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Optimal power flow (OPF) calculation methods are important for the power
system operation and mainly focus on the deterministic power flow calculation,
neglecting the impact of demand response on online security calculation of
power systemswith renewable energy sources. Therefore, this paper proposes an
OPF calculation method that considers the uncertainties of wind power,
photovoltaic (PV) power generation and demand-side response. Firstly, the
research focuses on the renewable energy grid, considering the uncertainties
of wind power and PV power generation, and establishes uncertainty models for
wind power and PV output. Secondly, based on cloud model theory, an
uncertainty model for demand response is established. According to the
established models, an efficient OPF model is constructed with a linearized
submodels considering multiple uncertainties. By testing on the IEEE 30-bus
system as a typical example, we found the effectiveness and superiority of the
proposed OPF calculation method can benefit the power system economic
operation and demand side resource utilization.
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1 Introduction

In recent years, the global energy crisis has become increasingly prominent, and the
environmental pollution caused by the combustion of fossil fuels such as coal and oil has
also attracted widespread attention (Xin et al., 2022). To address this issue, countries around
the world have actively invested a large amount of funds and research personnel in
renewable energy technologies to replace fossil fuels. New renewable and clean energy
sectors, including wind and solar power generation, have experienced vigorous growth
(Chen et al., 2020). As the proportion of wind power, PV and other renewable energy
generation in power grid generation continues to increase, the inherent randomness and
fluctuation of these energy sources gradually exert a growing impact on the operational state
of the electric power system. Therefore, to precisely evaluate how the integration of
renewable energy sources with high capacity affects the operational state of the electric
power system, and to enhance the reliability and cost-effectiveness of power systems
incorporating wind and PV generation, extensive research has been conducted on OPF
calculation methods for electric power systems (Yang et al., 2018). Traditional deterministic
power flow calculation methods are mainly used in typical scenarios where the grid
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structure information of the power system is fixed and the input
power at each node of the power system remains basically
unchanged. They are unable to accurately reflect the actual
operational state of the current power grid where renewable
energy sources constitute a significant portion (Pourbehzadi
et al., 2019).

Currently, scholars have conducted extensive research on the
OPF calculation problem for power grids containing wind power
and PVs. In Refs. (Li et al., 2015; Guo et al., 2018), the uncertainty of
wind power output is taken into account, and a probabilistic OPF
model for wind power integration is proposed. Ref. (Li et al., 2020).
introduces a prediction method for PV output that considers
correlation and analyzes the OPF of PV output at different time
points. Additionally, Ref. (Morshed et al., 2018). addresses the issue
of correlation between the outputs of wind farms and proposes a
correlation modeling method based on fuzzy C-means clustering for
calculating the power flow in a distribution network that includes
wind power generation. In Ref. (Yan et al., 2018), Latin Hypercube
Sampling (LHS) and its improved algorithm were employed for
sampling the probability distributions pertaining to wind power,
photovoltaics, and other renewable energy forms, enhancing the
speed and accuracy of power flow calculations. In Refs. (Liao et al.,
2019; Liu et al., 2019), the linearization semi-variance approach was
developed for probabilistic power flow calculations, effectively
reducing the impact of uncertainty in clean energy sources like
wind power and PVs on power flow calculation results.

However, existing research has not taken into account the impact
of demand-side response on OPF calculation. On the load side,
demand-side response has a significant influence on the optimal
allocation of the power grid. By guiding users’ electricity
consumption behavior through demand-side response and
matching load characteristics with power generation characteristics
such as wind power and PVs, it is possible to reduce the configured
capacity and optimizes the overall cost-effectiveness of the power
grid (Yang et al., 2022). Based on considering the uncertainty of
renewable energy generation, Ref. (Zhao et al., 2018). introduced
demand-side response, effectively reducing the economic cost of
the system. Additionally, due to differences in user demographics,
price incentives, and other factors, demand response also exhibits
significant uncertainty. Ref. (Lin and Zhang, 2020). considered the
impact of demand-side response on system scheduling under
different incentive levels, finding that system scheduling costs
decrease as incentive levels increase.

In summary, although numerous studies have been conducted
on OPF calculation methods for power systems with renewable
energy sources, none of them have taken into account the impact of
demand-side response on the renewable energy accommodation
capacity. As a result, demand-side response has not been
incorporated into the OPF calculation methods. Therefore, this
paper aims to develop an OPF calculation method that considers
the uncertainties of wind power, PV power generation and
demand-side response. The decision variables such as the
output and terminal voltage of wind turbines, transformer ratio,
and reactive power compensation capacity have been reasonably
adjusted. This not only reduces the system operating costs while
satisfying safety constraints, but also enhancing the speed and
accuracy of online security calculation and analysis in
power systems.

The remainder of this paper is organized as follows. Section II
establishes uncertainty models for wind power and PV output.
Section III constructs an uncertainty model for demand-side
response. Based on the previously established uncertainty
models, and Section IV establishes an OPF model and
proposes a linearized method for OPF calculation considering
multiple uncertainties. Section V validates the effectiveness and
superiority of the proposed method using the IEEE 30-bus system
as an example. Finally, Section VI presents the conclusions of
this paper.

2 Uncertainty models for wind power
and PV output

The fluctuations and intermittency of wind speed and solar
irradiance pose new problems and complexities to the stable and
economic dispatch of the power grid. This necessitates the use of
appropriate mathematical models for accurate calculations of wind
power and PV output, facilitating subsequent scenario simulations
and uncertainty handling.

2.1 Wind power output model

A wind turbine generator converts wind energy into mechanical
energy by driving the rotation of its blades, and then converts this
mechanical energy into electrical power. This paper employs the
Weibull distribution to fit the measured wind speed data, and the
resulting probability density function (PDF) of wind speed is
presented as follows in Eq. 1:

f v( ) � k

A

v

A
( )k−1

e−
v
A( )k (1)

Where, v represents the actual wind speed (m/s). k and A are the
two parameters of the Weibull distribution, which are obtained
through fitting the actual data.

The specific mathematical model expression is as follows (Xie
et al., 2019) in Eq. 2:

Pwt �

0 vout < v< vin
v3 − v3in
v3N − v3in

PN vin ≤ v≤ vN

PN vN < v≤ vout

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(2)

Where, Pwt is the power of the wind turbine generator. vout, vin
and vN represent the cut-out wind speed, cut-in wind speed and
rated wind speed of the wind turbine generator, respectively. PN is
the rated power of the wind turbine generator.

During the operation of a wind turbine generator, only the costs
associated with its operation and maintenance are taken into
account, and these costs are specifically related to the output
power of the turbine. The detailed expression is as follows in Eq. 3:

Cwt t( ) � cwtPwt t( ) (3)
Where, cwt refers to the cost associated with the routine

maintenance and operational expenses of a wind turbine for
generating a unit of power. Cwt(t) refers to the total cost related
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to the routine maintenance and operational expenses of wind
turbines during the time period t.

2.2 PV output model

The working principle of PV modules is based on the
photoelectric effect, and their power generation is positively
correlated with the intensity of light. This paper employs the
Beta distribution to fit the measured light intensity data, and the
resulting PDF of light intensity is presented as follows in Eq. 4:

f r( ) � Γ α + β( )
Γ α( )Γ β( ) r

rmax
( )α−1

1 − r

rmax
( )β−1

(4)

Where, r represents the light intensity (W/m2), rmax is the
maximum possible light intensity that the photovoltaic power
plant can receive, Γ is the Gamma function, which along with
parameters α and β, controls the shape of the Beta distribution
curve. The values of α and β are obtained through fitting the
actual data.

The expression for its output power is as follows (Zhao et al.,
2022) in Eq. 5:

Ppv � rSpvηpv (5)

Where, Ppv signifies the electrical power produced by the PV
array. Spv signifies the equivalent area of vertical sunlight received by
the photovoltaic cell. ηpv represents the photoelectric conversion
coefficient.

Similar to wind turbines, only the costs associated with the
operation and maintenance of PV cells are considered during their
operation. The specific expression is as follows in Eq. 6:

Cpv t( ) � cpvPpv t( ) (6)

Where, cpv refers to the cost associated with the routine
maintenance and operational expenses required for the PV cell to
produce a unit of power output. Cpv is the total cost related to the
routine maintenance and operational expenses incurred by the PV
cell during the time period t.

2.3 Simulation of scenarios in wind and solar
generation based on monte carlo sampling

When utilizing scenario analysis to tackle the uncertainty
inherent in wind and solar generation, it is necessary to first
perform scenario simulation to obtain a large-scale scenario
sample set. Meanwhile, the method of time series analysis should
be employed to consider the coupling characteristics between wind
and solar power output at different times. Then, scenario reduction
techniques are applied to extract a few typical scenarios from the
sample set to describe and characterize the power fluctuations of the
entire sample set.

Utilizing Monte Carlo sampling techniques, this paper
performs extensive sampling of wind and solar energy
production to generate a comprehensive collection of predictive
scenarios. Monte Carlo method is based on probabilistic
mathematical models and uses numerical simulation

experiments to describe physical geometric characteristics and
geometric quantities in order to approximate solutions (Zhao
et al., 2023).

For the prediction of wind and solar power output over a
scheduling period T = 24h, a scenario set of size N = 1,000 is
obtained through Monte Carlo sampling. The specific description is
as follows in Eq. 7:

ΩS � S1wt, S
2
wt, S

3
wt, ..., S

T
wt, S

1
pv, S

2
pv, S

3
pv, ..., S

T
pv,{ } (7)

Where, Stwt represents the set of predicted wind generation
scenarios for time t. Stpv represents the set of predicted PV
generation scenarios for the same time t.

Based on the mathematical models established for wind
turbines and PV modules in this section, a sample size of N =
1,000 and a scheduling period of T = 24h were chosen. The cut-
in wind speed is designated as vin � 2.5m/s, the cut-out
wind speed as vout � 27m/s, the rated wind speed as
vN � 15m/s. r � 0.9kW/m2. Monte Carlo method was used to
obtain 1,000 simulated wind power and photovoltaic
output scenarios.

3 Uncertainty model of demand
side response

3.1 Controllable load model

The response level of the demand side largely depends on the
price compensation strategy issued by the system operator,
resulting in significant uncertainty. As shown in Figure 1, when
the incentive level is below γmin, users generally do not participate
in the response. When the incentive level falls between [γmin, γmax],
users engage in the response, and the amount of response increases
as the incentive level rises. Once the incentive level reaches γmax,
user response saturates, reaching the maximum response level. It is
worth noting that the relationship between user response
fluctuations and incentive levels is not linear. As the incentive
level increases, the response fluctuations first increase and then
decrease. γmid represents the critical point in the trend of response
fluctuation changes.

FIGURE 1
Demand response uncertainty curve.
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3.2 Establishment of the uncertainty model
for demand-side response

In this paper, the theory of cloud model is adopted to
describe the uncertainty of demand-side response. Assuming

that the single response quantity Ps
dem of a user fluctuates

around the expected single response value Edem, the joint
effect of n response results from the user forms a user
response quantity Pdem with an expected response of ~Pdem

(Sun et al., 2018). Both Ps
dem and Pdem follow a normal

distribution, and under the condition of Ps
dem � σs, the

probability density function of Pdem is as follows in Eq. 8:

f Pdem( ) � ∫+∞

−∞
1����
2πσs2

√ exp − Pdem − ~Pdem( )2
2σs2

⎧⎪⎨⎪⎩
⎫⎪⎬⎪⎭

· 1����
2πσ2

√ exp − σ − Edem( )2
2σ2

{ }dσs (8)

It can be seen that the demand response quantity is a random
variable with expected value pdem and variance E2

dem + σ2. When
the demand-side compensation price is set at cdem, the cloud
distribution of the demand-side load response is illustrated in
Figure 2. pdem represents the expected response quantity of users
when the compensation price is fixed. Edem characterizes the
distribution range of the response quantity, reflecting the degree
of uncertainty in the response. σ indicates the concentration of
the user response distribution.

FIGURE 2
Demand response load distribution.

FIGURE 3
Demand response distribution cloud map with different compensation price.

Frontiers in Energy Research frontiersin.org04

Zhang et al. 10.3389/fenrg.2024.1421277

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1421277


3.3 Simulation of demand-side response
load scenarios based on the response
cloud model

Figure 3 shows the distribution diagram of user responses for
1,000 times under four cases where the compensation price c is
0.04 $/kW·h, 0.06 $/kW·h, 0.09 $/kW·h and 0.12 $/kW·h
respectively.

4 OPF model and solution

4.1 Establishment of the OPF model

To perform OPF calculations, the initial step involves
establishing an OPF model. This paper proposes an OPF model
that comprehensively incorporates multiple uncertainties, primarily
the fluctuations in wind turbine output and PV generation, along
with the uncertainty associated with demand-side response. The
specific composition of the OPF model includes: the objective
function, the equality constraints for power balance, and a set of
inequality constraints (Sun et al., 2018).

4.1.1 Objective function

f � min ∑m
i�1

ai + biPGi + ciP
2
Gi( ) + Ccomp

⎡⎣ ⎤⎦ (9)

Ccomp � cdemPdem (10)

Where, the objective function f is composed of two parts in Eqs 9
and 10: the system’s generation expenses and the compensation
expenses for user load shedding, excluding expenses such as unit
outages. ai, bi and ci represent the generation cost factors within the
power grid. PGi represents the active power outputted by the
generator situated at node i. m denotes the quantity of generator
nodes present within the power grid. Ccomp represent the
compensation expenses for user load shedding.

4.1.2 Equality constraints
The equality constraints primarily consist of the nodal power

flow balance constraints in Eq. 11:

PGi + Pi
wt + Pi

pv − Pi
load − Pi

node � 0
QGi + Qi

wt + Qi
pv − Qi

load − Qi
node � 0

{ (11)

Where, QGi represents the reactive power generated by the
generator at node i. Pi

node and Qi
node are the active and reactive

power injection at node i, respectively. Pi
lode and Qi

lode are the active
power and reactive power flowing into node i, respectively.

4.1.3 Inequality constraints

Pmin
Gi ≤PGi ≤PGi

max

Qmin
Gi ≤QGi ≤QGi

max

Umin
i ≤Ui ≤Ui

max

Pmin
nodei ≤Pi

node ≤Pnodei
max

Qmin
nodei ≤Qi

node ≤Qnodei
max

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(12)

In Eq. 12, where, Ui denotes the voltage magnitude at node i.
Pmax
Gi , Pmin

Gi , QGi
max and QGi

min represent the upper and lower limits of
the active power output and the upper and lower limits of the
reactive power output of the generator at node i, respectively. Ui

max

and Ui
min represent the upper and lower limits of the voltage at node

i, respectively. Pnodei
max , Pnodei

min , Qnodei
max and Qnodei

min represent the upper
and lower limits of active power and the lower and upper limits of
reactive power carried by node i, respectively (Li et al., 2023).

4.2 Solution of OPF model

The nonlinearity of the OPF model considering multiple
uncertainties is primarily concentrated in the equality constraints
of the nodal power balance equations and the line active power flow
equations. This paper introduces a linearization approach for OPF
calculations, incorporating uncertainties in wind and solar energy
generation, along with demand-side response considerations,
through simplified approximations of the node power
balance equations.

The power inflow at node i is expressed as follows:

Pi
node � ∑n

j�1
GijUiUj cos θij + ∑n

j�1
BijUiUj sin θij

Qi
node � ∑n

j�1
GijUiUj sin θij − ∑n

j�1
BijUiUj cos θij

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(13)

Where, Gij and Bij are respectively the real part and the
imaginary part of the element in the ith row and jth column of
the node admittance matrix. θij is the voltage phase angle difference
between node i and node j.

The node admittance matrix of a power system exhibits a unique
structure, where the diagonal elements are the sums of the
admittances of the non-diagonal elements as well as the shunt
components connected to each node.

Yij �
−yij i ≠ j

yii + ∑n
k�1,k ≠ i

yik i � j

⎧⎪⎪⎨⎪⎪⎩ (14)

Where, Yij is the node admittance matrix element of line i-j. yij

is the admittance of line i-j. yii is the self-admittance of node i. Based
on this, Eq. 13 is reformulated.

Pi
node � ∑n

j�1
GijUiUj cos θij + ∑n

j�1
BijUiUj sin θij

� giiU
2
i + ∑n

j�1,j ≠ i

gijUi Ui − Uj cos θij( ) − bijUiUj sin θij[ ]
(15)

Where, gij and bij are the conductance and susceptance of line
i-j, respectively. An expression can be derived from mathematical
approximation formulas as follows in Eq. 16:

Ui Ui − Uj cos θij( ) ≈ Ui Ui − Uj( )
� 1 + ΔUi( ) ΔUi − ΔUj( ) ≈ ΔUi − ΔUj( )
� 1 + ΔUi − 1 + ΔUj( )[ ] � Ui − Uj (16)
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Where, ΔUi represents a small increment in the voltage
magnitude at node i, with a value approximately equal to 0. In
most power systems, the magnitude of node voltages is
approximately 1.0 per unit (pu), while the absolute value of the
phase angle difference between nodes at both ends of a line rarely
exceeds 30°, with most of them falling within 10° or less. Based on
this scenario, the expression can be approximated as follows:

Ui, Uj≈ 1, U2
i ≈ Ui

sin θij ≈ θij, cosθij ≈ 1
{ (17)

Thus, Eq. 15 can be further deformed, and finally the injected
active power of linearized node i, as follows in Eq. 18:

Pi
node � giiUi + ∑n

j�1,j ≠ i

gij Ui − Uj( ) − ∑n
j�1,j ≠ i

bij θi − θj( )
� Ui∑n

j�1
gij + ∑n

j�1,j ≠ i

−gijUj( )⎡⎢⎢⎣ ⎤⎥⎥⎦ − θi∑n
j�1
bij + ∑n

j�1,j ≠ i

−bijθj( )⎡⎢⎢⎣ ⎤⎥⎥⎦
� ∑n

j�1
GijUj − ∑n

j�1
B‘
ijθj

(18)

Where, B‘
ij excluding the self-admittance of the node. Similarly,

Eq. 13 can be simplified and transformed to obtain Eq. 19. The
detailed transformation process is omitted here.

Qi
node � −∑n

j�1
BijUj − ∑n

j�1
G‘

ijθj (19)

TABLE 1 Basic parameter table.

Scenario 1 Scenario 2 Scenario 3 Scenario 4

cdem($/kW·h) 0.04 0.06 0.09 0.12

Probability 0.216 0.175 0.308 0.301

FIGURE 4
The four scenes reduced through K-means clustering.
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FIGURE 5
Schematic diagram of demand side response effect.

FIGURE 6
Schematic diagram of expected node voltage values.
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Finally, based on the calculation formula and approximate
simplification of line power flow, the active power flow of line i-j
can be derived.

After linearizing the nodal power balance equations, the OPF
described in Section 4.1 was established on the MATLAB platform
using the YALMIP toolbox, and solved by the commercial
solver GUROBI.

5 Case study

5.1 Basis data

To validate the efficacy of the model introduced in this paper, a
test was conducted on the IEEE 30-bus system. Detailed parameters
for each generating unit, node, and transmission line can be found in
the software package provided by MATPOWER 4.1. Two wind
farms and two PV plants were integrated into the test system. The
wind farms adopted constant power factor control, with an assumed
power factor of 1 for all wind farms. For ease of description, the AC
OPF model that accounts for the uncertainties in wind and PV
power output, coupled with demand-side response, is defined as
Model A. The DC OPF model considering the same uncertainties is
Model B. Model C is a linear OPF model that only considers the

uncertainty of wind and PV power, while Model D focuses on the
uncertainty of demand-side response. The proposed linear OPF
model in this paper, which considers both wind and PV
uncertainties as well as demand-side response uncertainties, is
designated as Model E.

The K-means clustering method is used to reduce the generated
wind power, PV and demand-side response load scenarios (Wen
et al., 2023), and finally the compensated electricity price cdem is 0.04
$/kW·h, 0.06 $/kW·h, 0.09 $/kW·h and 0.12 $/kW·h, respectively, as
shown in Table 1 and Figure 4.

To facilitate observation and analysis, the results obtained
from solving Model A are used as the benchmark and denoted as
ρ0. The specific expressions for the relative errors of
the computational results from each model are detailed as
follows in Eq. 20:

Δρ � ρ − ρ0
∣∣∣∣ ∣∣∣∣

ρ0
× 100% (20)

5.2 Case analysis

Demand-side response enables load shifting based on real-time
electricity prices, avoiding usage during peak hours when electricity
prices are high. This helps reduce electricity costs for users, improves
economy, and serves to flatten the peak and fill the trough, thereby
enhancing system stability.

By means of incorporating demand-side response and refining
load curves, the resilience of the grid against uncertainties associated
with renewable energy generation can be enhanced. The shifting
effect of demand-side response on the load under different incentive
levels is shown in Figure 5. It can be observed that as the
compensation electricity price increases, the expected response
quantity of users also increases, enabling a better optimization of
the load curve.

As can be seen from Figure 6, the expected voltage value of the
system considering the uncertainty of wind and solar power output
decreases significantly. This is because the integration of wind and
PV power generation can meet the active power demand of nearby
nodes, thereby altering the direction andmagnitude of power flow in
various branches. In addition, as the output of wind and PV power
generation increases, their reactive power demand also increases
correspondingly, resulting in a general reduction in the voltage levels
at various nodes in the system.

TABLE 2 The results of each model in four cases.

Model Optimal cost/$

Scenario 1 Scenario 2 Scenario 3 Scenario 4

Model A 62340.987 60867.414 61175.57 63266.206

Model B 60652.546 59160.675 60048.546 61796.699

Model C 67145.944 65956.654 66115.554 67984.578

Model D 59946.549 59076.592 59491.264 60683.198

Model E 61578.254 60076.592 61019.984 62683.199

FIGURE 7
The optimal cost of each model in four scenarios.
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Table 2 and Figure 7 present the computational results of the five
models under various scenarios in the test system.

As can be seen from Figure 7, a higher compensation electricity
price is not necessarily better. When the compensation electricity
price is between 0.09 $/kW·h and 0.12 $/kW·h, the system’s
scheduling cost gradually increases. Considering both the
economy and uncertainty of the system scheduling cost, there
exists an optimal compensation electricity price range of 0.06
$/kW·h to 0.09 $/kW·h that can result in relatively low system
scheduling costs. Therefore, the average of the system dispatch costs
when the compensation prices are set at 0.06 $/kW·h and 0.09
$/kW·h is taken as the expected system scheduling cost for
the operator.

From Table 3, it can be observed that all five models are able to
obtain optimal solutions under different scenarios, indicating that
each model is feasible and effective. In various scenarios, the relative
errors of Model B are all greater than 2%, with the maximum relative
error approaching 3%. In contrast, the relative errors of Model E are
all around 1%, representing an improvement in computational
accuracy of approximately 57% compared to Model B. Therefore,
the linear OPF calculation method proposed in this paper exhibits
stronger applicability and can be effectively applied to online safety
calculation and analysis of power systems with renewable
energy sources.

Since Model C only considers the uncertainty of wind and PV
outputs, its optimal cost is significantly higher than the other
models. Although Model D has the lowest optimal cost, it only
takes into account the uncertainty of demand-side response,
which may lead to voltage and power violations, causing
greater losses to the system and lacking economic feasibility.
Model E has a significantly lower optimal cost than Model C,
effectively reducing system operating costs. Although it is slightly
higher than Model D, Model E can fully guarantee the stability
and security of the system’s functioning. Hence, the linear OPF
model put forth in this paper, which considers the uncertainties
of wind, PV and demand-side response, exhibits good economic
performance while balancing system operational safety.

6 Conclusion

The OPF computation method put forth in this paper takes
into account the uncertainties of wind and PV output, analyzes
the uncertainty and volatility of the power system’s operating
state, and avoids situations where some lines of the power system

are overloaded or the voltage at some nodes exceeds the limit,
thereby enhancing the safety of system operation. Meanwhile,
through the introduction of demand-side response, the load
curve has been optimized. This significantly boosts the
system’s capacity to handle intermittency and unpredictability
in power generation from renewable sources, further
elevating the system’s safety level. Additionally, it decreases
the required system configuration capacity, ultimately leading
to increased cost-effectiveness in the power system. The
proposed method also linearizes the power flow calculations
that consider multiple uncertainties, significantly reducing the
computational burden and improving the calculation accuracy.
This approach is more aligned with the demands of real-time
safety calculation and analysis in power systems, exhibiting
strong applicability and holding significant importance for
online calculation and analysis of actual power systems
containing uncertainty factors.
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