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As smart grid advance, Power Load Forecasting (PLF) has become a research
hotspot. As the foundation of the forecasting model, the Power Load Monitoring
(PLM) data takes on great importance due to its completeness, reliability and
accuracy. However, monitoring equipment failures, transmission channel
congestion and anomalies result in missing PLM data, which directly affects
the performance of the PLF model. To address this issue, this paper proposes an
L1-and-L2-Regularized Nonnegative Tensor Factorization (LNTF) model to
impute PLM missing data. Its main idea is threefold: (1) combining L1 and L2
norms to achieve effective feature extraction and improve the model’s
robustness; (2) incorporating two temporal-dependent linear biases to
describe the fluctuations of PLM data; (3) adding nonnegative constraints to
precisely define the nonnegativity of PLM data. Extensive empirical studies on two
publicly real-world PLM datasets with 1,569,491 and 413,357 known entries and
missing rates of 93.35% and 96.75% demonstrate that the proposed LNTF
improves 14.04%, 59.31%, and 71.43% on average over the state-of-the-art
imputation models in terms of imputation error, convergence rounds, and
time cos, respectively. Its high computational efficiency and low imputation
error make practical sense for PLM data imputation.
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1 Introduction

As one of the most commonly utilized technologies in the electric power industry, the
Power Load Forecasting (PLF) (Chakhchoukh et al., 2010; Borges et al., 2012; Zhang et al.,
2022; Yang Y. et al., 2023; Wang et al., 2024) is critical to the operation and planning for the
power systems, which helps power companies make reasonable decisions to improve the
stability and efficiency of the electric grid (Hafeez et al., 2020; Hammad et al., 2020; Li et al.,
2021; Duan et al., 2023; Shirkhani et al., 2023). On the other hand, the Power Load
Monitoring (PLM) (Tabatabaei et al., 2016; Abubakar et al., 2017; Wang et al., 2023)
observes and records various parameters in the power systems, thereby effectively
monitoring the power load situation (Zhang et al., 2023; Shao et al., 2023; D’Incecco
et al., 2019; Song et al., 2022), and it provides an extensive data foundation for PLF models.
However, there are missing PLM data due to sensor failures, network failures, and
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transmission delays (Wang et al., 2021). In addition, since PLM data
needs to be collected frequently, its data scale is large. Therefore, the
PLM data is High Dimensional and Incomplete (HDI) (Hu et al.,
2020; Luo et al., 2021a; Wu and Luo, 2021; Wu et al., 2023a; Wu
et al., 2023b).

Although the existing imputation models are able to complete
the imputation of missing PLM data, but their computational and
time overheads are expensive and they do not consider the
simultaneous missing of multiple monitoring parameters. In
contrast, the PLM data collects various monitoring parameters
such as electric current, electric voltage, and electric power. On
the other hand, temporal variations significantly affect model
performance. Since PLM data have temporal characteristics, such
as the difference between daytime and nighttime loads, different
weekday and weekend usage patterns, and seasonal variations in
summer and winter, the static model cannot accurately predict the
load variations. Therefore, it is essential to implement a temporal
variation-incorporated imputation model that can be applied to
multiple monitoring parameters with efficient computation and fast
response on HDI PLM data (Wu et al., 2019; Chen J. et al., 2021; Hu
et al., 2021; Li Z. et al., 2022; Wu et al., 2022a; Wu et al., 2022b).

By previous studies (Nie et al., 2016; Luo et al., 2019a; Wu et al.,
2020; Wu et al., 2021a; Chen K. et al., 2021; Luo et al., 2021b; Zhao
et al., 2021; Qin et al., 2023), Tensor Factorization (TF)-based
imputation methods are able to efficiently impute missing data
by constructing the data as a higher-order tensor. Specifically,
based on the Canonical Polyadic Decomposition (CPD) (Wu
et al., 2021b), the TF-based model decomposes the higher-order
tensor into an outer product of multiple Factor Matrices (FM) to
provide a concise and unique representation (Bulat et al., 2020). For
instance, Wu et al. (2021a) proposed a Proportional-Integral-
Derivative (PID) TF-based model to impute missing data, which
adopts the PID control principle to construct the tuning instance
error, and optimizes the model parameters by the Stochastic
Gradient Descent (SGD) algorithm to achieve a lower imputation
error. Wang et al. (2019) incorporated a momentum term into the
solving process of SGD based on CPD to accelerate the convergence
process. Moreover, the TF-based models can naturally incorporate
nonnegative constraints to deal with the data with nonnegativity,
called Nonnegative Tensor Factorization (NTF) models (Qin et al.,
2022; Xu et al., 2023; Chen et al., 2024). Luo et al. (2022) proposed an
NTF model incorporating the neural dynamics principle, which
constructs the CPD process as a neural network layer and introduces
nonlinearity through the activation functions, thereby achieving
efficient imputation of missing data. Che et al. (2023) proposed a
sparse and graph regularization TF-based model for fake news
detection, which employs a monotonically non-increasing
algorithm to solve the model efficiently and obtain excellent
model performance.

Therefore, this paper proposes an L1-and-L2-regularized-based
Nonnegative Tensor-factorization (LNTF) model to impute missing
PLM data. It employs a tensor to model PLM data with temporal
features. Specifically, during 1 day, we arrange the sampling
frequency by time and it preserves the temporal pattern of the
monitored parameters. In addition, the cyclical structure of the data
is further preserved by arranging the monitoring parameters of each
day by time. As a result, the temporal dynamics of the data is fully
reflected in the constructed three-order tensor. It further

incorporates temporal-dependent linear biases to address the
fluctuations of PLM data. Finally, it combines L1 and L2
regularizations to improve the generalization ability and
robustness of the model, thereby achieve an efficient model with
low imputation error and fast convergence. The main contributions
of this paper are presented as follows:

1) A three-order tensor construction. It fully preserves the
temporal pattern of PML data.

2) An LNTF model. It provides highly accurate imputation for
missing PLM data.

3) An effective LNTF learning scheme. ItschI guarantees the non-
negativity of PML data.

Experimental results on two publicly available datasets indicate
that the LNTF model is superior to the existing imputation models
for PLM data in terms of imputation error, convergence rounds,
and time cost.

Section 2 presents the related works, Section 3 gives the
Preliminaries, and Section 4 introduces the proposed LNTF
model in detail. Section 5 shows the comparative experiments.
The conclusions and future work are provided in Section 6.

2 Related works

For data imputation, common methods such as Lagrange
interpolation (Allik and Annuk, 2017) and the K-nearest
neighbors method (Miao et al., 2016) are often employed.
However, these methods perform poorly in scenarios with high
missing rates. Liu et al. (2012) defined tensor nuclear norm as the
combination of matrix nuclear norms obtained by unfolding the
tensor along its modes. Yang and Nagarajaiah (2016) utilized prior
knowledge of data structure to minimize the nuclear norm and
complete low-rank matrices. Gao et al. (2017) designed a subspace
merging method to represent real-world datasets by merging
multiple subspaces into a larger one for missing data imputation.
However, converting a third-order tensor into matrices loses the
original multi-dimensional structural information. Kilmer and
Martin (2011) proposed the tensor singular value decomposition
method, which demonstrates the multi-dimensional structure by
constructing a group ring along the tensor fibers, effectively
capturing the inherent low-rank structure of the tensor. He et al.
(2019) proposed a Kalman filter model that derives a recursive
analytical solution and uses the least squares method to estimate the
missing data. To date, researchers have proposed various data
imputation models for missing PLM data. Alamoodi et al. (2021)
proposed a deep learning-based imputation model for incomplete
data, which captures the spatial-temporal relationships of the data
through deep learning models and completes the imputation of
missing data. Amritkar and Kumar (1995) constructed an encoder-
decoder model to impute missing data employing long-short-term
memory networks and graph convolution principles. Yang T. et al.
(2023) proposed a missing data imputation model based on an
improved generative adversarial network, which adopts a deep
network model to extract the spatial-temporal correlation of data
to achieve better imputation performance. Zhang et al. (2020)
proposed a relational graph neural network with a hierarchical
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attention mechanism, which effectively exploits neighborhood
information to highlight the importance of different entities,
thereby completing accurately the missing data imputation. Luo
et al. (2023) proposed a graph neural network based on attention
relation paths, and introduced a neural process based on normalized

flow to improve the performance of imputation. Nevertheless, these
models generating the entire tensor and calculating the singular
values of matrices or tensors, leading to low computational efficiency
and excessively high memory requirements.

3 Preliminaries

3.1 Symbol appointment

The symbol system adopted in this paper is presented in Table 1.

3.2 Problem formulation

Figure 1 presents the process of modeling PLM data to an HDI
tensor. Specifically, a set of monitoring parameter data first forms a
parameter vector. Then a frequency-parameter matrix is constituted
by multiple samples per day. Finally, multiple frequency-parameter
matrices are stacked along the temporal dimension to construct a
third-order tensor.

Definition 1. (Three-order HDI frequency-parameter-day
tensor): Given a parameter-frequency-day tensor Y|I|×|J|×|K|, where
each element yijk denotes the ith (i∈I) parameter information in the
jth (j∈J) sampling point of kth (k∈K) day. Λ and Γ denote the known
and unknown data, respectively. Y is an HDI tensor if |Λ|≪|Γ|.

Based on previous research (Luo et al., 2017; Luo et al., 2021c),
this paper follows the principle of CPD to implement TF process as
shown in Figure 2.

TABLE 1 Adopted symbols and their descriptions.

Symbol Descriptions

Y An HDI tensor from PLM data

I, J, K Three entity sets

H Rank-one tensor

X Low-rank reconstruction of Y

yijk, hijk, xijk One element indexed by ijk in Y, H, and X

R The rank of the low-rank reconstruction

D, T, L Feature matrices

dir, tjr, lkr Single entries in D, T, and L

p, q Linear bias vectors

pi, qk Single entries in p and q

|•| Cardinality of an enclosed set

‖•‖F Frobenius norm of the enclosed matrix or tensor

◦ Outer product of two vectors

Λ, Γ Known and unknown data in an HDI tensor

Λ(*) The subsets of Λ linked with entities I, J, and K

FIGURE 1
An HDI tensor from PLM data.
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X � ∑R
r�1
Hr. (1)

With (1), an HDI tensor can be decomposed to R rank-
one tensors.

Definition 2. (Rank-one tensor): Given a rank-one tensorH|I|×|J|×|K|
r , it

can be written as the outer product of three factor vectors Hr = dr°tr°lr,
where dr, tr, and lr are the r-th rows of the factor matrices D|I|×|R|, T|J|×|R|,
and L|K|×|R|, respectively.

Thus, by unfolding the rank-one tensor, each element xijk in X is
expressed by (Eq. 2):

xijk � ∑R
r�1
h r( )
ijk � ∑R

r�1
dirtjr lkr . (2)

To obtain the desired three FMs, we depend on the Euclidean
distance (Wang et al., 2005; Shang et al., 2021) to construct an
objective function ε, it’s given as (Eq. 3):

ε � 1
2
Y − X‖ ‖2F (3)

Note that numerous entries in Y are unknown, and we define ε
on known entriesΛ to accurately characterize the difference between
the original element yijk and the reformulated element xijk as (Eq. 4)
(Luo et al., 2015; Luo et al., 2019b):

ε � 1
2

∑
yijk∈Λ

yijk − xijk( )2 � 1
2

∑
yijk∈Λ

yijk −∑R
r�1
dirtjr lkr⎛⎝ ⎞⎠2

(4)

Normally, the PLM data is nonnegative and it is necessary to add
nonnegative constraints for FMs to correctly describe the data’s

FIGURE 2
Latent factorization of an HDI tensor Y.

TABLE 2 Dataset details.

Dataset iawe (D1) Ukdale (D2)

Frequency 86,400 86,400

Parameters 13 7

Day 21 21

Entries 1,569,491 413,357

Density 6.65% 3.25%

TABLE 3 Details settings of training datasets.

Dataset D1 D2

No. D1.1 D1.2 D2.1 D2.2

Training: Testing 5%:90% 20%:70% 5%:90% 20%:70%

Training data 78,476 313,899 20,669 82,673

Testing data 1,412,541 1,098,643 372,021 289,349

TABLE 4 Hyper-parameter settings of all model on datasets.

Dataset M1 M2 M3 M4 M5 M6

D1 λ = 0.002 η = 0.001 η = 0.004 λ = 10−8 K = 3, η = 0.001 λ = 0.01

λb = 0.004 λ = 0.01 λ = 0.01 γ = 500 λ = 0.1, min-batch = 2048 a = β = 0.004

D2 λ = 0.004 η = 0.001 η = 0.004 λ = 10−8 K = 3, η = 0.001 λ = 0.01

λb = 0.004 λ = 0.01 λ = 0.01 γ = 800 λ = 0.1, min-batch = 2048 a = β = 0.004
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nonnegativity. Therefore, the objective function of the NTF is
formulated as (Eq. 5):

ε � 1
2

∑
yijk∈Λ

yijk − xijk( )2 � 1
2

∑
yijk∈Λ

yijk −∑R
r�1
dirtjr lkr⎛⎝ ⎞⎠2

s.t.∀i ∈ I,∀j ∈ J,∀k ∈ K ,∀r ∈ 1 ~ R{ }: dir ≥ 0, tjr ≥ 0, lkr ≥ 0.

(5)

4 LNTF model

4.1 Objective function

For the HDI PLM tensor, the monitoring parameter data fluctuate
with sampling frequency and time. According to previous research (Li
et al., 2016; Yuan et al., 2018), it is essential to incorporate the linear bias
(LB) into the model to improve the performance when analyzing
fluctuating data. Note that the constructed HDI PLM tensor has

time-varying characteristics in I-dimension and K-dimension, we
incorporate the corresponding two temporal-dependent LBs into the
reformulated element xijk as (Eq. 6):

xijk � ∑R
r�1
dirtjr lkr + pi + qk . (6)

To deal with the unbalanced distribution of known entries and
to avoid overfitting the model, it is necessary to incorporate
regularization terms in the objective function (Luo et al., 2019c;
Liu et al., 2023). Typically, L1-regularized makes the FMs sparse
during the optimization process, which is effective for selecting
features since it automatically removes insignificant features.
However, incorporating L1-regularized results in a non-smooth
objective function (Grasmair et al., 2011; Wu D. et al., 2021). On
the other hand, L2-regularized tends to optimize the FMs uniformly
by narrowing the feature values and improving the robustness of the
model, but it is sensitive towards outliers (Zeng et al., 2017; Jin et al.,
2019; Benjamin and Yang, 2021). Hence, we assemble the L1-
regularized and L2-regularized to combine their advantages, while
adopting an approximation to deal with the absolute value in L1-
regularized to make the objective function smooth. Further, the
objective function is formulated as (Eq. 7):

ε � 1
2

∑
yijk∈Λ

yijk −∑R
r�1
dirtjr lkr − pi − qk⎛⎝ ⎞⎠2⎛⎝ ⎞⎠

+1
2

∑
yijk∈Λ

λ ∑R
r�1

d2
ir +

						
d2
ir + τ

√
+ t2jr +

					
t2jr + τ

√
+ l2kr +

					
l2kr + τ

√( )⎛⎝ ⎞⎠⎛⎝ ⎞⎠
+1
2

∑
yijk∈Λ

λb p2i +
					
p2i + τ

√
+ q2k +

					
q2k + τ

√( )( ),
s.t.∀i ∈ I,∀j ∈ J,∀k ∈ K ,∀r ∈ 1 ~ R{ }: dir ≥ 0, tjr ≥ 0, lkr ≥ 0, pi ≥ 0, qk ≥ 0.

(7)

where λ and λb are the regularized constants for FMs and LBs,
respectively, and τ is a tiny positive number.

4.2 Learning scheme

Considering the nonnegativity of PLM data, we implement
the NMU for FMs and LBs based on previous studies (Badeau

TABLE 5 Prediction error of all models.

Dataset M1 M2 M3 M4 M5 M6

D1.1 RMSE 0.1813 ± 0.0002 0.2014 ± 0.0003 0.2177 ± 0.0005 0.1836 ± 0.0003 0.2220 ± 0.0001 0.1976 + 0.0002

MAE 0.0827 ± 0.0003 0.0943 ± 0.0004 0.1023 ± 0.0002 0.0933 ± 0.0002 0.1142 ± 0.0001 0.1175 ± 0.0003

D1.2 RMSE 0.1655 ± 0.0005 0.1982 ± 0.0011 0.2155 ± 0.0004 0.1665 ± 0.0009 0.2149 ± 0.0002 0.1855 ± 0.0012

MAE 0.0797 ± 0.0003 0.0933 ± 0.0008 0.1005 ± 0.0002 0.0802 ± 0.0001 0.1102 ± 0.0001 0.1015 ± 0.0009

D2.1 RMSE 0.4086 ± 0.0005 0.4246 ± 0.0012 0.4422 ± 0.0012 0.4671 ± 0.0014 0.4436 ± 0.0002 0.4425 ± 0.0003

MAE 0.1296 ± 0.0004 0.1427 ± 0.0005 0.1645 ± 0.0008 0.1637 ± 0.0004 0.1668 ± 0.0001 0.1439 ± 0.0005

D2.2 RMSE 0.4096 ± 0.0012 0.4238 ± 0.0009 0.4386 ± 0.0009 0.4774 ± 0.0007 0.4343 ± 0.0003 0.4366 ± 0.0002

MAE 0.1299 ± 0.0009 0.1437 ± 0.0013 0.1503 ± 0.0012 0.1790 ± 0.0006 0.1645 ± 0.0002 0.1574 ± 0.0004

TABLE 6 Iteration count of all models.

Dataset M1 M2 M3 M4 M5 M6

D1.1 RMSE 43 ± 2 101 ± 1 91 ± 3 136 ± 2 -a 64 ±
2

MAE 45 ± 1 92 ± 2 152 ± 4 138 ± 3 - 63 ±
1

D1.2 RMSE 18 ± 1 124 ± 5 100 ± 5 101 ± 2 - 20 ±
1

MAE 21 ± 2 120 ± 4 127 ± 6 102 ± 3 - 25 ±
2

D2.1 RMSE 16 ± 2 43 ± 3 140 ± 6 58 ± 1 - 65 ±
3

MAE 19 ± 3 42 ± 3 248 ± 5 103 ± 4 - 76 ±
2

D2.2 RMSE 20 ± 2 27 ± 2 61 ± 3 36 ± 2 - 31 ±
2

MAE 22 ± 2 28 ± 3 57 ± 2 37 ± 3 - 35 ±
3

aNot involved iteration counts.
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et al., 2010; Liu et al., 2020). Specifically, additive gradient
descent (AGD) is applied to (7) to implement the following
learning rule:

argmin
D,T,L,p,q

ε0
AGD

∀i ∈ I, j ∈ J, k ∈ K , r ∈ 1, 2, ...,R{ }:

dir ← dir − ηir
∂ε
∂dir

� dir − ηir ∑
yijk∈Λ i( )

yijk − xijk( ) −tjr lkr( ) + λ dir + dir						
d2
ir + τ

√⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠
pi ← pi − ηi

∂ε
∂pi

� pi − ηi ∑
yijk∈Λ i( )

−yijk + xijk( ) + λb pi +
pi					

p2i + τ
√( )( )⎛⎜⎝ ⎞⎟⎠,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
(8)

where ηij and ηi denote the learning rates for dir and pi, respectively.
Note that we only present the update rules for one FM and one LB,
since similar inferences are applied to {tjr, lkr} and qk. Further, we
separate the positive and negative components in learning rule as:

dir ← dir + ηir ∑
yijk∈Λ i( )

yijktjr lkr⎛⎜⎝ ⎞⎟⎠ − ηir ∑
yijk∈Λ i( )

xijktjr lkr( ) + λ dir + dir						
d2
ir + τ

√⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠
pi ← pi + ηi ∑

yijk∈Λ i( )

yijk − ηi ∑
yijk∈Λ i( )

xijk + λb pi +
pi					

p2i + τ
√( )( ).

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
(9)

In order to cancel the negative component in (8), the learning
rates are adjusted as follows:

ηir � dir/ ∑
yijk∈Λ i( )

xijktjr lkr( ) + λ dir + dir						
u2
ir + τ

√( )( )
ηi � pi/ ∑

yijk∈Λ i( )
xijk + λb pi +

pi					
p2i + τ

√( )( ).
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩ (10)

With (9), (10), we obtain the multiplicative update rules for FMs
and LBs as:

FIGURE 3
Performance comparison of M1-6 on four datasets. (A) RMSE, (B) MAE.

TABLE 7 Time cost of all models (seconds).

Dataset M1 M2 M3 M4 M5 M6

D1.1 RMSE 4.013 ± 0.062 10.369 ± 0.091 17.473 ± 0.098 19.492 ± 0.079 1,255 ± 13.264 14.679 ± 0.034

MAE 4.287 ± 0.071 9.495 ± 0.088 27.421 ± 0.113 20.752 ± 0.134 1,233 ± 12.021 14.464 + 0.052

D1.2 RMSE 4.456 ± 0.056 21.563 ± 0.156 28.136 ± 0.024 14.947 ± 0.566 804 ± 11.721 11.687 ± 0.84

MAE 5.537 ± 0.059 22.365 ± 0.177 35.423 ± 0.035 15.882 ± 0.622 681 ± 9.943 14.632 ± 0.16

D2.1 RMSE 2.168 ± 0.029 4.238 ± 0.059 7.387 ± 0.254 8.694 ± 0.097 52 ± 6.231 6.188 ± 0.042

MAE 2.294 ± 0.033 4.652 ± 0.042 13.334 ± 0.235 13.798 ± 0.087 58 ± 8.349 7.236 ± 0.072

D2.2 RMSE 2.489 ± 0.055 2.876 ± 0.048 16.846 ± 0.078 3.493 ± 0.056 84 ± 7.493 7.024 ± 0.121

MAE 2.815 ± 0.057 2.978 ± 0.057 15.821 ± 0.049 3.684 ± 0.043 74 ± 9.479 7.932 ± 0.083
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argmin
D,T,L,p,q

ε0
AGD

∀i ∈ I, j ∈ J, k ∈ K , r ∈ 1, 2, ...,R{ }:

dir ← dir ∑
yijk∈Λ i( )

yijktjr lkr⎛⎜⎝ ⎞⎟⎠/ ∑
yijk∈Λ i( )

xijktjr lkr( ) + λ dir + dir						
d2
ir + τ

√⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠
pi ← pi ∑

yijk∈Λ i( )
yijk/ ∑

yijk∈Λ i( )
xijk + λb pi +

pi					
p2i + τ

√( )( )⎛⎜⎝ ⎞⎟⎠.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
(11)

With (11), if D, T, L, p, and q are initially nonnegative, they
maintain their nonnegativity during the update process.

4.3 Algorithm design and analysis

Based on the above inferences, we design the LNTF model as
shown in Algorithm 1. Note that the pseudocodes of procedures
{Procedure_D, Procedure_T, Procedure_L} and {Procedure_p,

Procedure_q} in LNTF are similar, and we provide the update
procedure for U and p as presented in Procedure_D and Procedure_p.

With Algorithm 1, the computational complexity of the LNTF
model depends on the complexity of initializing and updating the
FMs and LBs. Specifically, the computational complexity of
procedure Update_D is presented as (Eq. 12):

CU � Θ 3R × Λ| | + 2R × I| |( ). (12)

Similarly, the computational complexity of procedure Update_ p
is given as (Eq. 13):

Cp � Θ 2 + R( ) × Λ| | + 2 I| |( ). (13)

Therefore, the computational complexity of LNTF model is:

CLBNL � Θ R × I| | + J| | + K| |( ) + 1 + n × 9R × Λ| | + 2R × I| |(((

+ J| | + K| |) + 2 + R( ) × 2 Λ| | + 2 I| | + 2 K| |( )))≈ Θ n × R × Λ| |( ).
(14)

Note that in (14), we omit the constant coefficients and lower
order terms since |Λ| ≫ max{|I|, |J|, |K|} for an HDI tensor. With
(14), n and R are positive constants in practical application, thus the
computational complexity of the LNTF model is linear with the
number of known entities in the HDI tensor.

For the storage complexity of the LNTF model, which depends
on the number of known entities, the caches of FMs and LBs, the
auxiliary matrices and arrays in the update procedures. Therefore,
the storage complexity of the LNTF model is:

SLBNL � Θ Λ| | + 2R × I| | + J| | + K| |( ) + 1( ) ≈ Θ Λ| | + R × I| | + J| | + K| |( )( ).
(15)

With (15), constant constants and lower order terms are
omitted, and the storage complexity of the LNTF model is
linearly related to the number of known entities in the HDI tensor.

5 Empirical studies

5.1 General settings

In this section, all the comparison experiments are run on a
desktop computer equipped with a 2.10 GHz Intel Core i7-13700
and a NVIDIA GeForce RTX 3050 GPU card. The versions of Java
and Python used are SE-8U212 and Python 3.6.5, respectively.

5.1.1 Datasets
In this paper, two public PLM datasets iawe (Batra et al., 2013)

and ukdale (Kelly and Knottenbelt, 2015) are used to compare
model performance. They record load monitoring data of multiple
appliances in the users’ homes, and the details are shown in
Table 2. In D1, the monitoring parameters 13 parameters such
as electric current, electric voltage, and electric power, etc., which
are sampled 86,400 times per day for 21 days, and the number of
known entries is 1,569,491. Note that we further split the datasets
proportionally into disjoint training (Φ), validation (Ψ), and test
sets (Ω) to evaluate the model performance, as shown in Table 3. In
addition, we generate 20 random splits on each dataset to achieve
unbiased model results.
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5.1.2 Evaluation metrics
The prediction accuracy in a given HDI PLM tensor directly

reflects the prediction performance of the model. Based on previous
studies (Li W. et al., 2022; Yuan et al., 2022; Bi et al., 2023; Wu et al.,
2023c; Qin and Luo, 2023), Root mean squared error (RMSE) and
mean absolute error (MAE) are commonly adopted as evaluation
metrics for prediction accuracy, and they are given as (Eq. 16):

RMSE �

														∑
yijk∈Ω

yijk − xijk( )2
Ω| |

√√
, MAE �

∑
yijk∈Ω

yijk − xijk
∣∣∣∣∣ ∣∣∣∣∣
Ω| | (16)

where Ω denotes the testing set. Note that lower RMSE and MAE
denote that the model provides higher prediction accuracy for the
target tensor.

5.1.3 Compared models
The five state-of-the-art comparisonmodels are given as follows:

• LNTF (M1): The model presented in this paper.
• TCA (M2): A multi-dimensional tensor complementation
model based on CP decomposition (Su et al., 2021), which
trains the latent feature matrix by applying the least squares
and gradient descent methods.

• HDOP (M3): A multilinear algebraic model (Wang et al.,
2016), which adopts tensor decomposition and reconstruction
optimization for data complementation.

• CTF (M4): A data completion model employing CP
decomposition (Ye et al., 2021), which adopts the Cauchy
loss to measure the difference between the predicted and true
values and to improve the robustness of the model.

• LightGCN-AdjNorm (M5): A graph embedding based model
(Zhao et al., 2022) that realizes accurate data complementation
by controlling the normalization strength and aggregation
process. It computes the average loss by splitting the PLM
tensor into a set of slices along the time dimension

FIGURE 5
Time cost comparison of M1-6 on four datasets. (A) RMSE, (B) MAE.

FIGURE 4
Iteration count comparison of M1-6 on four datasets. (A) RMSE, (B) MAE.
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• BCLFT (M6): A latent factor TF-based model (Dong et al.,
2024) that incorporates transfer learning and builds auxiliary
tensors to transfer knowledge from the auxiliary domain to the
target domain to alleviate data sparsity.

5.1.4 Training settings
For the choice of rank, larger rank provides more model

parameters to capture more complex patterns and structures.
However, it also leads to higher computational and time
overhead, and we empirically set rank to five for all models to
provide fair experimental results. In addition, the hyper-
parameters λ and λb significantly affect the performance of the
model. The large regularization constants help to reduce the risk
of overfitting, thereby increasing the robustness and
generalization ability of the model. Relatively, small
regularization constants lead to overfitting. Therefore, we
search for the optimal hyper-parameters by grid search.
Specifically, hyper-parameters λ and λb perform a grid search
in the range [10−3,10−2] with a step size of 10−3. For the
comparison models, we refer to the reference (Luo et al.,
2021c) to set their hyper-parameters as shown in Table 4.
Note that the training process of the model is terminated if
the iteration count reaches 103 or if the error between two
consecutive training iterations is smaller than 10−5.

5.2 Comparison results

This section presents a comparison of the LNTF model
against the five comparison models in terms of prediction
error, iteration count, and time cost. Tables 5–7 present the
statistics data of all the models, respectively. Figures 3–5 chart the
comparison of RMSE and MAE for all models on the dataset.
From these results, we find that:

• The LNTF model has lower prediction error compared with the
comparison models. As shown in Table 5 and Figure 3, the
prediction errors of LNTF model in RMSE and MAE are
0.1813 and 0.0827 on the dataset D1.1. Comparatively, the
RMSE of the comparison models M2, M3, M4, M5, M6 are
0.2014, 0.2177, 0.1836, 0.2220, 0.1976 and the MAE of
them are 0.0943, 0.1023, 0.0933, 0.1142, 0.1175,
respectively. The prediction errors of LNTF compared
with its peers in RMSE and MAE are reduced by 9.98%,
16.72%, 1.25%, 18.33%, 8.24% and 12.30%, 23.70%,
11.36%, 27.58%, 29.61%, respectively. Note that the
training entries in D1.1 are 5% of the known entries,
which indicates that the LNTF model outperforms the
comparison models in addressing the high missing rate
tensor. Further, we increase the number of training entries
to 20% of the known entries, as presented in D1.2.
Similarly, compared with the comparison models, the
prediction error of the LNTF model in RMSE and MAE
on D1.2 are reduced by 16.49%, 23.20%, 0.60%, 22.98%,
10.78% and 14.57%, 20.69%, 0.62%, 27.67%, 21.47%. In
general, the improvement of LNTF over the comparison
models increases with the number of training entries.

Similar performance gains can also be obtained
in D2.1 and D2.2.

• The LNTF model has fewer iteration count compared with the
comparison models. For instance, according to Figure 4 and
Table 6, the LNTF model only takes 16 and 19 iterations in
RMSE and MAE on D2.1, respectively. It is much fewer
thanM2’s 43, M3’s 140, M4’s 58, M6’s 65 in RMSE andM2’s
42, M3′248, M4’s 103, M6’s 76 in MAE. By contrast, the
iteration counts of the LNTF model in RMSE are 37.20% of
M2, 11.42% of M3, 27.58% of M4, 24.61% of M6 and
45.23%, 7.6%, 18.44%, 25% of them in MAE,
respectively. Note that M5 is a model based on graph
neural networks, which does not involve the iteration
count. When the training entries are increased to 20% of
the known entries, the iteration count of the LNTF model in
RMSE is 20, which is the comparison mode’s 74.07%,
32.78%, 55.55%, and 64.51%, respectively. For MAE,
LNTF’s iteration count is 78.57%, 38.59%, 59.45%, and
62.85% of comparison models. Similar results can be
encountered on other datasets.

• The LNTF model has fewer time cost compared with the
comparison models. As depicted in Figure 5 and Table 7,
the LNTF model costs 2.489s to achieve the lowest RMSE
on D2.2. Compared to the comparison models of 2.876s,
16.846s, 3.493s, 84s, and 7.024s, the time cost of the LNTF
model is 86.54% of M2, 14.77% of M3, 71.25% of M4, 2.69% of
M5, and 35.43% of M6. For MAE on D2.2, the LNTF model
costs 2.815s to reach the lowest MAE, which is 94.52% of M2’s
2.978s, 17.79% of M3’s 15.821s, 76.41% of M4’s 3.684s, 3.80%
of M5’s 74s, and 35.48% of M6’s 7.932s. Note that the lower
time cost of the LNTF model can also be observed on D1.1,
D1.2, and D2.1.

6 Conclusion

In order to achieve the interpolation of PLM missing data,
this paper proposes a LNTF model with low imputation error. In
the LNTF model, we design two temporal-dependent linear
biases to address the fluctuations of monitoring parameters.
Further, we combine the advantages of L1 and L2
regularizations to accurately extract features of PLM data and
improve the robustness of the LNTF model. In addition, the
model parameters are updated by employing the NUM algorithm
to accurately describe the nonnegativity of the PLM data. Finally,
experiments on two datasets with different missing rates indicate
that the LNTF model can effectively impute the PLM missing
data, thereby providing a reliable data foundation for following
data analysis. However, the following issues still need to
be addressed:

• The manual tuning method for two hyper-parameters in
LNTF consumes a lot of time. Therefore, it is a desirable
work to incorporate the hyper-parameter adaptive
learning scheme.

• Can we adopt other learning schemes such as
ADMM algorithm (Hu et al., 2018; Luo et al., 2021d),
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second-order Newton’s method to update the model
parameters?

We are aiming to address the above issues in future work.
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