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This study investigates strategies for enhancing the performance of dual-star
induction generators in wind power systems by optimizing the full control
algorithm. The control mechanisms involved include the PID (Proportional-
Integral-Derivative) controller for speed regulation and the PI (Proportional-
Integral) controller for flux, DC-link voltage, and grid connection control. The
primary objective is to optimize the entire system by fine-tuning PID and PI
controllers through the application of meta-heuristic algorithms, specifically
Grey Wolf Optimization (GWO) and Particle Swarm Optimization (PSO). These
algorithms play a crucial role in estimating the optimal values of Kp, Ki, and Kd for
the PID speed controller, as well as Kp and Ki for the PI controller used in the flux,
DC-link voltage, and grid connection for wind energy conversion system based
dual-star induction generator. This comprehensive optimization ensures
accurate parameter tuning for optimal system performance. A comparative
analysis of the optimization results has been conducted, focusing on the
outcomes obtained with the GWO algorithm. The findings reveal a notable
reduction in steady-state error, signifying improved stability, and an overall
enhancement in the wind power system’s performance. This study contributes
valuable insights into the effective application of meta-heuristic algorithms for
optimizing dual-star induction generators in wind power systems.
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1 Introduction

Renewable energy sources are increasingly seen as a key solution to meet the growing
demand for energy while addressing the challenges of global climate change. This need is
further driven by industrialization and the vital role that electrical energy plays in satisfying
basic human needs (Hamoudi et al., 2023a)- (Chauhan et al., 2021). As part of this
transition, renewable sources like wind energy are replacing traditional energy options,
helping to create a greener, more sustainable world. Among these renewable sources, wind
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energy stands out, with the capability to produce 200 times the
global electricity demand (Dey et al., 2020)- (Barik et al., 2021).

Wind energy’s role in the global energy transition has spurred
various technological innovations. One notable advancement is the
use of multiphase drive systems in wind turbines, offering several
benefits over conventional three-phase systems. These include
enhanced power distribution, reduced current per phase, improved
system reliability, lower rotor current harmonics, and decreased
torque pulsation. Multiphase systems are particularly advantageous
in high-power applications such as electric ship propulsion,
locomotive traction, and hybrid vehicles. Recent research has
increasingly focused on integrating multiphase systems into wind
turbines, particularly through the use of double-star (double three-
phase) induction machines (DSIM), which feature two sets of three-
phase windings offset by 30 electrical degrees (Ulutas et al., 2020)-
(Amimeur et al., 2012).

Effective control of such advanced drive systems relies on vector
control techniques, which were introduced by Blascke in 1972. With
the advent of microelectronics, these methods became feasible for
practical application. This paper employs direct vector control, where
flux is controlled through feedback, estimated using stator currents
and pulsation (Amimeur, 2008). This approach enhances the
efficiency and accuracy of wind turbine performance.

Moreover, modern wind turbines are increasingly adopting
variable-speed operation, which provides several advantages over
fixed-speed turbines. Variable-speed systems maximize energy
capture through techniques like Maximum Power Point Tracking
(MPPT), improving overall efficiency and reducing voltage spikes on
components. These turbines also allow more precise control over the
active and reactive power fed into the grid (Mesai-Ahmed et al., 2021).

In addition to these advancements, PID (Proportional-Integral-
Derivative) controllers are widely used for controlling the speed and
position of wind turbines (Solihin et al., 2011). As wind power systems
grow more complex, there has been a shift toward intelligent
optimization techniques to enhance performance. Particle Swarm
Optimization (PSO) and Grey Wolf Optimizer (GWO) have emerged
as popular metaheuristic algorithms, inspired by nature and applied

successfully to wind power systems (Latif et al., 2020). These algorithms
have been used for applications such as:

• Control of pitch angles (Hussain et al., 2020a)- (Safiullah
et al., 2022).

• Grid connection (Hussain et al., 2020b)- (Iqbal and Singh, 2021).
• Variable wind speed (Sule et al., 2021).
• Hybrid approaches (Hassan et al., 2020)- (Zhang et al., 2019).
• Optimal turbine placement (Shaheen et al., 2021)- (Yasin
et al., 2022).

This paper aims to evaluate the application of direct vector
control, PSO, and GWO in dual-star induction generators for wind
turbines. The study examines the advantages of multiphase drive
systems, vector control techniques, variable-speed turbines, PID
controllers, and the growing impact of smart optimization
methods on improving wind power systems.

The rest of the paper is structured as follows: Section 2 presents the
modelling of the wind power system, including the dual-star induction
generator and power control strategies. Section 3 explores the use of

FIGURE 1
Block diagram of the wind power system based on DSIG.

FIGURE 2
Graph of Cp function λ
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metaheuristic algorithms to optimize control parameters. Section 4
offers validation studies to benchmark the optimized parameters and
evaluate the overall performance of the wind power system, including
the dual-star induction generator. Finally, Section 5 provides
conclusions and outlines future research directions.

2 Modelling of the wind power system

The wind energy conversion system consists of both mechanical
and electrical elements (Basu et al., 2022). The mechanical
components involve a wind turbine and gearbox, while the
electrical section encompasses the generator, control system, and
other interconnected devices.

The investigated wind energy conversion system comprises
several components, including the Dual Star Induction Generator
(DSIG), inverters 1 and 2, the DC link voltage, inverter 3, and the
connection to the grid facilitated by a filter. Inverters 1 and 2 are
utilized for controlling the speed and flux of the generator, with the
control strategy relying on the Maximum Power Point Tracking
(MPPT) algorithm. Inverter 3 is responsible for regulating the DC
link voltage, managing the active and reactive power exchanged with
the grid, and adjusting the current to the correct frequency using
Proportional-Integral (PI) controllers. The overall system
configuration is depicted in Figure 1.

2.1 Modelling of the wind turbine

The expression (1) defines the transmitted power, Pt, harnessed
by the wind turbine.

Pt � 0.5Cp λ( )ρSV3 (1)

Here, Cp represents the power coefficient, S denotes the area
swept by the blades, ρ represents air density, and V represents
wind speed. The turbine’s torque is defined as the ratio of
transmitted power to the shaft speed, Ωt, and is expressed as
in Equation 2:

FIGURE 3
Block diagram of the turbine model with variable speed control.

FIGURE 4
Schematic of dual stator induction generator.
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Tt � 1
Ωt

(2)

The gearbox is employed to match the generator to the
turbine. The generator torque Tg and the speed Ωt are given by
Equation 3:

Tg � Tt

G
,Ωt � Ωmec

G
(3)

The mechanical equation can be defined as in Equation 4:

JpΩmec � Tem − Tg − fΩmec (4)

The power coefficient Cp signifies the aerodynamic efficiency of
a wind turbine, and its variation is specific to each turbine and wind
speed. It is affected by the blade pitch angle β and the speed ratio λ,
which is defined by Equation 5:

λ � RΩt

V
(5)

Where R denotes the blade radius.

Cp � 0.5
116
λ′( ) − 0.4β − 5[ ] exp −21

λ′( ) + 0.0068λ( ). (6)

With, λ′ � [ 1
λ+0.08β − 0.035(β3 + 1)]−1.

When the pitch angle (β) is set to 0, the graph of Cp (λ), as
depicted in Figure 2, is generated using expression (6). The
conversion device extracts less power than theoretically
recoverable because of the non-zero speed of the air masses
upstream of the turbine. This sets a theoretical limit referred
to as the Betz limit, corresponding to Cpmax (Benakcha et al., 2017).

The utilization of the MPPT algorithm aims to optimize the
power extracted from the wind, thereby improving the efficiency of

FIGURE 5
Control scheme of the DSIG based WECS.
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the conversion process. The power coefficient Cp displays a
parabolic shape, reaching its maximum at the optimal speed ratio
λopt (Djoudi et al., 2023). The reference speedΩmec* can be expressed
as in Equation 7:

Ωmec* � Rλopt
V

G (7)

Figure 3 illustrates the block diagram of the turbine model,
which includes speed control. The diagram illustrates how wind
energy is converted into mechanical energy by the turbine,
adjusted by the gearbox, and transferred through the shaft. The
MPPT system optimizes the power extraction by controlling the
voltage and current, ensuring the turbine operates at its most
efficient point.

2.2 Modelling of the dual star
induction generator

In the traditional arrangement, the stator winding of the DSIG is
composed of two identical and balanced three-phase windings. These
windings are offset by an electrical angle of α = 30° and possess an
equal number of poles. Conversely, the rotor can be characterized as a
simplified squirrel cage, resembling a short-circuited three-phase
winding. Figure 4 provides a visual representation of the
equivalent circuits for both the stator and rotor windings (Sellah
et al., 2022)- (Hamoudi et al., 2023b). The mathematical model of the
generator is derived by applying Park’s theory to simplify the
differential equations. The electrical equations for the DSIG along
the direct and quadrature axes (d, q) concerning the field are
expressed as in Equation 8 (Benamara et al., 2023):

FIGURE 6
Schematic representation of decoupling block of MFOC.
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ʋd1 � r1id1 + pφd1 − ωeφq1

ʋq1 � r1iq1 + pφq1 + ωeφd1

ʋd2 � r2id2 + pφd2 − ωeφq2

ʋq2 � r2iq2 + pφq2 + ωeφd2

ʋdr � rridr + pφdr − ωe − ωr( )φqr � 0
ʋqr � rriqr + pφqr + ωe − ωr( )φdr � 0

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
(8)

Where ʋd1, ʋq1, ʋd2, ʋq2 and ʋdr, ʋqr are respectively d-q stator
and rotor voltages components. id1, iq1, id2, iq2 and idr, iqr are
respectively d-q stator and rotor currents components.
φd1,φq1,φd2,φq2 and φdr,φqr are respectively d-q stator and rotor
fluxes components. The stator and rotor electrical pulsations are
respectively ωe and ωr. r1, r2, rr are the stator/rotor phase
resistances.

The expressions for stator and rotor flux linkages are given in
Equation 9:

φd1 � L1id1 + Lm id1 + id2 + idr( )
φq1 � L1iq1 + Lm iq1 + iq2 + iqr( )
φd2 � L2id2 + Lm id1 + id2 + idr( )
φq2 � L2iq2 + Lm iq1 + iq2 + iqr( )
φdr � Lridr + Lm id1 + id2 + idr( )
φqr � Lriqr + Lm iq1 + iq2 + iqr( )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
(9)

Where L1, L2 and Lr are the stator and rotor phase leakage
inductances. Lm is the mutual inductance.

The electromagnetic torque is evaluated as in Equation 10:

Tem � P
Lm

Lm + Lr
iq1 + iq2( )φdr − id1 + id2( )φqr[ ] (10)

Where P is the number of pole pairs.
The active and reactive power at the stator, as well as those

delivered to the grid, are defined as in Equation 11:

FIGURE 7
Control bloc diagram of the grid connection conditioning system.
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Ps � ʋd1id1 + ʋq1iq1 + ʋd2id2 + ʋq2iq2
Qs � ʋq1id1 − ʋd1iq1 + ʋq2id2 − ʋq2iq2

{ (11)

2.3 Direct field-oriented control of DSIG

Modified Field Oriented Control (MFOC) is an advanced
strategy used in electric motor drives, particularly for three-phase
ACmotors. It enhances traditional Field Oriented Control (FOC) by
optimizing magnetic field orientation to achieve superior torque and
speed control, improving efficiency, performance, and precision.
MFOC refines control algorithms and parameter tuning to handle
varying conditions and external disturbances better, resulting in
reduced energy losses, enhanced dynamic response, and precise
control. This makes MFOC ideal for applications where high
performance and energy efficiency are critical.

Vector control achieves an inherent separation of flux and
torque control, resembling the arrangement found in a separately
excited DC machine. The control strategy is specific to a drive and a
given load specification (Benalia, 2010). through flux, orientation
involves regulating the flux using one component of the current and
controlling the torque using the other component.

To do this, we need to choose a control law and a system
of axes that will ensure the decoupling of flux and torque.
Knowing that the expression for the electromagnetic torque
(Equation 10) is dependent on both the stator currents
and rotor flux.

However, by aligning the rotor flux along the d axis (φdr = φr and
φqr = 0), the electromagnetic torque is given by Equation 12:

Tem � P
Lm

Lm + Lr
( ) iq1 + iq2

φr

( ) � k″φriq (12)

With: k″ � P( Lm
Lm+Lr)and iq � iq1 + iq2

For the choice of flux orientation in the MASDE, we opt for the
choice of rotor flux orientation (φdr � φr andφqr � 0), This
approach leads to a variable speed drive, where the
electromagnetic flux and torque are autonomously controlled
through the manipulation of the stator currents (Amimeur, 2008).

For direct vector control, the rotor fluxmodule will be controlled
by feedback. To this end, a rotor flux estimator φr is implemented
from measurements of id and iq and the rotor current pulsation ωr

imposed on the machine (Benalia, 2010).
The proposed control scheme is a cascade structure at is shown

in Figure 5. The bloc diagram of the MFOC is presented in Figure 6,
the three-phase stator currents are transformed into the d-q
reference frame using Park transformations and Proportional-
Integral (PI)/Proportional-Integral derivative (PID) controllers
are used to regulate the d-axis and q-axis currents to their
reference values.

2.4 Power control on the grid side

In grid-connected control mode, the aim is to transmit the
entirety of the obtainable power derived from the wind generator to
the grid Setting the reference reactive power (Qp) to zero is
necessary to align the grid current vector with the grid voltage
vector. The regulation of the reference active power involves the

FIGURE 9
Flowchart of the GWO algorithm.

FIGURE 8
The grey wolf hierarchy.
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control of the DC link voltage. The output from the current
controllers determines the voltage reference in an average
conversion control method, subsequently governing the switches
of the grid inverter (Benamara et al., 2023). The DC link voltage is
controlled by Equation 13.

dUc

dt
� 1
C

im − ig( ) (13)

The determination of the reference active power injected into
the electrical supply network is dictated by Equation 14:

P* � Uc im − i*c( ) � Pdc m − Pdc
* (14)

Where i*c � PI(U*
c − Uc)

The PI controller is incorporated to maintain a constant DC
link voltage.

The control block of the grid connection conditioning system is
shown in Figure 7.

3 Tunning proportional-integral-
derivative controller using grey wolf
optimization

3.1 Presentation of grey wolf
optimization technique

Proposed in 2014 by Mirjalili et al., the GWO algorithm is a
novel meta-heuristic that emulates the natural leader hierarchy and
hunting behavior observed in wild wolves.

The approach emulates the social structure and hunting
dynamics within the gray wolf society. The grey wolf
hierarchy is represented by four distinct simulations: Alpha
(α), Beta (β), Delta (δ), and Omega (ω), as depicted in
Figure 8. Assuming leadership of the entire group, the Alpha
wolf (α) plays a primary role in decision-making regarding
hunting, sleeping locations, wake-up times, and other
collective activities. The Beta wolf (β), positioned as the
second in the hierarchy and subordinate to the Alpha (α),
functions as an assistant in decision-making, particularly in
tasks such as hunting and other collective activities. The
Omega (ω) wolf, the lowest-ranking member, follows the
Alphas (α) and Betas (β) but exerts dominance over other
Omegas (ω). Wolves not classified as Alpha (α), Beta (β), or
Omega (ω) are referred to as Delta (δ) wolves. In the GWO
algorithm, the search commences with a population of randomly
generated wolves, representing potential solutions. These wolves,
through an iterative hunting process during optimization,
estimate the location of the prey (optimum). The Alpha (α)
serves as the primary solution, with the Beta (β) and Delta (δ)
representing the second and third-best solutions, respectively.
The other solutions, considered less significant, are denoted as
Omega (ω) and Delta (δ).

The following Equations 15 and 16 are introduced to
mathematically represent the encircling action during the
hunting process:

�D � �CXp
�→

t( ) −X t( )����→∣∣∣∣∣∣
∣∣∣∣∣∣ (15)

�X t + 1( ) � xp
�→ t( ) − �A �D (16)

In the equations, t represents the current iteration, �A and �C
→

are
coefficient vectors, Xp

�→(t) represents the position vector of the
victim, and �X indicates the position vector of a grey wolf. The
vectors �A and �C are computed as in Equation 17:

�A � 2 �ar1
→− �a

�C � 2r2
→{ (17)

FIGURE 10
Flowchart of basic PSO algorithm.

TABLE 1 Parameters of GWO and PSO algorithms.

Descriptions GWO PSO

Population size 20 30

Number of iterations 50 50
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where �a linearly decreases from 2 to 0 throughout
iterations and r1

→ and r2
→ are random vectors within the

range [0, 1].
In the GWO algorithm, the initial three best solutions are

retained, exerting influence on the remaining search
agents, including the omegas, to adjust their positions based on
the location of the best solution. To implement this, the

following formulas Equations 18–20, are proposed
(Şen and Kalyonnu, 2018)- (Wang and Liu, 2022)- (Sidea
et al., 2021).

FIGURE 11
Schematic of PID/PI controller with GWO/PSO algorithms optimizations.

FIGURE 12
Pseudo code of GWO algorithm.

FIGURE 13
Speed error (fitness function) of (A) GWO-PID and (B) PSO-PID.
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Dα
��→ � C1

�→
Xα
�→− �X

∣∣∣∣∣ ∣∣∣∣∣
Dβ
�→ � C2

�→
Xβ
�→− �X

∣∣∣∣∣ ∣∣∣∣∣
Dδ
�→ � C3

�→
Xδ
�→− �X

∣∣∣∣∣ ∣∣∣∣∣

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (18)

X1
�→ � Xα

�→− A1
�→�����������������→

Dα
�→( )

X2
��→ � Xβ

�→− A1
�→�����������������→

Dβ
�→( )

X3
→ � Xδ

�→− A1
�→

Dδ
�→( )

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(19)

�X t + 1( ) � X1
�→+ X2

�→+ X3
�→

3
(20)

The GWO algorithm, a metaheuristic optimization approach,
draws inspiration from the collaborative hunting behavior of grey
wolves. The sequence of the GWO algorithm is outlined as follows:

- Initiate the population of grey wolves, constituting a collection
of potential solutions.

- Compute the objective function for each grey wolf in the
population.

- Designate the best-performing, second-best, and third-best
grey wolves as alpha, beta, and delta, respectively.

- Update the position of each grey wolf using
Equations 18, 19.

- Update a, A, and C, and update the best-performing, second-
best, and third-best grey wolves as alpha, beta, and delta,
respectively.

- Iterate through steps 4 to 7 until the specified stopping criteria
are satisfied, such as reaching a maximum number of iterations
or achieving a desired level of convergence.

To assess the efficacy of the GWO in comparison to
another optimization algorithm, it is essential to choose a
suitable algorithm for the comparative analysis. We suggest
PSO as a viable candidate for this evaluation (Abdolrasol et al.,
2023) - (Bekakra and Ben Attous, 2014). The flowcharts for both the
GWO and the basic algorithm are presented in Figures 9, 10
respectively.

The parameters of the GWO and PSO algorithms used in this
work are shown in Table 1.

FIGURE 14
Random of the DSIG speed.

FIGURE 15
Wind generator mechanical power.

TABLE 2 Comparison between PID–PSO and PID-GWO

Controller PID-PSO ITAE-PSO PID-GWO ITAE-GWO

Speed Kp = 5397.578
Ki = 639.0105
Kd = 252.7699

40.4797 Kp = 7243.250
Ki = 583.0384
Kd = 500.5632

33.9292

Flux Kp = 7001,1
Ki = 12,000

0.0101 Kp = 698,56
Ki = 11,345.46

0.0096

MFOC Kp = 0.31
Ki = 45.31

2.0611e6 Kp = 0.2915
Ki = 43.9856

1.0974e7

DC-link Kp = 124.1905
Ki = 349.7218

3.1882 Kp = 132.4306
Ki = 396.3569

2.0435

Filter Kp = 0.1412
Ki = 4.4329

2.2373e5 Kp = 0.2636
Ki = 1.8447

1.4954e5
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Figure 11 shows the use of the PSO and GWO
optimization algorithms in our DSIG-based wind power system,
changing the reference value and search interval each time,
and carrying out several simulation runs until the desired result
is achieved.

3.2 PI/PID controller

The PID controller is widely recognized for its effectiveness in
machine control, albeit with the requirement of a known
mathematical model for the system. To tackle challenges
within the overall system, several methods have been
introduced to fine-tune the parameters of PID controllers. The

proposed approach utilizes both PSO and GWO methods to
determine the optimal values for controller parameters (Kp,
Ki, and Kd). This method aims to enhance the performance
and adaptability of the PID controller in diverse machine control

FIGURE 16
Generator torque.

FIGURE 18
(A). Stator current and voltage (phase as1). (B) Stator currents
(phases as1 and as2). (C) Stator active and reactive powers.

FIGURE 17
Direct and quadratic rotor flux.
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scenarios by dynamically optimizing its tuning parameters using
evolutionary algorithms.

3.3 Objective function

A function identified as a potential objective is termed a
candidate objective function. This mathematical function
accepts one or more input variables and generates a singular
output value. The optimization process entails seeking input
values that yield the maximum or minimum output, contingent
on the specific problem under consideration (Abdolrasol
et al., 2021).

When designing PID controllers, essential performance
benchmarks involve metrics such as the Integrated Time
Absolute Error (ITAE), which is employed to assess how

effectively a control system minimizes errors over time. This
criterion is frequently applied when both response speed
and steady-state accuracy are of significance. The Integrated
Absolute Error (IAE) is another metric utilized to
evaluate control system performance by considering the integral
of the error over time. Similar to ITAE, it assists in evaluating
the system’s ability to minimize errors. The Integrated Time-
weighted Square Error (ITSE) is employed to analyze
and quantify control system performance, placing greater
emphasis on larger errors due to the inclusion of squared error
terms in the integral. This criterion is often preferred when
minimizing overshoot and settling time is crucial. The Integrated
Squared Error (ISE) serves as a straightforward measure of the
overall performance of a control system and is commonly used when
both transient and steady-state responses are important. The
respective formulas for ITAE, IAE, ISE, and ITSE
performance criteria are provided below in Equation 21:

FIGURE 19
DC link voltage.

FIGURE 20
Current and voltage at the output of the inverter 3.

FIGURE 21
(A) Grid current and voltage (phase a). (B) Grid active and
reactive powers.
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ITAE � ∫t

0
t. e t( )| |dt

IAE � ∫t

0
e t( )| |dt

ISE � ∫t

0
e2 t( )∣∣∣∣ ∣∣∣∣dt

ITSE � ∫t

0
t. e2 t( )∣∣∣∣ ∣∣∣∣dt

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(21)

In this article, ITAE was used in both algorithms to minimize the
error, which is crucial for optimizing the controller’s performance in
the wind power system described in Section 2.

Figure 11 shows the use of the PSO and GWO optimization
algorithms and ITAE calculation in matlab simulink in our DSIG-
based wind power system, changing the reference value and search
interval each time, and carrying out several simulation runs until the
desired result is achieved. The parameters of PID controller are
calculated using Matlab Simulink functions that we have
programmed based on the flowcharts shown in Figures 9, 10,
and the Pseudo code of the GWO algorithm is shown in Figure 12.

The system’s performance, including the wind turbine’s
mechanical power and torque (as defined in Equations 1, 2), and
the DSIG electromagnetic torque and speed (outlined in Equations
10, 4), directly affects the error signal e(t) in Equation 21, which
represents the difference between the desired and actual
incorporated into the control loop. In this loop, a PID controller
regulates the generator speed and torque using MFOC (see Figure 5)
strategy. The objective of minimizing the ITAE involves tuning the
PID parameters through optimization techniques such as GWO and
PSO. This approach ensures smooth, precise control and efficient
energy capture by reducing the error over time. The integration of
these dynamic models with the control system allows the system to
adapt effectively to changes in wind speed and power requirements.

Figure 13 shows the variation of speed error (fitness). It is worth
noting that the GWO method outperforms the PSO method.

4 Results

To validate this study, multiple simulations were carried out to
analyze the performance of the DSIG under direct field-oriented
control. The simulations incorporated the application of
optimization algorithms that is PSO and GWO, implemented
using MATLAB/Simulink. To acquire a more profound insight
into the outcomes obtained through different methodologies,
such as PID-PSO and PID-GWO, it is imperative to undertake a
thorough comparison of their static and dynamic characteristics.
This comparison should occur under identical operating conditions
(which encompass references, and disturbance loads) and within the
same simulation configuration. Simulation results were acquired for
reactive power of Q* = 0 and a DC link voltage of Uc* = 1130V. In
Figure 14, the angular speed controlled by two controllers (PSO and
GWO), both tracking the same reference, demonstrates
commendable performance. Notably, the GWO controller
exhibits superior performance by precisely following the
reference, evident in its reduced steady-state error of 0.62, in
comparison, the PID-PSO controller exhibits a steady-state
error of 0.82. The remainder of this article will delve into the
presentation of additional results obtained through the
implementation of the proposed PID/PI-PSO and PID/PI-GWO
controllers.

Table.2 lists the gains of the controllers obtained by the two
optimization methods, PSO and Grey Wolf, as well as ITAE.

The error obtained for all PSO controllers is slightly higher
compared to the GWO adjustment method.

The progression of mechanical power on the DSIG shaft is
depicted in Figure 15. The subtle fluctuation in operational phases at
mechanical speeds below the rated speed is constrained by the
power-limiting device when operating at speeds above the
rated speed.

Figure 16, illustrates the electromagnetic torque response of the
DSIG by the two proposed methods. However, PI-PSO and PI-
GWO bring the necessary corrections to the system’s operation, the
torque oscillations represent the generator’s dynamic response to
varying wind conditions.

Moving to Figure 17, the decoupling of the direct and
quadrature fluxes of the DSIG rotor is apparent, with the
quadratic rotor flux registering a zero value following the
principles of direct field-oriented control, the application PI-PSO
and PI-GWO techniques help in optimizing the PI controller
parameters, resulting in improved stability and response of the
system under varying operating conditions.

Figure 18A shows the stator voltages and currents for the first
star, and the second star results are similar to those for the first one.
It indicates that voltage and current are almost 180° out of phase.
The consistent pattern of voltage and current observed in the figure
is a direct outcome of the effective tuning of the PI controllers using
PI-PSO and PI-GWO. These optimization techniques ensure precise
adjustments to the PI controller parameters, thereby achieving a
stable and efficient control of the stator voltages and currents.

Figure 18B illustrates the sinusoidal shape of the stator currents
highlighting the significant improvement in current quality achieved
with the PI-PSO and PI-GWO techniques. The figure demonstrates
that these optimization algorithms effectively reduce current ripple,
resulting in smoother current waveforms. This reduction in ripple is
crucial for enhancing the efficiency and performance of the DSIG.
The results reveal that the PI-PSO and PI-GWO algorithms are
particularly well-suited for tuning the gains of PI/PID controllers,
offering superior performance in maintaining sinusoidal currents
and minimizing undesirable fluctuations.

Figure 18C illustrates the profiles of active and reactive power for
the DSIG stator. The negative sign associated with active power
indicates that the DSIG generates this power, whereas the positive
sign of reactive power signifies that the machine absorbs the energy
required for its magnetization.

Figure 19 portrays the trend of the DC bus voltage and its
reference. It is noticeable that the voltage Uc remains constant and
precisely tracks its reference, this precise tracking is achieved
through the effective application of optimization algorithms,
(PSO) and (GWO). These algorithms are used to fine-tune the
control parameters, ensuring that the DC bus voltage is stable and
accurately follows the desired reference trajectory. The consistent
voltage profile demonstrates the robustness and efficiency of the
optimization techniques in maintaining voltage regulation and
system stability.

The voltage and current profiles at the output of inverter 3 of
the 1st star are presented in Figure 20. The phase shift between the
supply current and voltage is 180°, indicating that the line-side
converter is delivering real power to the electrical network.
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Figure 21A displays the voltage and current profiles at the grid
connection. The sinusoidal shape of the current, coupled with its
phase being opposite to that of the voltage, indicates that power is
flowing from the wind generator to the grid. This phase opposition
suggests that the current is delivering power to the grid, which aligns
with the operational characteristic of a wind generator supplying
power. The smooth, sinusoidal current profile confirms the effective
power transfer and integration of the wind generator with the grid,
reflecting stable and efficient operation.

Figure 21B illustrates that the active and reactive powers of the
network consistently track their references values throughout the
simulation. This indicates effective control and regulation, with the
system maintaining the desired power levels. The precise tracking of
both active and reactive power highlights the success of the control
strategies implemented in ensuring stable and reliable performance
of the network.

5 Conclusion

In conclusion, this research significantly contributes to the
enhancement of dual-star induction generator (DSIG)
performance within wind power systems by regulating speed
and various parameters. By employing PID controllers for speed
regulation and PI controllers for flux estimation, DC-link voltage,
Modified Field Oriented Control (MFOC), and grid filter, the study
aims to optimize the entire system by fine-tuning these controllers.
The optimization process is facilitated by utilizing meta-heuristic
algorithms, specifically Grey Wolf Optimization (GWO) and
Particle Swarm Optimization (PSO). The simulation results
show that the GWO algorithm is slightly more efficient than
the PSO algorithm in the speed controller, for an ITAE
(33.9292 for PID-GWO and 40.4797 for PID-PSO), PI of the
flux (0.0096 PID-GWO and 0.0101 PID-PSO), PI of the MFOC
(1.0974e7 PID-GWO and 2.0611e7 PID-PSO), PI DC-link
ensuring accurate parameter tuning for optimal system
performance.

Appendix parameters

Turbine:
Diameter = 60m.
Number of Blades = 3.
Hub height = 85m.
Gearbox = 90.

DSIG: 1.5MW.
400V.
50Hz.
2 pole pairs.

r1 = r2 = 0.008Ω.
L1 = L2 =0.134mH.
Lm = 0.0045H.
Rr = 0.007Ω.
Lr = 0.067mH.
J = 30 kg.m2: inertia (turbine+ DSIG).
f = 2.5N.m.s/rd: viscous coefficient (turbine+ DSIG).
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Glossary
Ωmec mechanical speed of the DSIG

Ω*mec mechanical speed reference

Ωt turbine speed

Pmec_opt mechanical optimal

Taer aerodynamic torque

Tg generator torque

Cp power coefficient

λ tip speed ratio

β pitch angle

ρ air density

R turbine radius

V wind velocity

G gear ratio

ʋd1, ʋd2, ʋq1, ʋq2 ‘‘d–q’’ stators voltages

id1, id2, iq1, iq2 ‘‘d–q’’ stators currents

φd1, φd2,
φq1, φq2

‘‘d–q’’ stators flux

ʋdr, ʋqr ‘‘d–q’’ rotor voltages

idr, iqr ‘‘d–q’’ rotor currents

φdr, φqr ‘‘d–q’’ rotor flux

ωe speed of the synchronous reference frame

ωr rotor electrical angular speed

r1, r2 per phase stators resistances

rr per phase rotor resistance

L1, L2 per phase stators leakages inductances

Lr per phase rotor leakage inductance

Lm magnetizing inductance

P number of pole pairs

p derivative operator

J inertia

f viscous friction

Tem electromagnetic torque

Ps, Qs active and reactive stator powers

C DC bus capacitor capacity

im The current supplied by the DSIG and modulated by

inverters1 and 2

ig current modulated by inverter 3

ic capacitive DC bus current

Pdc active power in the DC bus capacitor

PI Proportional Integrator controller

PID Proportional Integrator-Derivative controller

GWO Grey Wolf Optimizer

PSO Particle Swarm Optimization

ITAE Integral Time Absolute Error

IAE Integrated Absolute Error

ITSE Integrated Time-Squared Error

ISE Integrated Squared Error

WECS Wind Energy Conversion System
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