of response sensitivities (of any order) with respect
to the uncertain parameters, boundaries, and internal interfaces of
the model.

2 Modeling the contributon flux in a
paradigm neutron slowing-
down model

Fundamentally important responses of linear models depend
simultaneously on both the forward and adjoint state functions
governing the respective linear model, which makes it necessary to
treat linear models/systems in their own right since such responses
cannot be treated as particular cases of responses of nonlinear
models. Typical examples of such responses arise in the modeling
of self-diffusion processes in which the interaction mean free path is
independent of the phase-space density. Such processes are modeled
by linear equations of the Lorentz–Boltzmann type, and they occur
in neutron, electron, and photon transport through media, as well as
in certain types of transport processes in gas or plasma dynamics.
Numerically solving such time-dependent integro-differential
equations, albeit linear, is representative of “large-scale”
computations and will be used in the sequel for illustrating the
application of the nth-FASAM-L. In particular, the distribution of
neutrons in a medium is modeled by the following standard form of
the linear Boltzmann equation:

L r, E,Ω, t( )φ r, E,Ω, t( ) � Q r, E,Ω, t( ), (1)
where the linear integro-differential operator L(r, E,Ω, t) is
defined below:

L r, E,Ω, t( )φ r, E,Ω, t( ) ≜ 1
v

∂φ r, E,Ω, t( )
∂t

+ Ω · ∇φ r, E,Ω, t( )
+Σt r, E( )φ r, E,Ω, t( )

−∫
Ef

0

dE′∫
4π

dΩ′Σs r, E′ → E,Ω′ → Ω( )φ r, E′,Ω′, t( )

−∫
Ef

0

dE′∫
4π

χ r, E′ → E( )]Σ r, E′( )φ r, E′,Ω′, t( )dΩ′.

(2)

The quantities that appear in the standard notation used in
Equation 2 are defined as follows:

(i) r denotes the three-dimensional position vector in space; E
denotes the energy-independent variable; the directional
vector Ω denotes the scattering solid angle; t denotes the
time-independent variable; and v denotes the neutron
particle speed.

(ii) φ(r, E,Ω, t) denotes the flux of particles (i.e., particle
number density multiplied by the particle speed) in the
energy range dE about E and volume element dr about r,
with directions of motion in the solid angle element dΩ
about Ω.

(iii) Q(r, E,Ω, t) denotes the rate at which particles are
produced in the same element of phase space from
sources that are independent of the flux.

(iv) Σt(r, E) denotes the macroscopic total cross section.
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(v) Σs(r, E′ → E,Ω′ → Ω) denotes the macroscopic scattering
transfer cross section from energy E′ to energy E and from a
scattering angle through angle Ω′ ·Ω.

(vi) ] denotes the number of particles emitted isotropically
(1/4π) per fission.

(vii) Σf(r, E) denotes the macroscopic fission cross section.
(viii) χ(r, E′ → E) denotes the fraction of fission particles

appearing in energy dE about E from fissions in dE′
about E′.

The adjoint Boltzmann transport equation is formulated in the
Hilbert space denoted as HB and is endowed with the following
inner product, denoted as 〈φ(r, E,Ω, t),ψ(r, E,Ω, t)〉B, between
two elements φ(r, E,Ω, t) ∈ HB and ψ(r, E,Ω, t) ∈ HB:

〈φ,ψ〉B ≜ ∫
tf

0

dt∫∞
0

dE∫
4π

dΩ∫
V

dVφ r, E,Ω, t( )ψ r, E,Ω, t( ) . (3)

In the Hilbert space HB, the generic adjoint Boltzmann
transport equation is as follows:

L* r, E,Ω, t( )ψ r, E,Ω, t( ) � Q* r, E,Ω, t( ), (4)
where the (adjoint) linear integro-differential operator L*(r, E,Ω, t)
is defined below:

L* r, E,Ω, t( )ψ r, E,Ω, t( ) ≜ − 1
v

∂ψ r, E,Ω, t( )
∂t

− Ω · ∇ψ r, E,Ω, t( )
+ Σt r, E( )ψ r, E,Ω, t( )

−∫
Ef

0

dE′∫
4π

dΩ′Σs r, E → E′,Ω → Ω′( )ψ r, E′,Ω′, t( )

− ]Σ r, E( )∫
Ef

0

dE′∫
4π

χ r, E → E′( )ψ r, E′,Ω′, t( )dΩ′.

(5)

By construction, the forward and adjoint transport equations
satisfy the following relation:

〈φ, L*ψ〉B − 〈ψ, Lφ〉B � P φ,ψ[ ] � 〈φ, Q*〉B − 〈ψ, Q〉B, (6)
where P[φ,ψ] denotes the bilinear concomitant evaluated on the
boundary of the phase-space domain under consideration. The
“generalized reciprocity relation” expressed by Equation 6 relates
the bilinear concomitant, which is a functional of the forward and
adjoint fluxes at the initial and final times along the incoming and
outgoing directions at the surface of the medium, to the fluxes in the
interior of the medium comprising fixed sources. This reciprocity
relation provides a physical interpretation of the adjoint flux as an
“importance function,”which quantifies the contribution of a source
to a detector and enables transport problems to be posed either in
the forward or adjoint descriptions. These reciprocity relations also
restrict the combination of forward and adjoint boundary
conditions to those that ensure both the forward and adjoint
formulations are mathematically “well posed.” The reciprocity
relation expressed by Equation 6 is extensively used in the so-
called “source-detector” problems in steady-state subcritical
systems, where Q*(r, E,Ω) models the detector properties (cross
section) in the sub-region occupied by the respective detector.

When the boundary conditions for Equation 1 are homogeneous
and there is no external source, i.e., when Q(r, E,Ω, t) � 0, the

stationary neutron transport problem becomes an eigenvalue
problem. The largest (i.e., fundamental) eigenvalue in such a case
is called the “effective multiplication factor” and, depending on its
value, corresponds to a critical, subcritical, or supercritical physical
system (e.g., nuclear reactor). This eigenvalue (multiplication factor)
is an important system (model) response, and its mathematical
expression is a functional (“Raleigh quotient”) of the forward and
the adjoint fluxes. Additional important model responses that are
functionals of both the forward and adjoint fluxes include the
reactivity, generation time, and lifetime of the system, along with
several other Lagrangian functionals used in variational principles
for developing efficient Raleigh–Ritz type numerical methods (see,
e.g., Lewins, 1965; Stacey, 1974; Stacey, 2001). Perhaps the simplest
quantity that depends on both the forward and adjoint fluxes—and
has important applications in particle transport (particularly in
particle shielding)—is the so-called “contributon flux” (Williams
and Engle, 1977), which arises as follows:

(i) Multiplying the stationary form of Equation 1 by ψ(r, E,Ω),
multiplying the stationary form of Equation 4 by φ(r, E,Ω),
subtracting the resulting equations from each other, and
integrating the resulting equation over only the energy- and
solid angle-independent variables yield the following relation:

∇ · vcR r( ) � S r( ) − S* r( ), (7)
where

Rc r( ) ≜ 1
v
∫
Ef

0

dE∫
4π

dΩφ r, E,Ω( )ψ r, E,Ω( ), (8)

vc ≜
∫Ef

0
dE ∫

4π

dΩ Ωφ r, E,Ω( )ψ r, E,Ω( )[ ]
1
v ∫Ef

0
dE ∫

4π

dΩφ r, E,Ω( )ψ r, E,Ω( )
, (9)

Sc r( ) ≜ ∫
Ef

0

dE∫
4π

dΩ Q r, E,Ω( )ψ r, E,Ω( )[ ], (10)

S*c r( ) ≜ ∫
Ef

0

dE∫
4π

dΩ Q* r, E,Ω( )φ r, E,Ω( )[ ]. (11)

(ii) The form of Equation 7 is the same as the mass continuity
balance/equation for compressible flow, indicating that the
“contributon response density” Rc(r) is conserved as it flows
from the “contributon response source” Sc(r) toward the
“contributon response sink” S*c(r), with a “contributon
response mean velocity” vc corresponding to the neutron
speed v.

The application of the nth-FASAM-L is illustrated in this section
by considering the simplified model of the distribution in the
asymptotic energy range of neutrons produced by a source of
neutrons placed in an isotropic medium comprising a
homogeneous mixture of “M” non-fissionable materials having
constant (i.e., energy-independent) properties. For simplicity, but
without diminishing the applicability of the nth-FASAM-L, this
medium is considered to be infinitely large. The simplified form of
the Boltzmann neutron transport equation, as shown in Equation 1,
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that models the energy distributions of neutrons within a mixture of
materials is called the “neutron slowing-down equation.” This
equation is written using neutron lethargy (rather than the neutron
energy) as the independent variable. Neutron lethargy is customarily
denoted using the variable/letter “u” and is defined as u ≜ ln(E0/E),
whereE denotes the energy variable andE0 denotes the highest energy
in the system. Thus, the neutron slowing-down model (see, e.g.,
Meghreblian and Holmes, 1960; Lamarsh, 1966) for the energy
distribution of the neutron flux in a homogeneous mixture of non-
fissionable materials of infinite extent takes the following simplified
form of Equation 1:

dφ u( )
du

+ Σa

�ξ Σt

φ u( ) � S u( )
�ξ Σt

; 0< u≤ uth; (12)

φ 0( ) � 0; at u � 0. (13)
The quantities that appear in Equation 12 are defined as follows.

(i) The lethargy-dependent neutron flux is denoted as φ(u); uth
denotes a cut-off lethargy, usually corresponding to the
thermal neutron energy (ca. 0.0024 electron volts).

(ii) The macroscopic elastic scattering cross section for the
homogeneous mixture of “M” materials is denoted as Σs

and is defined as follows:

Σs ≜∑M
i�1
N i( )

m σ i( )
s , (14)

where σ(i)s , i � 1, ...,M denotes the elastic scattering cross section of
material “i,” and the atomic or molecular number density of material
“i” is denoted as N(i)

m , i � 1, ...,M and is defined as N(i)
m ≜ ρiNA/Ai,

where NA is Avogadro’s number (0.602 × 1024 nuclei/mole), while
Ai and ρi denote the mass number and density of the material,
respectively.

(iii) The average gain in lethargy of a neutron per collision is
denoted as �ξ and is defined as follows for the
homogeneous mixture:

�ξ ≜
1
Σs
∑M
i�1
ξ iN

i( )
m σ i( )

s ; ξ i ≜ 1 + ai ln ai
1 − ai

; ai ≜
Ai − 1
Ai + 1
( )2

. (15)

(iv) The macroscopic absorption cross section is denoted
as Σa and is defined as follows for the
homogeneous mixture:

Σa ≜∑M
i�1
N i( )

m σ i( )
γ , (16)

where σ(i)γ , i � 1, ...,M denotes the microscopic radiative-capture
cross section of material “i.”

(v) The macroscopic total cross section is denoted as Σt and is
defined as follows for the homogeneous mixture:

Σt ≜ Σa + Σs. (17)

(vi) The source S(u) is considered to be a simplified “spontaneous
fission” source stemming from fissionable actinides, such as
239Pu and 240Pu, emitting monoenergetic neutrons at the

highest energy (i.e., zero lethargy). Such a source is
comprised within the OECD/NEA polyethylene-reflected
plutonium (PERP) OECD/NEA reactor physics benchmark
(Valentine, 2006; Cacuci and Fang, 2023), which can be
modeled using the following simplified expression:

S u( ) � S0δ u( ); S0 ≜∑2
k�1

λSkN
S
kF

S
k]

S
kW

S
k, (18)

where the superscript “S” indicates the “source; ” the subscript index
k = 1 indicates material properties pertaining to the isotope 239Pu; the
subscript index k = 2 indicates material properties pertaining to the
isotope 240Pu; λSk denotes the decay constant; N

S
k denotes the atomic

density of the respective actinide; FS
k denotes the spontaneous fission

branching ratio; ]Sk denotes the average number of neutrons per
spontaneous fission; andWS

k denotes a function of parameters used in
Watt’s fission spectrum to approximate the spontaneous fission
neutron spectrum of the respective actinide. The detailed forms of
the parametersWS

k are unimportant for illustrating the application of
the nth-FASAM-L. The nominal values for these imprecisely known
parameters are available from a library file contained in SOURCES 4C
(Wilson et al., 2002).

Mirroring the considerations for the Boltzmann transport
equation presented in Equations 1‒6, the “adjoint slowing-down
model” is constructed in the Hilbert space HB of square-integrable
functions φ(u) ∈ HB and ψ(u) ∈ HB endowed with the following
inner product, denoted as 〈φ(u),ψ(u)〉B:

〈φ u( ),ψ u( )〉B ≜ ∫uth
0

φ u( )ψ u( )du. (19)

Using the inner product 〈φ(u),ψ(u)〉B defined in Equation 19,
the adjoint slowing-down model is constructed by the usual
procedure, i.e., by (i) constructing the inner product of Equation
12 with a function ψ(u) ∈ HB; (ii) integrating by parts the resulting
relation so as to transfer the differential operation from the forward
function φ(u) onto the adjoint function ψ(u); (iii) using the initial
condition provided in Equation 13 and eliminating the unknown
function φ(uth) by choosing the final-value condition ψ(uth) � 0;
and (iv) choosing the source for the resulting adjoint slowing-
down model so as to satisfy the generalized reciprocity relation
shown in Equation 6. The result of these operations is the
following adjoint slowing-down model for the adjoint slowing-
down function ψ(u):

−dψ u( )
du

+ f1 α( )ψ u( ) � δ u − ud( ), (20)
ψ uth( ) � 0, at u � uth. (21)

The “contributon-flux response density” Rc(φ,ψ), as generally
defined in Equation 8, specialized for the neutron slowing-down
model, coincides with the inner product used in this context, i.e.,

Rc φ,ψ( ) ≜ ∫uth
0

φ u( )ψ u( ) du ≡ 〈φ u( ),ψ u( )〉B. (22)

It is important to note that Rc(φ,ψ) does not depend explicitly
on either the feature function f(α) or any primary model parameter.
Therefore, the G-differential of Rc(φ,ψ) will not comprise a direct-
effect term but will consist entirely of the indirect-effect term.
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For this “contributon-flux response density” model, the
following primary model parameters are subject to experimental
uncertainties.

(i) For each material “i,” i � 1, ...,M, included in the
homogeneous mixture, the following are primary model
parameters: the atomic number densities N(i)

m ; the
microscopic radiative-capture cross section σ(i)γ ; and the
scattering cross section σ(i)s ;

(ii) The source parameters λSk, N
S
k, F

S
k, ]

S
k, and WS

k, for k = 1,2.

The above primary parameters are considered to constitute the
components of a “vector of primary model parameters” defined
as follows:

α ≜ N 1( )
m , σ 1( )

γ , σ 1( )
s , ..., N M( )

m , σ M( )
γ , σ M( )

s , λS1, λ
S
2, N

S
1, N

S
2, F

S
1, F

S
2, ]

S
1, ]

S
2,W

S
1,W

S
2( )†

≜ α1, . . . , αTP( )†; TP ≜ 3M + 10. (23)

The first-level forward/adjoint system (1st-LFAS) for the “first-
level forward/adjoint function” u(1)(2; u) ≜ [φ(u),ψ(u)]†
comprises Equations 12, 13, 20, and 21. The structure of the 1st-
LFAS suggests that the components fi(α) of the feature function
f(α) can be defined as follows:

f α( ) ≜ f1 α( ), f2 α( )[ ]†; f1 α( ) ≜ Σa α( )
�ξ α( )Σt α( );

f2 α( ) ≜ S0 α( )
�ξ α( )Σt α( ) . (24)

Solving Equations 12, 13 while using the definitions introduced
in Equation 24 yields the following expression for the flux φ(u) in
terms of the components fi(α) of the feature function f(α):

φ u( ) � H u( )f2 α( ) exp −uf1 α( )[ ]; H 0( ) � 0;

H u( ) � 1, if u> 0. (25)
Solving the above adjoint slowing-down model yields the

following closed-form expression for the adjoint slowing-down
function ψ(u):

ψ u( ) � H ud − u( ) exp u − ud( )f1 α( )[ ] . (26)

In terms of the components fi(α) of the feature function f(α),
the closed-form expression of the “contributon response density” is
obtained by substituting the expressions provided in Equations 25,
26 into Equation 22 and performing the integration over lethargy,
which yields

Rc φ,ψ( ) � ∫uth
0

H u( )f2 α( ) exp −uf1 α( )[ ]H ud − u( ) exp u − ud( )f1 α( )[ ] du
� udf2 α( ) exp −udf1 α( )[ ] .

(27)
In terms of the primary model parameters, the closed-form

expression of the “contributon response density” is

Rc φ,ψ( ) � ud
S0 α( )

�ξ α( )Σt α( ) exp −ud
Σa α( )

�ξ α( )Σt α( )[ ] . (28)

As Equation 28 indicates, the model response can be considered
to depend directly on TP ≜ 3M + 10 primary model parameters. In
view of Equation 27, however, the model response can alternatively

be considered to depend directly on two feature functions and only
indirectly (through the two feature functions) on the primary model
parameters. In the former consideration/interpretation, the response
sensitivities to the primary model parameters will be obtained by
applying the nth-CASAM-L. In the later consideration/
interpretation, the response sensitivities to the primary model
parameters will be obtained by applying the nth-FASAM-L, which
will involve two stages: (a) the response sensitivities with respect to
the feature functions will be obtained in the first stage; (b) the
subsequent computation of the response sensitivities to the
primary model parameters will be performed in the second
stage by using the response sensitivities with respect to the
feature functions obtained in the first stage. The computational
distinctions that stem from these differing considerations/
interpretations underlying the nth-CASAM-L versus the nth-
FASAM-L will become evident in the next section by using a
paradigm neutron slowing-down model, which is representative of
the general situation for any linear system.

3 First-order adjoint sensitivity analysis
of the contributon flux to the slowing-
down model’s features and parameters

The first-order sensitivities of the response Rc[u(1)(2; u)], where
u(1)(2; u) ≜ [φ(u),ψ(u)]†, are obtained by determining the first-
order Gateaux (G-)- differential, denoted as
δRc[u(1)(2; u), v(1)(2; u)]{ }α0, of this response for variations
v(1)(2; u) ≜ [δφ(u), δψ(u)]† around the phase-space point
(φ0,ψ0). By definition, the first-order G-differential
δRc[u(1)(2; u), v(1)(2; u)]{ }α0 is obtained as follows:

δRc u 1( ) 2; u( ), v 1( ) 2; u( )[ ]{ }α0
≜

d

dε
∫uth

0
φ0 u( ) + εv 1( ) u( )[ ] ψ0 u( ) + εδψ u( )[ ]du{ }

ε�0

� ∫uth

0
v 1( ) u( )ψ u( ) + φ u( )δψ u( )[ ] du{ }

α0
. (29)

The sensitivities of Rc[u(1)(2; u)] with respect to the feature
functions (and subsequently to the primary model parameters) will
be determined in Section 3.1 by applying the 1st-FASAM-L.
Alternatively, the sensitivities of Rc[u(1)(2; u)] directly with
respect to the primary model parameters will be determined in
Section 3.2 by applying the 1st-CASAM-L.

3.1 Application of the 1st-FASAM-L

The first-level variational sensitivity function
v(1)(2; u) ≜ [v(1)(u), δψ(u)]† is the solution of the first-level
variational sensitivity system (1st-LVSS) obtained by
differentiating the 1st-LFAS. The function v(1)(u) is obtained by
taking the first-order G-differentials of Equations 12, 13 to obtain

d

dε

d φ0 + εv 1( )( )
du

+ f0
1 + εδf1( ) φ0 + εv 1( )( )[ ]{ }

ε�0

� δ u( ) d

dε
f0
2 + εδf2( ){ }

ε�0
, (30)
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d

dε
φ0 u( ) + εv 1( ) u( )[ ]{ }

ε�0
� 0; at u � 0. (31)

Carrying out the differentiations with respect to ε in the above
equations and setting ε � 0 in the resulting expressions yields the
following relations:

dv 1( ) u( )
du

+ f1 α0( )v 1( ) u( ) � δf2( )δ u( ) − δf1( )φ0 u( ), (32)
v 1( ) u( ) � 0; at u � 0. (33)

The equations satisfied by the variational function δψ(u) are
obtained by G-differentiating Equations 20, 21 to obtain the
equations below:

− d

du
δψ u( )[ ] + f1 α0( ) δψ u( )[ ] � − δf1( )ψ u( ), (34)

δψ uth( ) � 0, at u � uth. (35)
Concatenating Equations 32‒35 yields the following 1st-LVSS

for the first-level variational sensitivity
function v(1)(2; u) ≜ [δφ(u), δψ(u)]†:

V 1( ) 2 × 2; u; f[ ]v 1( ) 2; u( ){ }α0 � q 1( )
V 2; u 1( ) 2; u( ); f ; δf[ ]{ }

α0
, (36)

b 1( )
v v 1( ); f ; δf( ){ }

α0
� 0, (37)

where

V 1( ) 2 × 2; u; f[ ] ≜ d/du + f1 0
0 −d/du + f1

( ), b 1( )
v v 1( ) ; f ; δf( )

≜ v 1( ) 0( )
δψ uth( )( ), (38)

q 1( )
V 2; u 1( ); f ; δf[ ] ≜ δf2( )δ u( ) − δf1( )φ u( )

− δf1( )ψ u( )( ). (39)

Rather than repeatedly solving the 1st-LVSS for every possible
variations δfi, i � 1, 2, the appearance of the first-level variational
sensitivity function v(1)(2; u) ≜ [δφ(u), δψ(u)]† will be eliminated
from the expression of the G-differential of the response
δRc[u(1)(2; u), v(1)(2; u)]{ }α0, defined in Equation 29), by
applying the principles of the 1st-FASAM-L outlined in the
accompanying “Part I” by Cacuci (2024c). The specific steps are
as follows:

1. AHilbert space, denoted as H1, is introduced endowed with the
following inner product denoted as 〈χ(1)(2; u), θ(1)(2; u)〉1,
between two elements, χ(1)(2; u) ≜ [χ(1)1 (u), χ(1)2 (u)]† ∈ H1

and θ(1)(2; u) ≜ [θ(1)1 (u), θ(1)2 (u)]† ∈ H1:

〈χ 1( ) 2; u( ), θ 1( ) 2; u( )〉1 ≜∑2
i�1
∫uth
0

χ 1( )
i u( )θ 1( )

i u( )du . (40)

2. In the Hilbert H1, the inner product of Equation 36 is formed
with a yet undefined vector-valued function
a(1)(2; u) ≜ [a(1)1 (u), a(1)2 (u)]† ∈ H1 to obtain the
following relation:

〈a 1( ) 2; u( ),V 1( ) 2 × 2; u; f0[ ]v 1( ) 2; u( )〉1{ }α0
� 〈a 1( ) 2; u( ), q 1( )

V 2; u 1( ) 2; u( ); f ; δf[ ] 〉1{ }
α0
. (41)

3. The left-side of Equation 41 is integrated by parts to obtain the
following relation, where the specification { }α0 is omitted to
simplify the notation:

∫uth
0

a 1( )
1 u( ) dv 1( )

du
+ f1v

1( )[ ] du + ∫uth
0

a 1( )
2 u( ) − d

du
δψ + f1δψ[ ] du

� ∫uth
0

v 1( ) − d

du
a 1( )
1 u( ) + f1a

1( )
1 u( )[ ] du

+ ∫uth
0

δψ u( ) d

du
a 1( )
2 u( ) + f1a

1( )
2 u( )[ ] du + a 1( )

1 uth( )v 1( ) uth( )

− a 1( )
1 0( )v 1( ) 0( ) − a 1( )

2 uth( )δψ uth( ) + a 1( )
2 0( )δψ 0( ) .

(42)
4. The first two terms on the right side of Equation 42 are

required to represent the G-differentiated response defined
in Equation 29, and the unknown boundary values of the
function v(1)(2; u) are eliminated from the bilinear
concomitant on the right side of Equation 42 to obtain the
following 1st-LASS for the first-level adjoint sensitivity
function a(1)(2; u) ≜ [a(1)1 (u), a(1)2 (u)]†:

A 1( ) 2 × 2; x; f[ ]a 1( ) 2; x( ) � q 1( )
A 2; u 1( ) 2; x( ) ; f[ ], (43)

b 1( )
A u 1( ) 2; u( ); a 1( ) 2; u( ); f[ ]{ }

α0
≜ a 1( )

1 uth( )
a 1( )
2 0( )( ) � 0, (44)

where

A 1( ) 2 × 2; u; f[ ] ≜ −d/du + f1 0
0 d/du + f1

( )
� V 1( ) 2 × 2; u; f[ ]{ }*, (45)

q 1( )
A 2; u 1( ) 2; x( ) ; f[ ] ≜ ψ u( )

φ u( )( ) . (46)

5. It follows from Equations 29, 41‒44 that G-differentiated
response defined in Equation 29 takes the following
expression in terms of the first-level adjoint sensitivity
function a(1)(2; u) ≜ [a(1)1 (u), a(1)2 (u)]†:

δRc u 1( ) 2; u( ), a 1( ) 2; u( )[ ]{ }
α0

� ∫uth

0
a 1( )
1 u( ) δf2( )δ u( ) − δf1( )φ u( )[ ]du{ }

α0

+ ∫uth

0
a 1( )
2 u( ) − δf1( )ψ u( )[ ] du{ }

α0
, (47)

The expressions of the sensitivities of the response Rc(φ,ψ) with
respect to the components of the feature function f(α) are given by
the expressions that multiply the respective components of f(α) in
Equation 47, i.e.,

∂Rc φ,ψ( )
∂f1

� −∫uth
0

a 1( )
1 u( )φ u( ) + a 1( )

2 u( )ψ u( )[ ] du, (48)

∂Rc φ,ψ( )
∂f2

� ∫uth
0

a 1( )
1 u( ) δ u( ) du. (49)

The above expressions are to be evaluated at the nominal parameter
values α0, but the indication { }α0 has been omitted for simplicity.
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The first-order sensitivities of the response Rc(φ,ψ) with
respect to the primary model parameters are obtained by using
the results obtained in Equations 48, 49, respectively, in
conjunction with the “chain rule” of differentiating the
components of the feature function f(α) with respect to the
primary model parameters defined in Equation 29 to obtain the
following expressions:

∂Rc φ,ψ( )
∂αi

� ∂Rc φ,ψ( )
∂f1

∂f1

∂αi
+ ∂Rc φ,ψ( )

∂f2

∂f2

∂αi

� − ∂f1

∂αi
( )∫uth

0

a 1( )
1 u( )φ u( ) + a 1( )

2 u( )ψ u( )[ ] du

+ ∂f2

∂αi
( )∫uth

0

a 1( )
1 u( ) δ u( ) du . (50)

Solving the 1st-LASS defined by Equations 43, 44 yields the
following closed-form expressions for the components of the first-
level adjoint sensitivity function a(1)(2; u) ≜ [a(1)1 (u), a(1)2 (u)]†:

a 1( )
1 u( ) � ud − u( )H ud − u( ) exp u − ud( )f1 α( )[ ], (51)

a 1( )
2 u( ) � uf2 α( ) exp −uf1 α( )[ ] . (52)

Using the above expressions in Equations 48, 49 yields the
following closed-form expressions for the respective sensitivities:

∂Rc φ,ψ( )
∂f1

� − ud( )2f2 α( ) exp −udf1 α( )[ ], (53)

∂Rc φ,ψ( )
∂f2

� ud exp −udf1 α( )[ ] . (54)

The correctness of the expressions obtained in Equations 53, 54
can be verified by differentiating accordingly the closed-form
expression given in Equation 27.

3.2 Application of the 1st-CASAM-L

The 1st-CASAM-L delivers the first-order sensitivities of the
response directly with respect to the primary model parameters. The
expression of the G-differentiated response is as shown in Equation
29, but the source term on the right side of the 1st-LVSS takes the
following form:

q 1( )
V 2; u 1( ); f ; δf[ ] ≜

δ u( )∑TP
i�1

∂f2

∂αi
δαi − φ u( )∑TP

i�1

∂f1

∂αi
δαi

−ψ u( )∑TP
i�1

∂f1

∂αi
δαi

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

(55)
If one were to actually solve the 1st-LVSS to obtain the first-

level variational function and subsequently use the respective
variational function to compute each sensitivity, one would need
to solve the 1st-LVSS TP-times, using each time a source that
would correspond to the ith-primary parameter, of the form
q(1)V [i; 2; u(1); f ; δf]q ≜ [δ(u)∂f2/∂αi − φ(u) ∂f1/∂αi,− ψ(u)∂f1/∂
αi]†, for each primary parameter i � 1, ..., TP.

Since the left side of the 1st-LVSS remains the same as in
Equation 36 and the boundary conditions also remain the same
as obtained in Equation 37, it follows that the 1st-LASS and its
solution a(1)(2; u) ≜ [a(1)1 (u), a(1)2 (u)]† remain unchanged. It
therefore follows that the counterpart of the expression of
the G-differential obtained in Equation 47 takes the
following form:

δRc u 1( ) 2; u( ), a 1( ) 2; u( )[ ]{ }α0 �
− ∑TP

i�1

∂f1

∂αi
δαi∫uth

0
a 1( )
2 u( )ψ u( ) du⎧⎨⎩ ⎫⎬⎭

α0

+ ∫uth

0
a 1( )
1 u( ) δ u( )∑TP

i�1

∂f2

∂αi
δαi − φ u( )∑TP

i�1

∂f1

∂αi
δαi⎡⎣ ⎤⎦ du⎧⎨⎩ ⎫⎬⎭

α0

.

(56)
The first-order sensitivities of the response Rc(φ,ψ)with respect

to the primary model parameters αi, i � 1, ..., TP are obtained by
identifying the expressions that multiply the respective variations
δαi in Equation 47, which yields the following result:

∂Rc φ,ψ( )
∂αi

� − ∂f1

∂αi
( )∫uth

0

a 1( )
1 u( )φ u( ) + a 1( )

2 u( )ψ u( )[ ] du
+ ∂f2

∂αi
( )∫uth

0

a 1( )
1 u( ) δ u( ) du . (57)

As expected, the result obtained from Equation 57 is identical
to the result produced from Equation 50 by using the 1st-FASAM-
L. Both the 1st-FASAM-L and 1st-CASAM-L require “one large-
scale computation” for solving the 1st-LASS represented by
Equations 43, 44.

4 Second-order adjoint sensitivity
analysis of the contributon flux to the
slowing-down model’s features and
parameters

In practice, closed-form expressions such as those shown in
Equations 53, 54 are unavailable. The 1st-FASAM-L yields the
expressions provided in Equations 48, 49, while the 1st-CASAM-L
yields the expressions provided in Equation 57. Hence, these
expressions will provide the starting points for obtaining the
second-order sensitivities that stem from the respective first-
order sensitivities. As outlined within the general frameworks of
both the nth-FASAM-L and nth-CASAM-L methodologies, the
second-order sensitivities are obtained by conceptually
considering them to arise as the “first-order sensitivities of the
first-order sensitivities.”

4.1 Application of the 2nd-FASAM-L

The 2nd-FASAM-L uses the first-order sensitivities obtained from
the 1st-CASAM-L, as provided in Equations 48, 49, to obtain the
respective second-order sensitivities, as presented in Sections
4.1.1 and 4.1.2.
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4.1.1 Second-order sensitivities stemming from the
first-order sensitivity ∂Rc/∂f1

The second-order sensitivities that stem from the first-order
sensitivity ∂Rc/∂f1 are obtained by determining the G-differential of
∂Rc/∂f1. For subsequent “bookkeeping” purposes, this first-order
sensitivity will be denoted as R(1)[1; u(2)(22; u); f(α)] ≜ ∂Rc/∂f1,
where the superscript “(1)” denotes “first-order” (sensitivity) and the
argument “1” indicates that this sensitivity is with respect to the first
component, i.e., f1(α), of the feature function f(α). This sensitivity
also depends on the function u(2)(22; u) ≜ [u(1)(2; u), a(1)(2; u)]†,
which is the solution of the “second-level forward/adjoint system
(2nd-LFAS)” obtained by concatenating the 1st-LFAS with the 1st-
LASS, comprising Equations 12, 13, 20, 21, 43, and 44.

Applying the definition of the G-differential to Equation 48
yields the following expression for the
G-differential δR(1)[1; u(2)(22; u); v(2)(22; u); f(α)]{ }α0 :
δR 1( ) 1; u 2( ) 22; u( ); v 2( ) 22; u( ); f α( )[ ]{ }α0
≜ − d

dε∫uth0
a 1( )
1 u( ) + εδa 1( )

1 u( )[ ] φ u( ) + εv 1( ) u( )[ ]du{ }
α0 ,ε�0

− d
dε∫uth0

a 1( )
2 u( ) + εδa 1( )

2 u( )[ ] ψ u( ) + εδψ u( )[ ]du{ }
α0 ,ε�0

� −∫uth
0

φ u( ) δa 1( )
1 u( )[ ] du − ∫uth

0

a 1( )
1 u( )v 1( ) u( ) du − ∫uth

0

ψ u( ) δa 1( )
2 u( )[ ] du

−∫uth
0

a 1( )
2 u( ) δψ u( )[ ] du ≡∑2

j�1

∂2R φ; f( )
∂fj∂f1

δfj( ).
(58)

The components v(1)(u), δψ(u), δa(1)1 (u), and δa(1)2 (u) of the
second-level variational sensitivity function v(2)(22; u) ≜
[v(1)(u), δψ(u), δa(1)1 (u), δa(1)2 (u)]† are the solutions of the 2nd-
LVSS, which is obtained by G-differentiating the 2nd-LFAS. Thus,
performing the G-differentiation of Equations 12, 13, 20, 21, 43, and
44 yields the following 2nd-LVSS for the second-level variational sensitivity
function v(2)(22; u) ≜ [v(1)(u), δψ(u), δa(1)1 (u), δa(1)2 (u)]†:

V 2( ) 22 × 22; u; f[ ]v 2( ) 22; u( ){ }α0 � q 2( )
V 22; u; f ; δf[ ]{ }

α0
, (59)

b 2( )
v u; f ; δf( ){ }

α0
� 0, (60)

where

V 2( ) 22 × 22; u; f[ ] ≜

d\/du + f1 0 0 0

0 − d

du
+ f 0 0

0 −1 − d

du
+ f1 0

−1 0 0
d

du
+ f1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
;

(61)

q 2( )
V 22; u; f ; δf[ ] ≜

δf2( )δ u( ) − δf1( )φ u( )
− δf1( )ψ u( )
− δf1( )a 1( )

1 u( )
− δf1( )a 1( )

2 u( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠;

b 2( )
v u; f ; δf( ) ≜

v 1( ) 0( )
δψ uth( )
δa 1( )

1 uth( )
δa 1( )

2 0( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (62)

The second-level variational sensitivity function v(2)(22; u)
will be eliminated from the expression of
δR(1)[1; u(2)(22; u); v(2)(22; u); f(α)]{ }α0 by constructing the
2nd-LASS corresponding to the above 2nd-LVSS. The
solution of the 2nd-LASS will be used in Equation 58 to
construct δR(1)[1; u(2)(22; u); v(2)(22; u); f(α)]{ }α0 , an
alternative expression that will not depend on v(2)(22; u).
This 2nd-LASS will be constructed in a Hilbert space
denoted as H2, comprising four-component vector-valued
functions of the form χ(2)(22; 1; u) ≜
[χ(2)1 (1; u), χ(2)2 (1; u), χ(2)3 (1; u), χ(2)4 (1; u)]†∈ H2 as elements, and
is endowed with the following inner product between two
vectors χ(2)(22; 1; u) and θ(2)(22; 1; u):

〈χ 2( ) 22; u( ), θ 2( ) 22; u( )〉2 ≜∑22
i�1
∫uth
0

χ 2( )
i 1; u( )θ 2( )

i 1; u( ) du . (63)

The inner product defined in Equation 63 will be used
to construct the inner product of Equation 59 with a
function denoted as a(2)(22; 1; u) ≜ [a(2)1 (1; u), a(2)2 (1; u),
a(2)3 (1; u), a(2)4 (1; u)]†∈ H2, where the argument “1” of the
function a(2)(22; 1; u) indicates that this (adjoint) function
corresponds to the first-order sensitivity of the response with
respect to the “first” component, f1(α), of the feature function
f(α). Constructing this inner product yields the following relation,
where the specification { }α0 has been omitted to simplify
the notation:

〈a 2( ) 22; 1; x( ),V 2( ) 22 × 22; u; f[ ]v 2( ) 22; u( )〉22
� ∫uth

0

a 2( )
1 1; u( ) dv 1( )/du + f1v

1( )[ ] du

+ ∫uth
0

a 2( )
2 1; u( ) −d δψ( )/du + f1 δψ( )[ ] du

+ ∫uth
0

a 2( )
3 1; u( ) −δψ − d δa 1( )

1( )/du + f1 δa 1( )
1( )[ ] du

+ ∫uth
0

a 2( )
4 1; u( ) −v 1( ) u( ) + d δa 1( )

2( )/du + f1 δa 1( )
2( )[ ] du

� ∫uth
0

a 2( )
1 1; u( ) δf2( )δ u( ) − δf1( )φ u( )[ ] du

+ ∫uth
0

a 2( )
2 1; u( ) − δf1( )ψ u( )[ ]du

+ ∫uth
0

a 2( )
3 1; u( ) − δf1( )a 1( )

1 u( )[ ]du

+ ∫uth
0

a 2( )
4 1; u( ) − δf1( )a 1( )

2 u( )[ ]du . (64)

Integrating by parts the left side of Equation 64 yields the
following relation:
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∫uth
0

a 2( )
1 1; u( ) dv 1( )/du + f1v

1( )[ ] du

+ ∫uth
0

a 2( )
2 1; u( ) −d δψ( )/du + f1 δψ( )[ ] du

+ ∫uth
0

a 2( )
3 1; u( ) −δψ − d δa 1( )

1( )/du + f1 δa 1( )
1( )[ ] du

+ ∫uth
0

a 2( )
4 1; u( ) −v 1( ) u( ) + d δa 1( )

2( )/du + f1 δa 1( )
2( )[ ]du

� a 2( )
1 1; uth( )v 1( ) uth( ) − a 2( )

1 1; 0( )v 1( ) 0( )

+ ∫uth
0

v 1( ) u( ) −da 2( )
1 1; u( )/du + f1a

2( )
1 1; u( )[ ] du

− a 2( )
2 1; uth( )δψ uth( ) + a 2( )

2 1; 0( )δψ 0( ) + ∫uth
0

δψ( )
× da 2( )

2 1; u( )/du + f1a
2( )

2 1; u( )[ ] du − a 2( )
3 1; uth( )δa 1( )

1 uth( )

+ a 2( )
3 1; 0( )δa 1( )

1 0( ) − ∫uth
0

δψ( )a 2( )
3 1; u( ) du

+ ∫uth
0

δa 1( )
1 u( ) da 2( )

3 1; u( )/du + f1a
2( )
3 1; u( )[ ] du

− ∫uth
0

v 1( ) u( )a 2( )
4 1; u( )du + a 2( )

4 1; uth( )δa 1( )
2 uth( )

− a 2( )
4 1; 0( )δa 1( )

2 0( )

+ ∫uth
0

δa 1( )
2 u( ) −da 2( )

4 1; u( )/du + f1a
2( )

4 1; u( )[ ] du.
(65)

The right side of Equation 65 is now tailored to represent the
G-differential δR(1)[1; u(2)(22; u); v(2)(22; u); f(α)]{ }α0 expressed
by Equation 58 by requiring the second-level adjoint sensitivity
function a(2)(22; 1; u) to be the solution of the following 2nd-LASS:

j A 2( ) 22 × 22; u; f[ ]a 2( ) 22; 1; u( ){ }α0 � s 2( ) 22; 1; u; f( ){ }α0 , (66)
b 2( )
A u; f( ){ }

α0
� 0, (67)

where

A 2( ) 22 × 22;u; f[ ] ≜
−d/du + f1 0 0 −1

0 d/du + f1 −1 0
0 0 d/du + f1 0
0 0 0 −d/du + f1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ;

(68)

s 2( ) 22; 1; u; f( ) ≜
−a 1( )

1 u( )
−a 1( )

2 u( )
−φ u( )
−ψ u( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠; b 2( )
A u; f( ) ≜

a 2( )
1 1; uth( )
a 2( )
2 1; 0( )

a 2( )
3 1; 0( )

a 2( )
4 1; uth( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.
(69)

Implementing the equations underlying the 2nd-LVSS and
the 2nd-LASS and substituting Equation 58 into Equation 64
provide the following alternative expression for the
G-differential δR(1)[1; u(2)(22; u); v(2)(22; u); f(α)]{ }α0 :

δR 1( ) 1; u 2( ) 22; u( ); v 2( ) 22; u( ); f α( )[ ]{ }
α0

� ∫uth

0
a 2( )
1 1; u( ) δf2( )δ u( ) − δf1( )φ u( )[ ] du{ }

α0

+ ∫uth

0
a 2( )
2 1; u( ) − δf1( )ψ u( )[ ]du{ }

α0

+ ∫uth

0
a 2( )
3 1; u( ) − δf1( )a 1( )

1 u( )[ ] du{ }
α0

+ ∫uth

0
a 2( )
4 1; u( ) − δf1( )a 1( )

2 u( )[ ] du{ }
α0
. (70)

The expressions that multiply the respective components of f(α)
in Equation 70 are the expressions of the second-order sensitivities
∂2Rc(φ,ψ)/∂f1∂fj (stemming from the first-order sensitivity
∂Rc/∂f1) of the response Rc(φ,ψ), with respect to the
components of the feature function f(α). Thus, identifying in
Equation 70 the expressions that multiply the respective
variations in the components of the feature function f(α) yields
the following relations:

∂2Rc φ,ψ( )
∂f1∂f1

� −∫uth
0

a 2( )
1 1; u( )φ u( ) du − ∫uth

0

a 2( )
2 1; u( )ψ u( ) du

−∫uth
0

a 2( )
3 1; u( ) a 1( )

1 u( ) du − ∫uth
0

a 2( )
4 1; u( ) a 1( )

2 u( )du ;

(71)
∂Rc φ,ψ( )
∂f2∂f1

� ∫uth
0

a 2( )
1 1; u( )δ u( ) du . (72)

Solving the 2nd-LASS represented by Equations 66, 67 yields the
following closed-form expressions for the components of the
second-level adjoint sensitivity function a(2)(22; 1; u):

a 2( )
1 1; u( ) � − ud − u( )2H ud − u( ) exp u − ud( )f1 α( )[ ], (73)

a 2( )
2 1; u( ) � −f2 α( )u2 exp −uf1 α( )[ ], (74)
a 2( )
3 1; u( ) � −f2 α( )u exp −uf1 α( )[ ], (75)

a 2( )
4 1; u( ) � − ud − u( )H ud − u( ) exp u − ud( )f1 α( )[ ] . (76)

Using the explicit closed-form expressions obtained in
Equations 73‒76 and substituting them in Equations 71, 72 yield
the following closed-form explicit expressions for the respective
second-order sensitivities:

∂2Rc φ,ψ( )
∂f1∂f1

� ud( )3f2 α( ) exp −udf1 α( )[ ], (77)

∂Rc φ,ψ( )
∂f2∂f1

� − ud( )2 exp −udf1 α( )[ ] . (78)

The correctness of the expressions obtained in Equations 77, 78
can be verified by differentiating accordingly the closed-form
expression given in Equation 53.

4.1.2 Second-order sensitivities stemming from the
first-order sensitivity ∂Rc/∂f2

The second-order sensitivities that stem from the first-order
sensitivity ∂Rc/∂f2 are obtained by determining the G-differential of
∂Rc/∂f2. For subsequent “bookkeeping” purposes, this first-order
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sensitivity will be denoted as R(1)[2; u(2)(22; u); f(α)] ≜ ∂Rc/∂f2,
where the superscript “(1)” denotes “first-order” (sensitivity) and the
argument “2” indicates that this sensitivity is with respect to the second
component, i.e.,f2(α), of the feature function f(α). This sensitivity also
depends on the function u(2)(22; u) ≜ [u(1)(2; u), a(1)(2; u)]†.
Applying the definition of the G-differential to the expression
provided in Equation 49 yields the result below for the
G-differential δR(1)[2; u(2)(22; u); v(2)(22; u); f(α)]{ }α0 :

δR 1( ) 2; u 2( ) 22; u( ); v 2( ) 22; u( ); f α( )[ ]{ }
α0

� ∫uth
0

δa 1( )
1 u( )δ u( ) du ≡∑2

j�1

∂2R φ; f( )
∂fj∂f2

δfj( ). (79)

The function δa(1)1 (u), as shown in Equation 79, is the component
of the second-level variational sensitivity function
v(2)(22; u) ≜ [v(1)(u), δψ(u), δa(1)1 (u), δa(1)2 (u)]†, which is the
solution of the 2nd-LVSS comprising Equations 59, 60. The
component δa(1)1 (u) will be eliminated from the expression of
δR(1)[2; u(2)(22; u); v(2)(22; u); f(α)]{ }α0 by following the same
procedure as described in Section 4.1.1 to construct a 2nd-LASS, the
solution of which will be denoted
as a(2)(22; 2; u) ≜ [a(2)1 (2; u), a(2)2 (2; u), a(2)3 (2; u), a(2)4 (2; u)]†∈ H2

and will be used in Equation 79 to eliminate δa(1)1 (u). The
argument “2” in a(2)(22; 2; u) indicates that this second-level adjoint
sensitivity function corresponds to the first-order sensitivity of the
response with respect to the “second” component, f2(α), of the feature
function f(α). The 2nd-LASS for the function a(2)(22; 2; u)will have the
same left side and boundary conditions as obtained in Equations 66, 67,
but the right-side of this 2nd-LASS will correspond to the G-differential
obtained in Equation 79, which leads to the following 2nd-LASS:

A 2( ) 22 × 22; u; f[ ]a 2( ) 22; 2; u( ){ }α0 � s 2( ) 22; 2; u; f( ){ }α0 , (80)
b 2( )
A u; f( ){ }

α0
� 0, (81)

where

s 2( ) 22; 1; u; f( ) ≜ 0, 0, δ u( ), 0[ ]† . (82)

The alternative expression for the G-differential
δR(1)[2; u(2)(22; u); v(2)(22; u); f(α)]{ }α0 in terms of the
components of a(2)(22; 2; u) has the same formal expression as
shown in Equation 70 but with the components of the function
a(2)(22; 1; u) being replaced by the components of a(2)(22; 2; u), i.e.,:

δ ∂Rc/∂f2( ) � ∫uth
0

a 2( )
1 2; u( ) δf2( )δ u( ) − δf1( )φ u( )[ ] du

+ ∫uth
0

a 2( )
2 2; u( ) − δf1( )ψ u( )[ ]du

+ ∫uth
0

a 2( )
3 2; u( ) − δf1( )a 1( )

1 u( )[ ] du

+ ∫uth
0

a 2( )
4 2; u( ) − δf1( )a 1( )

2 u( )[ ] du . (83)

Solving the 2nd-LASS represented by Equations 80, 81 yields the
following expressions:

a 2( )
1 2; u( ) � 0, (84)

a 2( )
2 2; u( ) � u exp −uf1 α( )[ ], (85)

a 2( )
3 2; u( ) � H u( ) exp −uf1 α( )[ ], (86)

a 2( )
4 2; u( ) � 0 . (87)

Identifying in Equation 83 the expressions that multiply the
respective variations δfi, i � 1, 2, in the components of the feature
function f(α) and using the closed-form expressions obtained in
Equations 84‒87, 26, 51 yield the following closed-form explicit
expressions for the respective second-order sensitivities:

∂2Rc φ,ψ( )
∂f1∂f2

� −∫uth
0

a 2( )
2 2; u( )ψ u( ) du − ∫uth

0

a 2( )
3 2; u( ) a 1( )

1 u( ) du

� − ud( )2 exp −udf1 α( )[ ],
(88)

∂Rc φ,ψ( )
∂f2∂f2

� 0 . (89)

The correctness of the expressions obtained in Equations 88, 89
can be verified by differentiating accordingly the closed-form
expression given in Equation 54.

Notably, due to the symmetry of the mixed second-order
sensitivities, the expressions obtained in Equations 88, 72 provide
an intrinsic mutual verification mechanism of the accuracy of the
computations of the second-level adjoint sensitivity functions
a(2)(22; 1; u) and a(2)(22; 2; u).

4.2 Application of the 2nd-CASAM-L

The starting point for the application of the 2nd-CASAM-L is to
determine the G-differential of the TP first-order sensitivities
represented by Equation 57. For “bookkeeping” purposes, it is
convenient to designate these TP first-order sensitivities as follows:

R 1( )
c i; u 2( ) 22; u( ); α[ ] ≜ ∂Rc φ,ψ( )/∂αi
� −g1 i; α( )∫uth

0

a 1( )
1 u( )φ u( ) + a 1( )

2 u( )ψ u( )[ ] du

+ g2 i; α( )∫uth
0

a 1( )
1 u( ) δ u( ) du, (90)

where

g1 i; α( ) ≜ ∂f1/∂αi; g2 i; α( ) ≜∂f2/∂αi; i � 1, ..., TP. (91)

The G-differential of the expression in Equation 90 is obtained,
by definition, as follows:

δR 1( )
c i; u 2( ) 22; u( ); v 2( ) 22; u( ); α; δα[ ]{ }α0

≜ − ∫uth
0

a 1( )
1 u( )φ u( ) + a 1( )

2 u( )ψ u( )[ ] du d
dεg1 i; α + εδα( )[ ]{ }

α0 ,ε�0

− g1 i; α( ) d
dε∫uth0

a 1( )
1 u( ) + εδa 1( )

1 u( )[ ] φ u( ) + εv 1( ) u( )[ ][ ] du{ }
α0 ,ε�0

− g1 i; α( ) d
dε∫uth0

a 1( )
2 u( ) + εδa 1( )

2 u( )[ ] ψ u( ) + εδψ u( )[ ] du{ }
α0 ,ε�0

+ ∫uth
0
a 1( )
1 u( ) δ u( )du d

dεg2 i; α + εδα( )[ ]{ }
α0 ,ε�0

+ g2 i; α( ) d
dε∫uth0

a 1( )
1 u( ) + εδa 1( )

1 u( )[ ] δ u( ) du{ }
α0 ,ε�0

≜ δR 1( )
c i;u 2( ) 22; u( ); v 2( ) 22; u( ); α[ ]{ }ind + δR 1( )

c i; u 2( ) 22; u( ); α; δα[ ]{ }dir,
(92)
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where the direct-effect and indirect-effect terms are defined,
respectively, as follows:

δR 1( )
c i; u 2( ) 22; u( ); α; δα[ ]{ }dir
≜ ∑TP

j�1

∂g2 i; α( )
∂αj

δαj⎡⎢⎢⎣ ⎤⎥⎥⎦∫uth

0
a 1( )
1 u( ) δ u( ) du⎧⎨⎩ ⎫⎬⎭

α0

− ∑TP
j�1

∂g1 i; α( )
∂αj

δαj⎡⎢⎢⎣ ⎤⎥⎥⎦∫uth

0
a 1( )
1 u( )φ u( ) + a 1( )

2 u( )ψ u( )[ ] du⎧⎨⎩ ⎫⎬⎭
α0

,

(93)
δR 1( )

c i; u 2( ) 22; u( ); v 2( ) 22; u( ); α[ ]{ }
ind

≜ g2 i; α( )∫uth

0
δa 1( )

1 u( ) δ u( ) du{ }
α0

− g1 i; α( )∫uth

0
a 1( )
1 u( )v 1( ) u( ) + φ u( )δa 1( )

1 u( )[ ] du{ }
α0

− g1 i; α( )∫uth

0
a 1( )
2 u( )δψ u( ) + ψ u( )δa 1( )

2 u( )[ ] du{ }
α0
. (94)

The direct-effect term can be evaluated/computed already at this
stage. On the other hand, the indirect-effect depends on the second-
level variational function
v(2)(22; u) ≜ [v(1)(u), δψ(u), δa(1)1 (u), δa(1)2 (u)]†, which is the
solution of the counterpart of 2nd-LVSS defined by Equations 59,
60, with the same boundary conditions and right-side but with
distinct source terms, each source term involving the quantities
∂g1(i; α)/∂αj and ∂g2(i; α)/∂αj for i, j � 1, ..., TP. If this path were
chosen to compute the second-order sensitivities, the 2nd-LVSS
would need to be solved TP2 times, with TP2 different sources on
the respective right sides, albeit with the same left side and boundary
conditions.

The components v(1)(u), δψ(u), δa(1)1 (u), δa(1)2 (u) are
eliminated from the expression of the indirect-effect term
δR(1)

c [i; u(2)(22; u); v(2)(22; u); α]{ }ind defined in Equation 94 by
constructing a corresponding 2nd-LASS in the Hilbert space H2 by
following the same sequence of steps as described in Section 4.1.
The formal expression of the 2nd-LASS thus obtained will have the
same left side and boundary conditions as those described in
Section 4.1, but the right side of this formal 2nd-LASS will have
a source term that will correspond to the indirect-effect term
defined in Equation 94 and, hence, will be different for each
i � 1, ..., TP, i.e.,

A 2( ) 22 × 22; u; α[ ]a 2( ) 22; i; 2; u( ){ }α0 � s 2( ) 22; i; u; α( ){ }α0 ,
i � 1, ..., TP; (95)

b 2( )
A u; α( ){ }

α0
� 0; i � 1, ..., TP; (96)

where

s 2( ) 22; i; u; α( ) ≜ [ − g1 i; α( )a 1( )
1 ,−g1 i; α( )a 1( )

2 ,

g2 i; α( )δ u( ) − g1 i; α( )φ,−g1 i; α( )ψ]† .
(97)

In terms of the solution a(2)(22; i; 2; u) of the 2nd-LASS
represented by Equations 95, 96, the indirect-effect term
δR(1)

c [i; u(2)(22; u); v(2)(22; u); α]{ }ind defined in Equation 94 will
have a representation that will formally resemble the expressions
provided in Section 4.1, e.g., Equation 83, but with the second-level
adjoint function(s) from Section 4.1 being replaced by the second-

level adjoint sensitivity function a(2)(22; i; 2; u). Finally, the total
G-differential δR(1)

c [i; u(2)(22; u); v(2)(22; u); α; δα]{ }α0 will be
obtained, as shown in Equation 92, by adding the expression of
the indirect-effect term obtained in terms of the second-level adjoint
sensitivity function a(2)(22; i; 2; u) and the expression of the direct-
effect term provided in Equation 93. The expression of the
individual second-order sensitivities ∂2Rc(φ,ψ)/∂αi∂αj, i, j �
1, ..., TP will subsequently be obtained by identifying in the final
expression of the total G-differential
δR(1)

c [i; u(2)(22; u); v(2)(22; u); α; δα]{ }α0 those terms that
multiply the parameter variations ∂αj, j � 1, ..., TP.

4.2.1 Comparing the 2nd-FASAM-L versus the 2nd-
CASAM-L

The computational savings provided by using, whenever
possible, the 2nd-FASAM-L rather than the 2nd-CASAM-L are
evident by comparing the results obtained in Section 4.1 versus
the results obtained in Section 4.2. The feature function f(α)
comprises two components fi(α), i � 1, 2; consequently, the 2nd-
FASAM-L requires two large-scale computations (to solve the
corresponding 2nd-LASS) to obtain the second-order response
sensitivities with respect to the components of the feature
function. Subsequently, the second-order response sensitivities
with respect to the primary model parameters are obtained
analytically using the chain-rule of differentiation.

In contradistinction, there is TP ≜ 3M + 10, where the number
(M) of materials in the medium can easily exceed two dozen
primary model parameters. Consequently, the 2nd-CASAM-L
requires TP large-scale computations (to solve the
corresponding 2nd-LASS) to obtain the second-order response
sensitivities with respect to the primary model parameters. The
boundary conditions and the operators on the left sides for all of
the 2nd-LASS, for both the 2nd-FASAM-L and 2nd-CASAM-L, are
the same; only the source terms on the left sides of these 2nd-LASS
differ from each other. It is therefore computationally
advantageous if the inverse operators of the left sides of these
2nd-LASS could be computed just once and stored for subsequent
use, in which case the computational advantage of using the 2nd-
FASAM-L would not be massive. Such a procedure could be
feasible for relatively small models but would be impractical for
large-scale problems, for which the advantage of using the 2nd-
FASAM-L rather than the 2nd-CASAM-L increases as the number
of model parameters increases.

5 Third-order adjoint sensitivity analysis
of the contributon flux to the slowing-
down model’s features and parameters

The 3rd-FASAM-L determines the third-order sensitivities
by applying the principles of the 1st-FASAM to the second-order
sensitivities, i.e., considering that the third-order sensitivities
are “the first-order sensitivities of the second-order
sensitivities.” The unmixed second-order sensitivity
∂2Rc(φ,ψ)/∂f2∂f2 is identically zero. The two non-zero
second-order sensitivities of the model response with respect
to the components of the feature function f(α) are as follows: (i)
the unmixed second-order sensitivity ∂2Rc(φ,ψ)/∂f1∂f1,
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expressed in Equation 71, and (ii) the mixed second-order
sensitivity ∂2Rc(φ,ψ)/∂f1∂f2 � ∂2Rc(φ,ψ)/∂f2∂f1, expressed
in either Equation 72 or Equation 88, which are equivalent,
in view of the symmetry property of the mixed second-order
sensitivities. Therefore, either the expression obtained in
Equation 88 or Equation 72 can be used as the starting point
for obtaining the third-order sensitivities stemming from this
mixed second-order sensitivity. It appears that the expression
provided in Equation 72 is the simpler of the two, so it will be
used as the starting point for obtaining the corresponding third-
order sensitivities.

The second-order sensitivity ∂2Rc(φ,ψ)/∂f1∂f1 expressed in
Equation 71 depends on the components of the third-level forward/
adjoint function, denoted as
u(3)(23; 1; 1; u) � [u(2)(22; u), a(2)(22; 1; u)]†, which is the
solution of the third-level forward/adjoint system (3rd-LFAS)
obtained by concatenating the 2nd-LFAS with the 2nd-LASS, thus
comprising Equations 12, 13, 20, 21, 43, 44, 66 and 67. The argument
“1;1” of u(3)(23; 1; 1; u) indicates that this third-level function
corresponds to the (unmixed) second-order sensitivity
∂2Rc(φ,ψ)/∂f1∂f1 of the response with respect to the “first”
feature function, f1. Therefore, the second-order sensitivity
∂2Rc(φ,ψ)/∂f1∂f1 is denoted as follows:
R(2)[1; 1; u(3); f(α)] ≜ ∂2Rc(φ,ψ)/∂f1∂f1, where the argument
“1;1” indicates that this third-level function corresponds to the
(unmixed) second-order sensitivity ∂2Rc(φ,ψ)/∂f1∂f1 and the
arguments of the function u(3)(23; 1; 1; u) were omitted, for
simplicity. Similarly, the mixed second-order sensitivity
∂2Rc(φ,ψ)/∂f1∂f2 depends on the components of the same
function u(3)(23; 1; 1; u) and will, therefore, be denoted as
R(2)[2; 1; u(3); f(α)] ≜ ∂2Rc(φ,ψ)/∂f2∂f1, where the argument
“2;1” indicates that this second-order sensitivity is with respect to
the components (f2, f1) of f(α).

5.1 Application of the 3rd-FASAM-L to
compute the third-order sensitivities
stemming from ∂2Rc(φ,ψ)/∂f1∂f1

The third-order sensitivities stemming from
R(2)[1; 1; u(3); f(α)] ≜ ∂2Rc(φ,ψ)/∂f1∂f1 are obtained from the
G-differential of Equation 71, which will be denoted as
δR(2)[1; 1; u(3); v(3); f(α)]{ }α0 ≜ δ[∂2Rc(φ,ψ)/∂f1∂f1]{ }

α0
, and

they are, by definition, determined as follows:

δR 2( ) 1; 1; u 3( ); v 3( ); f α( )[ ]{ }α0
≜ − d

dε
∫uth

0
a 2( )
1 1; u( ) + εδa 2( )

1 1; u( )[ ] φ u( ) + εv 1( ) u( )[ ] du{ }
α0 ,ε�0

− d

dε
∫uth

0
a 2( )
2 1; u( ) + εδa 2( )

2 1; u( )[ ] ψ u( ) + εδψ u( )[ ] du{ }
α0 ,ε�0

− d

dε
∫uth

0
a 2( )
3 1; u( ) + εδa 2( )

3 1; u( )[ ] a 1( )
1 u( ) + εδa 1( )

1 u( )[ ] du{ }
α0 ,ε�0

− d

dε
∫uth

0
a 2( )
4 1; u( ) + εδa 2( )

4 1; u( )[ ] a 1( )
2 u( ) + εδa 1( )

2 u( )[ ] du{ }
α0 ,ε�0

.

(98)

Performing the differentiation with respect to ε in Equation 98
and setting ε � 0 in the resulting expression yield

δR 2( ) 1; 1; u 3( ); v 3( ); f α( )[ ]{ }
α0

� − ∫uth

0
a 2( )
1 1; u( )v 1( ) u( ) + φ u( )δa 2( )

1 1; u( )[ ] du{ }
α0

− ∫uth

0
a 2( )
2 1; u( )δψ u( ) + ψ u( )δa 2( )

2 1; u( )[ ] du{ }
α0

− ∫uth

0
a 2( )
3 1; u( )δa 1( )

1 u( ) + a 1( )
1 u( )δa 2( )

3 1; u( )[ ] du{ }
α0

− ∫uth

0
a 2( )
4 1; u( )δa 1( )

2 u( ) + a 1( )
2 u( )δa 2( )

4 1; u( )[ ] du{ }
α0
. (99)

The third-level variational function
v(3) ≜ v(3)(23; 1; 1; u) ≜ [v(2)(22; u), δa(2)(22; 1; u)]†, where
δa(2)(22; 1; u) ≜ [δa(2)1 (1; u), δa(2)2 (1; u), δa(2)3 (1; u), δa(2)4 (1; u)]†,
is the solution of the 3rd-LVSS obtained by concatenating the 2nd-
LVSS (i.e., Equations 59, 60), with the equations obtained by G-
differentiating the 2nd-LASS, represented by Equations 66, 67, for the
function a(2)(22; 1; u). The resulting 3rd-LVSS for the third-level
variational function v(3)(23; 1; 1; u) comprises the following matrix
equation, where the dots are used to denote zero-elements for better
visibility of the structure:

L · · · · · · ·
· M · · · · · ·
· −1 M · · · · ·
−1 · · L · · · ·
· · 1 · M · · −1
· · · 1 · L −1 ·
1 · · · · · L ·
· 1 · · · · · M

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

v 1( ) u( )
δψ u( )
δa 1( )

1 u( )
δa 1( )

2 u( )
δa 2( )

1 1; u( )
δa 2( )

2 1; u( )
δa 2( )

3 1; u( )
δa 2( )

4 1; u( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�

δf2( )δ u( ) − δf1( )φ u( )
− δf1( )ψ u( )
− δf1( )a 1( )

1 u( )
− δf1( )a 1( )

2 u( )
− δf1( )a 2( )

1 1; u( )
− δf1( )a 2( )

2 1; u( )
− δf1( )a 2( )

3 1; u( )
− δf1( )a 2( )

4 1; u( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

L u( ) ≜ d

du
+ f1 α( ) ; M u( ) ≜ − d

du
+ f1 α( );

M u( ) � L* u( ); (100)
v 1( ) 0( ) � 0; δψ uth( ) � 0; δa 1( )

1 uth( ) � 0;

δa 1( )
2 0( ) � 0; δa 2( )

1 1; uth( ) � 0; δa 2( )
2 1; 0( ) � 0; δa 2( )

3 1; 0( ) � 0;

δa 2( )
4 1; uth( ) � 0. (101)

The 3rd-LVSS comprising Equations 100, 101 can be formally
expressed in the following 23 × 23-matrix form:

V 3( ) 23 × 23; u; f[ ]v 3( ) 23; 1; 1; u( ) � q 3( )
V 23; u 3( ) 23; u( ); f ; δf[ ],

(102)
b 3( )
v v 3( ) 23; 1; 1; u( )[ ] � 0 . (103)

The abovematrix form of the 3rd-LVSSwill be used as a “condensed
notation” to construct the 3rd-LASS, the solution of whichwill be used to
derive the alternative expression for the G-differential
δR(2)[1; 1; u(3)(23; 1; 1; u); v(3)(23; 1; 1; u); f(α)]{ }α0 . This 3rd-
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LASS will be constructed in a Hilbert space denoted as H3, comprising
as elements eight-component vector-valued functions of the form
χ(3)(23; 1; 1; u) ≜ [χ(2)1 (1; 1; u), ..., χ(2)8 (1; 1; u)]† ∈ H3, and
endowed with the following inner product between two vectors
χ(3)(23; 1; 1; u) and θ(3)(23; 1; 1; u):

〈χ 3( ) 23; 1; 1; u( ), θ 3( ) 23; 1; 1; u( )〉3 ≜∑23
i�1
∫uth
0

χ 3( )
i 1; 1; u( )θ 3( )

i 1; 1; u( )du .

(104)
The inner product defined in Equation 104 will be used to

construct the inner product of Equation 102 with a function denoted
as a(3)(23; 1; 1; u) ≜ [a(3)1 (1; 1; u), ..., a(3)8 (1; 1; u)]† ∈ H3, where the
argument “1,1” of the function indicates that this (third-level
adjoint) function corresponds to the unmixed second-order
sensitivity of the response with respect to the “first” component,
f1(α), of the feature function f(α). Constructing this inner product
yields the following relation, where the specification { }α0 has been
omitted to simplify the notation:

∫uth
0

a 3( )
1 1; 1; u( ) d

du
v 1( ) u( ) + f1v

1( ) u( )[ ]du
+∫uth

0

a 3( )
2 1; 1; u( ) − d

du
δψ u( ) + f1δψ u( )[ ]du

+∫uth
0

a 3( )
3 1; 1; u( ) −δψ u( ) − d

du
δa 1( )

1 u( ) + f1δa
1( )

1 u( )[ ] du
+∫uth

0

a 3( )
4 1; 1; u( ) −v 1( ) u( ) + d

du
δa 1( )

2 u( ) + f1δa
1( )

2 u( )[ ] du
+∫uth

0

a 3( )
5 1; 1; u( ) − d

du
δa 2( )

1 1; u( ) + f1δa
2( )

1 1; u( ) − δa 2( )
4 u( ) + δa 1( )

1 u( )[ ] du
+∫uth

0

a 3( )
6 1; 1; u( ) d

du
δa 2( )

2 1; u( ) + f1δa
2( )

2 1; u( ) − δa 2( )
3 u( ) + δa 1( )

2 u( )[ ]du
+∫uth

0

a 3( )
7 1; 1; u( ) d

du
δa 2( )

3 1; u( ) + f1δa
2( )

3 1; u( ) + v 1( ) u( )[ ]du
+∫uth

0

a 3( )
8 1; 1; u( ) − d

du
δa 2( )

4 1; u( ) + f1δa
2( )

4 1; u( ) + δψ u( )[ ]du
� ∫uth

0

a 3( )
1 1; 1; u( ) δf2( )δ u( ) − δf1( )φ u( )[ ]du

+∫uth
0

a 3( )
2 1; 1; u( ) − δf1( )ψ u( )[ ]du

+∫uth
0

a 3( )
3 1; 1; u( ) − δf1( )a 1( )

1 u( )[ ]du
+∫uth

0

a 3( )
4 1; 1; u( ) − δf1( )a 1( )

2 u( )[ ]du
+∫uth

0

a 3( )
5 1; 1; u( ) − δf1( )a 2( )

1 1; u( )[ ] du
+∫uth

0

a 3( )
6 1; 1; u( ) − δf1( )a 2( )

2 1; u( )[ ]du
+∫uth

0

a 3( )
7 1; 1; u( ) − δf1( )a 2( )

3 1; u( )[ ] du
+∫uth

0

a 3( )
8 1; 1; u( ) − δf1( )a 2( )

4 1; u( )[ ]du . (105)

The component for Equation 105 can be written as follows:

〈a 3( ) 23; 1; 1; u( ),V 3( ) 23 × 23; u; f[ ]v 3( ) 23; 1; 1; u( )〉3
� 〈a 3( ) 23; 1; 1; u( ), q 3( )

V 23; u 3( ) 23; u( ); f ; δf[ ] 〉3. (106)

The left side of Equation 106 is integrated by parts to obtain the
relation given below, in which the argument “1;1” has been omitted
when writing the components a(3)i (1; 1; u), i � 1, ..., 8 to simplify
the notation:

∫uth
0

a 3( )
1 u( ) d

du
v 1( ) u( ) + f1v

1( ) u( )[ ]du + ∫uth
0

a 3( )
2 u( ) − d

du
δψ u( ) + f1δψ u( )[ ]du

+∫uth
0

a 3( )
3 u( ) −δψ u( ) − d

du
δa 1( )

1 u( ) + f1δa
1( )
1 u( )[ ]du

+∫uth
0

a 3( )
4 u( ) −v 1( ) u( ) + d

du
δa 1( )

2 u( ) + f1δa
1( )

2 u( )[ ] du

+∫uth
0

a 3( )
5 u( ) − d

du
δa 2( )

1 1; u( ) + f1δa
2( )

1 1; u( ) − δa 2( )
4 u( ) + δa 1( )

1 u( )[ ] du

+∫uth
0

a 3( )
6 u( ) d

du
δa 2( )

2 1;u( ) + f1δa
2( )

2 1; u( ) − δa 2( )
3 u( ) + δa 1( )

2 u( )[ ] du

+∫uth
0

a 3( )
7 u( ) d

du
δa 2( )

3 1;u( ) + f1δa
2( )

3 1; u( ) + v 1( ) u( )[ ] du

+∫uth
0

a 3( )
8 u( ) − d

du
δa 2( )

4 1; u( ) + f1δa
2( )

4 1; u( ) + δψ u( )[ ] du

� a 3( )
1 uth( )v 1( ) uth( ) − a 3( )

1 0( )v 1( ) 0( ) + ∫uth
0

v 1( ) u( ) − d

du
a 3( )
1 u( ) + f1a

3( )
1 u( )[ ]du

−a 3( )
2 uth( )δψ uth( ) + a 3( )

2 0( )δψ 0( ) + ∫uth
0

δψ u( ) d

du
a 3( )
2 u( ) + f1a

3( )
2 u( )[ ]du

−a 3( )
3 uth( )δa 1( )

1 uth( ) + a 3( )
3 0( )δa 1( )

1 0( ) + ∫uth
0

δa 1( )
1 u( ) d

du
a 3( )
3 u( ) + f1a

3( )
3 u( )[ ] du

−∫uth
0

a 3( )
3 u( )δψ u( )du − ∫uth

0

a 3( )
4 u( )v 1( ) u( ) du

+a 3( )
4 uth( )δa 1( )

2 uth( ) − a 3( )
4 0( )δa 1( )

2 0( ) + ∫uth
0

δa 1( )
2 u( ) − d

du
a 3( )
4 u( ) + f1a

3( )
4 u( )[ ] du

−a 3( )
5 uth( )δa 2( )

1 1; uth( ) + a 3( )
5 0( )δa 2( )

1 1; 0( ) + ∫uth
0

δa 2( )
1 1;u( ) d

du
a 3( )
5 u( ) + f1a

3( )
5 u( )[ ] du

+∫uth
0

a 3( )
5 u( ) −δa 2( )

4 u( ) + δa 1( )
1 u( )[ ] du + a 3( )

6 uth( )δa 2( )
2 1; uth( ) − a 3( )

6 0( )δa 2( )
2 1; 0( )

+∫uth
0

δa 2( )
2 1; u( ) d

du
a 3( )
6 u( ) + f1a

3( )
6 u( )[ ] du + ∫uth

0

a 3( )
6 u( ) −δa 2( )

3 u( ) + δa 1( )
2 u( )[ ] du

+a 3( )
7 uth( )δa 2( )

3 1; uth( ) − a 3( )
7 0( )δa 2( )

3 1; 0( ) + ∫uth
0

δa 2( )
3 1;u( ) − d

du
a 3( )
7 u( ) + f1a

3( )
7 u( )[ ] du

+∫uth
0

a 3( )
7 u( )v 1( ) u( ) du − a 3( )

8 uth( )δa 2( )
4 1; uth( ) + a 3( )

8 0( )δa 2( )
4 1; 0( )

+∫uth
0

δa 2( )
4 1; u( ) d

du
a 3( )
8 u( ) + f1a

3( )
8 u( )[ ] du + ∫uth

0

a 3( )
8 1; 1; u( )δψ u( ) du .

(107)
The boundary terms that appear in Equation 107 will vanish by

using Equation 101 and imposing the following boundary
conditions on the components a(3)i (1; 1; u), i � 1, ..., 8 of the
third-level adjoint sensitivity function a(3)(23; 1; 1; u):
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a 3( )
1 1; 1; uth( ) � 0; a 3( )

2 1; 1; 0( ) � 0; a 3( )
3 1; 1; 0( ) � 0;

a 3( )
4 1; 1; uth( ) � 0; a 3( )

5 1; 1; 0( ) � 0; a 3( )
6 1; 1; uth( ) � 0;

a 3( )
7 1; 1; uth( ) � 0; a 3( )

8 1; 1; 0( ) � 0.

(108)

Equation 107 can be written in matrix form as follows:

〈a 3( ) 23; 1; 1; u( ),V 3( ) 23 × 23; u; f[ ]v 3( ) 23; 1; 1; u( )〉3
� 〈v 3( ) 23; 1; 1; u( ),A 3( ) 23 × 23; u; f[ ]a 3( ) 23; 1; 1; u( ) 〉3,

(109)
whereA(3)[23 × 23; u; f] ≜ V(3)[23 × 23; u; f]{ }* denotes the formal
adjoint of V(3)[23 × 23; u; f]. The right side of Equation 109 is now
required to represent the G-differential
δR(2)[1; 1; u(3)(23; 1; 1; u); v(3)(23; 1; 1; u); f(α)]{ }α0 by imposing
the following relation:

A 3( ) 23 × 23; u; f[ ]a 3( ) 23; 1; 1; u( ) � s 3( )
A 23; 1; 1; f( ), (110)

where

s 3( )
A 23; 1; 1; f( ) ≜ a 2( )

1 1; u( ), a 2( )
2 1; u( ), a 2( )

3 1; u( ), a 2( )
4[

1; u( );φ u( ),ψ u( ), a 1( )
1 u( ), a 1( )

2 u( )]†. (111)

The relations provided in Equations 108, 110 constitute the 3rd-
LASS for the third-level adjoint sensitivity function a(3)(23; 1; 1; u).
In component form, Equation 110 has the following expression,
where the dots are used to denote zero-elements for better visibility
of the structure:

M · · −1 · · 1 ·
· L −1 · · · · 1
· · L · 1 · · ·
· · · M · 1 · ·
· · · · L · · ·
· · · · · M · ·
· · · · · −1 M ·
· · · · −1 · · L

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

a 3( )
1 1; 1;u( )

a 3( )
2 1; 1;u( )

a 3( )
3 1; 1;u( )

a 3( )
4 1; 1;u( )

a 3( )
5 1; 1;u( )

a 3( )
6 1; 1;u( )

a 3( )
7 1; 1;u( )

a 3( )
8 1; 1;u( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
�

−a 2( )
1 1; u( )

−a 2( )
2 1; u( )

−a 2( )
3 1; u( )

−a 2( )
4 1; u( )
−φ u( )
−ψ u( )
−a 1( )

1 u( )
−a 1( )

2 u( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(112)
Using the relations in Equations 99, 102, 103, 108, 110 yields the

following alternative expression
for δR(2)[1; 1; u(3)(23; 1; 1; u); v(3)(23; 1; 1; u); f(α)]{ }α0 :

δR 2( ) 1; 1; u 3( ) 23; 1; 1; u( ); v 3( ) 23; 1; 1; u( ); f α( )[ ]{ }
α0

� ∫uth

0
a 3( )
1 1; 1; u( ) δf2( )δ u( ) − δf1( )φ u( )[ ] du{ }

α0

− ∫uth

0
a 3( )
2 1; 1; u( ) δf1( )ψ u( ) du{ }

α0

− ∫uth

0
a 3( )
3 1; 1; u( ) δf1( )a 1( )

1 u( ) du{ }
α0

− ∫uth

0
a 3( )
4 1; 1; u( ) δf1( )a 1( )

2 u( ) du{ }
α0

− ∫uth

0
a 3( )
5 1; 1; u( ) δf1( )a 2( )

1 1; u( ) du{ }
α0

− ∫uth

0
a 3( )
6 1; 1; u( ) δf1( )a 2( )

2 1; u( )du{ }
α0

− ∫uth

0
a 3( )
7 1; 1; u( ) δf1( )a 2( )

3 1; u( ) du{ }
α0

− ∫uth

0
a 3( )
8 1; 1; u( ) δf1( )a 2( )

4 1; u( ) du{ }
α0
. (113)

The third-order sensitivities stemming from the relation
obtained in Equation 113 are the expressions that multiply the
respective variations δf1 and δf2 and are as follows:

∂3Rc φ,ψ( )/∂f1∂f1∂f1 � −∫uth
0

a 3( )
1 1; 1; u( )φ u( ) du

−∫uth
0

a 3( )
2 1; 1; u( )ψ u( ) du

−∫uth
0

a 3( )
3 1; 1; u( )a 1( )

1 u( )du

−∫uth
0

a 3( )
4 1; 1; u( )a 1( )

2 u( ) du

−∫uth
0

a 3( )
5 1; 1; u( )a 2( )

1 1; u( )du

−∫uth
0

a 3( )
6 1; 1; u( )a 2( )

2 1; u( ) du

−∫uth
0

a 3( )
7 1; 1; u( )a 2( )

3 1; u( )du

−∫uth
0

a 3( )
8 1; 1; u( )a 2( )

4 1; u( ) du ; (114)

∂3Rc φ,ψ( )/∂f1∂f1∂f2 � ∫
uth

0

a 3( )
1 1; 1; u( )δ u( ) du. (115)

The expressions obtained in Equations 114, 115 are to
be evaluated at the nominal values of parameters and
state functions, but the notation { }α0 has been omitted for
simplicity.

Solving Equations 112, 108 yields the following expressions for
the components of the third-level adjoint sensitivity
function a(3)(23; 1; 1; u):

a 3( )
1 1; 1; u( ) � ud − u( )3H ud − u( ) exp u − ud( )f1 α( )[ ], (116)

a 3( )
2 1; 1; u( ) � f2 α( )u3 exp −uf1 α( )[ ], (117)

a 3( )
3 1; 1; u( ) � f2 α( )u2 exp −uf1 α( )[ ], (118)

a 3( )
4 1; 1; u( ) � ud − u( )2H ud − u( ) exp u − ud( )f1 α( )[ ], (119)

a 3( )
5 1; 1; u( ) � −f2 α( )u exp −uf1 α( )[ ], (120)

a 3( )
6 1; 1; u( ) � − ud − u( )H ud − u( ) exp u − ud( )f1 α( )[ ], (121)

a 3( )
7 1; 1; u( ) � − ud − u( )2H ud − u( ) exp u − ud( )f1 α( )[ ], (122)

a 3( )
8 1; 1; u( ) � −f2 α( )u2 exp −uf1 α( )[ ] . (123)

Using the expressions obtained in in Equations 132, 133
and performing the respective operations yield the
following results:

∂3Rc φ,ψ( )/∂f1∂f1∂f1 � −u4
df2 α( ) exp −udf1 α( )[ ], (124)

∂3Rc φ,ψ( )/∂f1∂f1∂f2 � u3
d exp −udf1 α( )[ ] . (125)
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5.2 Application of the 3rd-FASAM-L to
compute the 3rd-order
sensitivities stemming
from ∂2Rc(φ,ψ)/∂f1∂f2 � ∂2Rc(φ,ψ)/∂f2∂f1

The third-order sensitivities stemming from
R(2)[2; 1; u(3); f(α)] ≜ ∂2Rc(φ,ψ)/∂f2∂f1 will be obtained from
the G-differential of (Equation 72), which will be denoted as
δR(2)[2; 1; u(3); v(3); f(α)]{ }α0 ≜ δ[∂2Rc(φ,ψ)/∂f2∂f1]{ }

α0
, and

which is by definition determined as follows:

δR 2( ) 2; 1; u 3( ); v 3( ); f α( )[ ]{ }α0 ≜ δ ∂2Rc φ,ψ( )/∂f2∂f1[ ]{ }
α0

≜
d

dε
∫uth

0
a 2( )
1 1; u( ) + εδa 2( )

1 1; u( )[ ] δ u( ) du{ }
α0 ,ε�0

� ∫uth
0

δa 2( )
1 1; u( )δ u( ) du . (126)

The function δa(2)1 (1; u) is one of the components of the third-
level variational function v(3)(23; 1; 1; u), which is the solution of the
3rd-LVSS represented by Equations 101, 102. To avoid the need for
solving the 3rd-LVSS, the appearance of this function will be
eliminated from Equation 126 by deriving an alternative
expression for the G-differential δR(2)[2; 1; u(3); v(3); f(α)]{ }α0 in
terms of a third-level adjoint sensitivity function, denoted as
a(3)(23; 2; 1; u) ≜ [a(3)1 (2; 1; u), ..., a(3)8 (2; 1; u)]† ∈ H3. The
argument “2,1” of the function a(3)(23; 2; 1; u) indicates that this
(third-level adjoint) function corresponds to the mixed second-
order sensitivity of the response with respect to the “second and first”
components, (f2, f1), of the feature function f(α).

The third-level adjoint sensitivity function a(3)(23; 2; 1; u) will
be the solution of 3rd-LASS to be constructed in the Hilbert spaceH3

using Equation 104 to construct the inner product of a(3)(23; 2; 1; u)
with Equation 102. Constructing this inner product yields the
following relation, where the specification { }α0 has been omitted
to simplify the notation:

〈a 3( ) 23; 2; 1; u( ),V 3( ) 23 × 23; u; f[ ]v 3( ) 23; 1; 1; u( )〉3
� 〈a 3( ) 23; 2; 1; u( ), q 3( )

V 23; u 3( ) 23; u( ); f ; δf[ ] 〉3. (127)

The left side of Equation 127 is integrated by parts to obtain the
following relation:

〈a 3( ) 23; 2; 1; u( ),V 3( ) 23 × 23; u; f[ ]v 3( ) 23; 1; 1; u( )〉3
� 〈v 3( ) 23; 1; 1; u( ),A 3( ) 23 × 23; u; f[ ]a 3( ) 23; 2; 1; u( ) 〉3, (128)

where the following boundary conditions were imposed on the
components a(3)i (2; 1; u), i � 1, ..., 8, of the third-level adjoint
sensitivity function a(3)(23; 2; 1; u):

a 3( )
1 2; 1; uth( ) � 0; a 3( )

2 2; 1; 0( ) � 0; a 3( )
3 2; 1; 0( ) � 0;

a 3( )
4 2; 1; uth( ) � 0; a 3( )

5 2; 1; 0( ) � 0; a 3( )
6 2; 1; uth( ) � 0;

a 3( )
7 2; 1; uth( ) � 0; a 3( )

8 2; 1; 0( ) � 0.

(129)

The right side of Equation 109 is now required to represent the
G-differential δR(2)[2; 1; u(3)(23; 1; 1; u); v(3)(23; 1; 1; u); f(α)]{ }α0
by imposing the following relation:

A 3( ) 23 × 23; u; f[ ]a 3( ) 23; 2; 1; u( ) � s 3( )
A 23; 2; 1; f( ) ≜ 0, 0, 0, 0, 0, δ u( ), 0, 0[ ]†.

(130)

The relations provided in Equations 108, 110 constitute the 3rd-
LASS for the third-level adjoint sensitivity function a(3)(23; 1; 1; u).
Using the relations in Equations 99, 102, 103, 108, and 110 yields the
following alternative expression for
δR(2)[2; 1; u(3)(23; 1; 1; u); a(3)(23; 2; 1; u); f(α)]{ }α0 , in which the
function v(3)(23; 1; 1; u) has been replaced by the
function a(3)(23; 2; 1; u):

δR 2( ) 2; 1; u 3( ) 23; 1; 1; u( ); a 3( ) 23; 2; 1; u( ); f α( )[ ]{ }
α0

� ∫uth

0
a 3( )
1 2; 1; u( ) δf2( )δ u( ) − δf1( )φ u( )[ ] du{ }

α0

− ∫uth

0
a 3( )
2 2; 1; u( ) δf1( )ψ u( ) du{ }

α0

− ∫uth

0
a 3( )
3 2; 1; u( ) δf1( )a 1( )

1 u( ) du{ }
α0

− ∫uth

0
a 3( )
4 2; 1; u( ) δf1( )a 1( )

2 u( ) du{ }
α0

− ∫uth

0
a 3( )
5 2; 1; u( ) δf1( )a 2( )

1 1; u( ) du{ }
α0

− ∫uth

0
a 3( )
6 2; 1; u( ) δf1( )a 2( )

2 1; u( )du{ }
α0

− ∫uth

0
a 3( )
7 2; 1; u( ) δf1( )a 2( )

3 1; u( ) du{ }
α0

− ∫uth

0
a 3( )
8 2; 1; u( ) δf1( )a 2( )

4 1; u( ) du{ }
α0
. (131)

The third-order sensitivities stemming from the relation
obtained in Equation 131 are the expressions that multiply the
respective variations δf1 and δf2 and are as follows:

∂3Rc φ,ψ( )/∂f1∂f2∂f1 � −∫uth
0

a 3( )
1 2; 1; u( )φ u( )du

− ∫uth
0

a 3( )
2 2; 1; u( )ψ u( ) du

− ∫uth
0

a 3( )
3 2; 1; u( )a 1( )

1 u( ) du

− ∫uth
0

a 3( )
4 2; 1; u( )a 1( )

2 u( ) du

− ∫uth
0

a 3( )
5 2; 1; u( )a 2( )

1 1; u( ) du

− ∫uth
0

a 3( )
6 2; 1; u( )a 2( )

2 1; u( ) du

− ∫uth
0

a 3( )
7 2; 1; u( )a 2( )

3 1; u( ) du

− ∫uth
0

a 3( )
8 2; 1; u( )a 2( )

4 1; u( ) du ; (132)

∂3Rc φ,ψ( )/∂f2∂f2∂f1 � ∫
uth

0

a 3( )
1 2; 1; u( )δ u( ) du. (133)
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The expressions obtained in Equations 132, 133 are to be
evaluated at the nominal values of parameters and state
functions, but the notation { }α0 has been omitted for simplicity.

In component form, the 3rd-LASS for the third-level adjoint
sensitivity function a(3)(23; 2; 1; u) has the following expression,
where dots are used to denote zero-elements for better visibility of
the structure:

M · · −1 · · 1 ·
· L −1 · · · · 1
· · L · 1 · · ·
· · · M · 1 · ·
· · · · L · · ·
· · · · · M · ·
· · · · · −1 M ·
· · · · −1 · · L

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

a 3( )
1 2; 1; u( )

a 3( )
2 2; 1; u( )

a 3( )
3 2; 1; u( )

a 3( )
4 2; 1; u( )

a 3( )
5 2; 1; u( )

a 3( )
6 2; 1; u( )

a 3( )
7 2; 1; u( )

a 3( )
8 2; 1; u( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
�

0
0
0
0

δ u( )
0
0
0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(134)
Solving Equation 134 yields the following expressions for the

components of the third-level adjoint sensitivity
function a(3)(23; 2; 1; u):

a 3( )
1 2; 1; u( ) � a 3( )

4 2; 1; u( ) � a 3( )
6 2; 1; u( ) � a 3( )

7 2; 1; u( ) � 0 ;

a 3( )
5 2; 1; u( ) � H u( ) exp −uf1 α( )[ ]; a 3( )

2 2; 1; u( )
� −u2 exp −uf1 α( )[ ] ;

a 3( )
3 2; 1; u( ) � −u exp −uf1 α( )[ ] � −a 3( )

8 2; 1; u( ).
(135)

Using the expressions obtained in Equation 135, substituting
them into Equations 132, 133 and performing the respective
operations yield the following results:

∂3Rc φ,ψ( )/∂f1∂f2∂f1 � −∫uth
0

a 3( )
2 2; 1; u( )ψ u( )du

− ∫uth
0

a 3( )
3 2; 1; u( )a 1( )

1 u( ) du − ∫uth
0

a 3( )
5 2; 1; u( )a 2( )

1 1; u( )du

− ∫uth
0

a 3( )
8 2; 1; u( )a 2( )

4 1; u( ) du

� u3
d exp −udf1 α( )[ ]

(136)

∂3Rc φ,ψ( )/∂f2∂f2∂f1 � 0. (137)

6 Concluding discussion

This work has presented illustrative applications of the “nth-
FASAM-L,” which has been specifically developed to be the most
efficient methodology for computing exact expressions of
sensitivities of responses (of such unique linear models) to
features of model parameters and, subsequently, to the model
parameters themselves. The efficiency of the nth-FASAM-L stems
from the maximal reduction of the number of adjoint
computations (which are “large-scale” computations) compared
to the extant conventional high-order adjoint sensitivity analysis
methodology nth-CASAM-L (Cacuci, 2022). The unique
characteristics of the nth-FASAM-L have been illustrated in this

work using a paradigm model of a “contributon-flux density
response” that occurs in the energy distribution of neutrons
stemming from a fission source in a homogeneous mixture of
materials. This analytically solvable illustrative paradigm model
has been used to demonstrate the following general conclusions
regarding the characteristics and applicability of the nth-
FASAM-L.

(i) Comparing the mathematical framework of the nth-
FASAM-L to that of the nth-CASAM-L indicates that the
components fi(α), i � 1, ..., TF of the “feature function”
f(α) ≜ [f1(α), ..., fTF(α)]† play within the nth-FASAM-L
the same role as played by the components αj, j � 1, ..., TP
of the “vector of primary model parameters”
α ≜ (α1, . . . , αTP)† within the framework of the
nth-CASAM-L. It is paramount to underscore, at the
outset, that the total number of model parameters is
always larger (usually by a wide margin) than the total
number of components of the feature function f(α),
i.e., TP≫TF. The illustrative paradigm model of
“neutron slowing down in a homogeneous mixture of
materials” presented in this work comprised a feature
function with two components (i.e., TF � 2) denoted as
f1(α) and f2(α), which were, in turn, functions of
TP ≜ 3M + 10 imprecisely known model parameters
(where M denotes the number of materials and/or
isotopes in the mixture, which is of the order of
20–50 in a nuclear reactor, depending on its service
in operation).

(ii) For computing the exact expressions of the first-order
sensitivities of a model response to the uncertain
parameters, boundaries, and internal interfaces of the
model, both the 1st-FASAM-L and 1st-CASAM-L require
a single large-scale “adjoint” computation. This “large-
scale” computation using either the 1st-FASAM-L or 1st-
CASAM-L involves solving the same operator equations
and boundary conditions within the respective 1st-LASS;
only the sources for the respective 1st-LASS differ from each
other. The 1st-FASAM-L enjoys a slight computational
advantage since it requires only TF quadratures (one
quadrature per component of the feature function), while
the 1st-CASAM-L requires TP quadratures (one quadrature
per model parameter). For the illustrative “contributon
response of the neutron slowing-down” paradigm model,
the computation of the first-order response sensitivities
with respect to the model parameters required two
quadratures using the 1st-FASAM-L, while the 1st-
CASAM-L required TP-quadratures. Within the 1st-
FASAM-L, the sensitivities with respect to the primary
model parameters are obtained by using the first-order
sensitivities ∂Rc/∂f1 and ∂Rc/∂f2 (with respect to the
components of the feature function) in conjunction with
the chain rule of differentiation of the exactly known
expressions of the components f1(α) and f2(α) in
terms of the primary model parameters.

(iii) Both the 2nd-FASAM-L and 2nd-CASAM-L conceptually
determine the second-order sensitivities by using the
fundamental concept that “the second-order sensitivities
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are the first-order sensitivities of the first-order
sensitivities.” For computing the exact expressions of the
second-order response sensitivities with respect to the
primary model’s parameters, the fundamental difference
between the 2nd-FASAM-L and 2nd-CASAM-L is obtained
as follows: the 2nd-FASAM-L requires as many large-scale
“adjoint” computations as there are “feature functions of
parameters” fi(α), i � 1, ..., TF (where TF denotes the total
number of feature functions) for solving the left side of the
2nd-LASS with TF distinct sources on its right side. In
contradistinction, the 2nd-CASAM-L requires TP (where
TP denotes the total number of model parameters or non-
zero first-order sensitivities) large-scale computations for
solving the same left side of the 2nd-LASS but with TP
distinct sources. Remarkably, the types of “large-scale”
computations are the same in both the 2nd-FASAM-L
and 2nd-CASAM-L since they both solve the same
operator equations and boundary conditions within the
respective 2nd-LASS systems; only the sources for these
adjoint systems differ from each other. Since TF≪TP,
the 2nd-FASAM-L is considerably more efficient than the
2nd-CASAM-L for computing the exact expressions of the
second-order sensitivities of a model response to the
uncertain parameters, boundaries, and internal interfaces
of the model. For the illustrative contributon-response
paradigm model, the computation of the second-order
response sensitivities with respect to the model
parameters using the 2nd-FASAM-L requires just two
large-scale computations, for solving the two 2nd-LASS
that correspond to the first-order sensitivities, ∂Rc/∂f1

and ∂Rc/∂f2, of the contributon response with respect to
the respective components, f1(α) andf2(α), of the model’s
“feature function” f(α). In contradistinction, computing
the second-order sensitivities to the model parameters using
the 2nd-CASAM-L requires TP large-scale computations,
one for solving each of the 2nd-LASS that corresponds to
each one of the distinct first-order sensitivities ∂Rc/∂αi,
i � 1, ..., TP, of the response with respect to the TP model
parameters. Remarkably, only the unmixed second-order
sensitivity ∂2Rc(φ,ψ)/∂f1∂f1 and the mixed second-order
sensitivity ∂2Rc(φ,ψ)/∂f1∂f2 � ∂2Rc(φ,ψ)/∂f2∂f1 are
non-zero. The unmixed second-order sensitivity is
identically zero, i.e., ∂2Rc(φ,ψ)/∂f2∂f2 ≡ 0. In
contradistinction, computing the second-order
sensitivities to the model parameters using the 2nd-
CASAM-L requires TP large-scale computations, one for
solving each of the 2nd-LASS that corresponds to one of the
distinct TP model parameters. None of the second-order
sensitivities with respect to the primary model
parameters vanish.

(iv) For computing the exact expressions of the third-order
response sensitivities with respect to the primary model’s
parameters, the 3rd-FASAM-L requires at most
TF(TF + 1)/2 large-scale “adjoint” computations for
solving the 3rd-LASS with TF(TF + 1)/2 distinct sources,
while the 3rd-CASAM-L requires at most TP(TP + 1)/2
large-scale computations for solving the 3rd-LASS with
TP(TP + 1)/2 distinct sources. For the illustrative

“contributon response of the neutron slowing-down”
paradigm model, the computation of the third-order
response sensitivities with respect to the model
parameters using the 3rd-FASAM-L requires only two
large-scale computations for solving the two 3rd-LASS
that correspond to the respective non-zero second-order
sensitivities ∂2Rc(φ,ψ)/∂f1∂f1 and
∂2Rc(φ,ψ)/∂f1∂f2 � ∂2Rc(φ,ψ)/∂f2∂f1. Only the
unmixed third-order sensitivity ∂3Rc(φ,ψ)/∂f1∂f1∂f1

and the mixed third-order sensitivity
∂3Rc(φ,ψ)/∂f1∂f1∂f2 are non-zero; all other third-
order sensitivities vanish identically. In contradistinction,
the 3rd-CASAM-L requires all TP(TP + 1)/2 large-scale
computations for solving the 3rd-LASS since all of the
second-order sensitivities with respect to the primary
model parameters are non-zero. Furthermore, all of the
third-order response sensitivities with respect to the
primary model parameters are non-zero.

(v) The same computational count of “large-scale
computations” caries over when computing the fourth-
and higher-order sensitivities, i.e., the formula for
calculating the “number of large-scale adjoint
computations” is formally the same for both the nth-
FASAM-N (Cacuci, 2024a, 2024b) and nth-CASAM-N
(Cacuci, 2023a), but the “variable” in the formula for
determining the number of adjoint computations for the
nth-FASAM-N is TF (i.e., total number of feature
functions), while the counterpart for the formula for
determining the number of adjoint computations for the
nth-CASAM-N is TP (i.e., total number of model
parameters). Since TF≪TP, it follows that the higher
the order of computed sensitivities, the more efficient the
nth-FASAM-N (Cacuci, 2024a, 2024b) becomes compared
to the nth-CASAM-N (Cacuci, 2023a).

(vi) The probability of encountering vanishing sensitivities is
much higher when using the nth-FASAM-L than when
using the nth-CASAM-L. For the illustrative
“contributon response of the neutron slowing-down”
paradigm model, it is evident that the only a few of
the response sensitivities of fourth order (and higher
order) with respect to the components of the feature
function f(α) will not vanish, and the non-vanishing
sensitivities will all involve the component f1(α) of the
feature function since this component appears in an
exponential, whereas the other component appears
just as a multiplicative factor. In contradistinction,
none of the higher-order response sensitivities with
respect to the primary model parameters will vanish
using the 2nd-CASAM-L.

(vii) When a model has no “feature” functions of parameters, but
only comprises primary parameters, the nth-FASAM-L
becomes identical to the nth-CASAM-L.

(viii) Both the nth-FASAM-L and nth-CASAM-L are formulated
in linearly increasing higher-dimensional Hilbert
spaces—as opposed to exponentially increasing
parameter-dimensional spaces—thus overcoming the
limitation of dimensionality in the sensitivity analysis
of linear systems. Both the nth-FASAM-L and nth-
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CASAM-L are incomparably more efficient and more
accurate than any other method (statistical, finite
differences, etc.) for computing the exact expressions of
response sensitivities (of any order) with respect to the
uncertain parameters, boundaries, and internal interfaces
of the model.
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