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Background: The target of this paper is to improve the performance of the
microbial electrolysis cell (MEC). The performance of MEC including bio-
hydrogen production and energy recovery is depending on the values of three
controlling parameters including buffer concentration, dilution factor, and
applied voltage.

Problem: Therefore, defining the optimal values of three controlling parameters
is the challenge of the work.

Methodology: In this paper the artificial gorilla troops optimization has been
combined with and ANFIS modelling to increase the bio-hydrogen production
fromMEC. At first, usingmeasured data, amodel is created to simulate theMEC in
terms of three controlling parameters. Then, for first time, an artificial gorilla
troops optimization (AGTO) has been used to determine the optimal values of
buffer concentration, dilution factor, and applied voltage to boost simultaneously
bio-hydrogen production and energy recovery of MEC. To demonstrate the
superiority of integration between ANFIS modelling and AGTO, the obtained
results are compared with RSM methodology, and artificial neural network
integrated with particle swarm optimization.

Findings: For hydrogen yield model, the RMSE lowered from 67.5 using RSM to
5.562 using ANFIS (decreased by 91.7%) as compared to RSM. The R-square for
prediction rises from 0.94 (using RSM) to 0.99 (using ANFIS) by about 5.32%. For
the ANFIS model of energy recovery, the RMSE decreased from 31.7 to
2.83 utilising ANFIS, a decrease of 91%. The R-square for prediction rises from
0.95 (using RSM) to 0.986 (using ANFIS) by about 3.8%. Compared with measured
data, the integration between ANFIS and AGTO succeed to increase the hydrogen
yield from 576.3 mL/g-VS to 843.32 mL/g-VS. in sum, the total performance of
theMEChas been increased by 34.74%, 29.9% and 24.38% respectively compared
to measured data, RSM and ANN-PSO.
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1 Introduction

Eichhornia crassipes, generally known as water hyacinth, is a
toxic weed that can seriously affect aquatic habitats. It is renowned
for its quick development and capacity for rapid spread, which
frequently results in the depletion of nutrients and oxygen in the
water it inhabits (Gaurav et al., 2020). Water hyacinth grows into
thick mats that cover the water’s surface, preventing algae and
plants from receiving sunlight. This prevents photosynthesis and
can throw off the aquatic ecosystem’s delicate equilibrium. The
tight mats also prevent fish and other marine species from moving
about, limiting their access to food, breeding grounds, and refuge.
Additionally, the massive amounts of oxygen consumed by water
hyacinth during its decomposition and death further reduce the
already low oxygen levels in water (Liang et al., 2019). The
dissolved oxygen level, which is essential for fish and other
aquatic species to survive, may drop due to this. Manual or
mechanical removal, biological control agents, and the
application of herbicides are all methods used to manage and
control water hyacinth. These techniques seek to counteract water
hyacinth’s harmful effects and bring afflicted ecosystems back into
equilibrium.

The water hyacinth has drawn interest due to its quick growth
and potential to produce biofuels. Since it contains a lot of cellulose
and hemicellulose, it can be used to generate biofuels, mainly
hydrogen (H2) (Tran and Phan, 2022). Since hydrogen has no

emissions when used as fuel, it is considered a sustainable and
environmentally beneficial energy source. There are other ways to
create hydrogen, including converting biomass like water hyacinth.
Scientists and researchers have been looking at ways to turn water
hyacinth into hydrogen gas through procedures including anaerobic
digestion, fermentation, gasification, and more. These methods seek
to convert the plant’s biomass into useful energy sources, including
hydrogen gas (Wazeri et al., 2018).

The generation of biohydrogen has the potential to be a
flexible and sustainable energy source with a wide range of
uses (Morya et al., 2022). Hydrogen gas can be used as a clean
fuel for heating systems, electric vehicles, and power plants. It can
also be used in industrial operations like oil refining and
ammonia manufacture. Furthermore, bio-hydrogen has the
potential to serve as a reserve energy source, aiding in grid
stabilization at times of peak demand or low renewable energy
production. Hydrogen is produced via the intriguing biological
process known as dark fermentation. Its low operating energy
usage, which makes it a more environmentally responsible choice
than other technologies, is one of its key advantages. Dark
fermentation is also more adaptable in terms of operating
settings because it is not light-dependent, unlike some
different types of fermentation. Dark fermentation can
produce H2 sustainably and can make use of a variety of
biomass sources, giving it another critical advantage (Dahiya
et al., 2021).

TABLE 1 Data set points (License Number-5778250508058).

Buffer concentration, mM Dilution factor Applied voltage, V Hydrogen yield, mL/g-VS Energy recovery, %

1 75 6 0.7 252.2 164.8

2 50 6 1 547.9 102.1

3 50 4 0.7 478.4 153.9

4 25 2 0.7 329.6 147

5 50 4 0.7 478.4 157

6 75 4 0.4 46.6 143.7

7 50 2 1 576.3 108.6

8 50 4 0.7 464.2 157

9 25 4 1 562.9 101.4

10 50 4 0.7 468.9 153.9

11 50 2 0.4 314.5 137.1

12 75 4 1 534.7 152.3

13 50 4 0.7 464.2 157

14 25 6 0.7 403.9 126.5

15 25 4 0.4 219.6 116.1

16 50 4 0.7 478.4 157

17 50 6 0.4 134 105

18 50 4 0.7 473.7 155.4

19 50 4 0.7 468.9 152.3

20 75 2 0.7 554.9 161.7
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The two-stage method, DF-MEC, which combines dark
fermentation with a microbial electrolysis cell (MEC), is headed
in the right direction. With this method, it is possible to increase the
generation of hydrogen and recover energy from biomass resources,
such as water hyacinth. The fast-growing and plentiful water
hyacinth plant has the potential to be used as a helpful feedstock
in this process (Cheng et al., 2022). Anaerobic bacteria are involved
in the biological process known as “dark fermentation,” which
converts organic material into simpler chemicals like hydrogen
gas. The total amount of hydrogen produced can be boosted by
combining this procedure with a microbial electrolysis cell (MEC),
which uses an electric potential to accelerate the hydrogen evolution
reaction. This two-step process has several advantages. It permits
energy recovery from biomass resources and efficient hydrogen
synthesis. Dark fermentation and MEC can be combined to
produce more hydrogen and recover energy in the form of
electric current by using the by-products of the dark
fermentation process in the MEC (Jadhav et al., 2022).

The performance of MECs fed with DFE from a variety of
biomasses, such as wheat powder (Tuna et al., 2009) and palm oil
mill (Krishnan et al., 2019), has been successfully improved in
numerous investigations to date. Several effective auxiliary
procedures, for example, centrifugation (Zhou et al., 2017),
buffering (Wang et al., 2011), and high applied voltage, have
been used in these investigations between DF and MEC. In
particular, the WH-derived DFE, the interaction evaluation, and
optimization for these auxiliary processes in DFE-fed MECs are
covered in (Phan et al., 2023).

An effective model of hydrogen and energy recovery in MEC by
artificial neural network and ANFIS has been developed by
Hosseinzadeh et al. (2020). The main findings demonstrated that
ANFIS models showed better prediction strengths than ANN
models. In the same direction, Fathy et al. (2023) built an ANFIS
model of MEC on terms of incubation temperature, initial potential
of hydrogen (pH), and COD concentration. The results confirmed
that the bio-hydrogen production is increased by around 6.7%
compared to RSM. Hong et al. (2021) used fuzzy logic control

(FLC) to regulate the MEC. The results demonstrated that the FLC
resulted in a desirable hydrogen output viaMEC over the PI and PID
controller in terms of shorter settling time and lesser overshoot.

In the current research work, the performance of MEC-DE was
improved using artificial intelligence and recent artificial gorilla
troops optimization. At first, using measured data, ANFIS model is
created to simulate the MEC-DE in terms of buffer concentration,
dilution factor, and applied voltage. ANFIS is innovative hybrid
model combines neural networks’ flexibility with fuzzy logic’s
interpretability. It can simulate intricate and nonlinear
connections between several input variables and one output
variable (banza et al., 2023). ANFIS could be used to model
different aspects of a microbial electrolysis cell’s (MEC)
operation, including the relationship between the MEC’s
performance (such hydrogen production) and its input
parameters (such as pH, and electrode design). Typically begin
by gathering experimental data to train and validate the model
before using ANFIS to simulate MECs. Input-output pairs that
include the numerous parameters to consider and the
performance metric you are interested in make up this data.
Using an approach like the hybrid learning algorithm, which
combines gradient descent and least-squares estimation, ANFIS
model can be trained (Shoorehdeli et al., 2009). During the
training, the ANFIS model’s parameters are adjusted to reduce
the difference between the model’s predictions and the actual
output values. Using new input data, the ANFIS model can be
utilized to simulate various scenarios or generate predictions
after training.

Then, for first time, an artificial gorilla troops optimization
(AGTO) has been applied to estimate the best values of three
controlling input parameters to boost simultaneously hydrogen
yield and energy recovery of MEC-DE. Because of the AGTO
optimizer’s speedy convergence time, it may quickly locate ideal
or almost ideal solutions (Abdollahzadeh et al., 2021). When solving
complex optimization tasks, this efficiency is beneficial. Numerous
problem types, including continuous, discrete, and mixed-variable
optimization, can be accommodated by it. The AGTO achieves a

FIGURE 1
FIS architecture.
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balance between searching for prospective solutions in the search
space and taking advantage of promising optimization
opportunities. This equilibrium improves the algorithm’s ability
to explore while preventing premature convergence. The AGTO
optimizer uses a simple optimization procedure. Researchers and
practitioners can use it because it is simple to apply and does not
need intricate parameter adjusting. To confirm the robustness of
AGTO, the optimized results are compared with particle swarm
optimization (PSO), grey wolf optimization (GWO), cuckoo search
(CS), slime mould algorithm (SMA) and equilibrium
optimization (EO).

The main contributions of the paper can be summarized
as follows.

✓ Devolving new ANFIS model to simulate the MEC-DE in
terms of buffer concentration, dilution factor, and
applied voltage.

✓ For first time, applying red-tailed hawk optimizer to determine
the optimal values of buffer concentration, dilution factor, and
applied voltage.

✓ Boosting simultaneously hydrogen yield and energy recovery
of MEC-DE.

FIGURE 2
Main steps of GTO.
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✓ Demonstration the superiority of the integration between
ANFIS modelling and AGTO.

2 Data

The measured data with permeation (License Number-
5778250508058) is shown in Table 1 (Phan et al., 2023). Two
single-chamber MEC reactors are considered (Phan et al., 2023).
In brief, 400-mL cylinder-shaped glass bottles with 0.3 L of working
volume has been used for the MEC reactors. Table. 1 the dataset
presents the relationship between the output parameters (hydrogen
yield and energy recovery) and three input parameters (buffer
concentration, dilution factor and applied voltage) of the MEC-
DE. The total number of experiments is twenty. 70% of the data has
been used for training the ANFIS model of the MEC-DE and 30% is
used for the testing purpose. The minimum and maximum limits of
buffer concentration (25–75 mM), dilution factor (2-6 folds), and
applied voltage (0.4–1.0 V) were examined to boost the MEC’s
performance.

3 Method

The target of the paper is determining the optimal values of three
controlling input parameters to increase simultaneously bio-
hydrogen production and energy recovery of MEC. Therefore,
the suggested method contains two phases: modelling and

parameter identification. Based on the data presented in Table 1,
ANFIS model is created to simulate the MEC. Then in the second
phase, artificial gorilla troops optimization is applied to identify the
optimal values of buffer concentration, dilution factor, and
applied voltage.

3.1 ANFIS

ANFIS is a hybrid computational system that combines artificial
neural networks (ANNs) with fuzzy logic systems. It is especially
adept at managing complicated, nonlinear problems. ANFIS can
learn from data and reflect human knowledge through linguistic
fuzzy rules. ANFIS typically comprises several layers: input,
fuzzification, fuzzy inference, normalization, and defuzzification.
ANFIS uses various learning techniques, like backpropagation and
gradient descent, to update its parameters according to training data
(Nikmanesh et al., 2023):

An assemblage of fuzzy IF-THEN rules within the rule base. The
number of rules can be determined by multiplying the number of
inputs. The rules can be represented by the following:

oIf α is X1 and β is Y1, then γ is Z1
oIf α is X2 and β is Y2, then γ is Z2
oIf α is Xn and β is Yn, then γ is Zn

Where α and β are inputs, γ is an output, X, Y, and Z
are fuzzy sets.

Based on the FIS characteristics, the ANFIS architecture can be
illustrated in Figure 1 (Yetilmezsoy et al., 2015).

- Layer 1 (fuzzification layer): The following Gaussian
membership function (as presented in Equation 1) is used
to determine the membership function connected to each
input variable:

μXi
α( ) � e−

α−ci
ai

( )2

(1)

where ai and ci are variables linked with the Gaussian
membership function.

TABLE 2 Statistical metrics of ANFIS model of MEC-DF.

RMSE R-square

Train Test All RSM Train Test All RSM

ANFIS model of hydrogen yield

3.3 8.813 5.5618 67.5 0.999 0.991 0.999 0.94

ANFIS model of energy recovery

0.35 5.13 2.83 0.999 0.986 0.986

FIGURE 3
Arrangement of ANFIS model of MEC-FD (A) Hydrogen yield and (B) energy recovery.
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- Layer 2 (product layer): in this layer, the degrees of
memberships are used to calculate the ith rule’s firing
strength (ωi) as presented in Equation 2:

ωi � μXi
α( ) × μYi

β( ) (2)

- Layer 3 (normalization layer): In this layer, the weight-to-total-
weight ratio is determined as presented in Equation 3:

ωi � ωi∑ωi
(3)

- Layer 4 (defuzzification layer): the adaptive nodes are
calculated in this layer as presented in Equation 4:

ωifi � ωiγ � ωi piα + qiβ + ri( ) (4)
where pi, qi, and ri denote the adjustable consequent parameters.

FIGURE 4
Inputs’ MFs of ANFIS model of MEC-FD (A) Hydrogen yield and (B) energy recovery.
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- Layer five (output layer): the final output is
calculated by the summation of all incoming inputs
from layer 4.

In the forward route, the Mean Squares Error (MSE) method
improves subsequent parameters by reducing estimate error as
presented in Equation 5:

FIGURE 5
ANFIS surface of MEC-FD model (A) Hydrogen yield and (B) energy recovery.

Frontiers in Energy Research frontiersin.org07

Rezk and Sayed 10.3389/fenrg.2024.1419785

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1419785


FIGURE 6
Predicted versus experimental data of ANFIS model of MEC-FD (A) Hydrogen yield and (B) energy recovery.

FIGURE 7
Predection accuarcy of ANFIS model of MEC-FD (A) Hydrogen yield and (B) energy recovery.

TABLE 3 Achieved best parameters using considered approaches.

Method Buffer
concentration,

mM

Dilution
factor

Applied
voltage, V

Hydrogen
yield,

mL/g-VS

Energy
recovery, %

Total
performance

%
Change

Exp. (Wang et al.,
2011)

75 6 1 576.3 164.8 741.1 25.78

RSM (Wang et al.,
2011)

71.2 2 1 648.5 128.1 776.6 22.23

ANN-PSO
(Wang et al.,

2011)

75 2 1 704.5 113.4 817.9 18.09

ANFIS and
AGTO

41.25 3.9 1.0 843.32 155.24 998.57 0.0
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Pi t + 1( ) � Pi t( ) − η
∂ MSE( )

∂Pi
(5)

where Pi is the parameters vector (pi, qi, and ri), t is the iteration
number, and η is the learning rate factor presented as presented in
Equation 6:

η � Tmax

RMS Pi
∂ MSE( )

∂Pi
( ) (6)

where Tmax is the total training iterations, and the RMS denotes the
root mean square.

3.2 Artificial gorilla troops optimizer

GTO is a metaheuristic algorithm, which draws inspiration from
the social intelligence exhibited by gorilla troops in their natural
habitat. The GTO algorithm simulates optimization operations
(exploitation and exploration) using five distinct operators in
accordance with gorilla behavior (Abdollahzadeh et al., 2021).

During the exploration phase, this algorithm employs
three operators:

• Behavior 01: migration to an unidentified location
• Behavior 02: movement toward other gorillas
• Behavior 03: migration to a known site

These phases can be modeled as presented in Equation 7:

GX t + 1( ) � Up + Low( ) × r1 + Low rand < p Behavior 01

r2 + C( ) × Xr t( ) + L × H rand≥ 0.5 Behavior 02
X i( ) − L × L + r3( ) X t( ) − GXr t( )( )( ) rand < 0.5 Behavior 03

(7)
where X is known positions if the gorilla, GX is candidate
positions of the gorilla, Up and Low are the search space
upper and lower limits, Xr and GXr are random positions
from the gorilla positions (X) and the candidate positions
(GX), r1,2,3 are random gains [0,1], p is constant [0,1], and C,
L, and H can be calculated as presented in Equations 8–10:

C � cos 2r4( ) + 1( ) × 1 − t

tmax
( ) (8)

L � C × L (9)
H � z × H t( ) (10)

FIGURE 8
Particles convergence during optimization; (A) best objective function, (B) buffer concentration, (C) dilution factor and (D) applied voltage.
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where r4 is a random [0,1], l is a random [-1,1], and z is a
random [-C, C].

During the exploitation phase, this algorithm employs
two operators:

• Behavior 04: follow the silverback.
• Behavior 05: competition for adult females.

This phase can be modelled as presented in Equation 11:

GX t + 1( ) � L × M × X t( ) −Xbest( ) +X t( ) C≥W Behavior 04
Xbest − Q × A × Xbest −X t( )( ) C < W Behavior 05

(11)
where the used gains are calculated as presented in Equations

12, 13:

M � 1
n
∑n

i�1GXi t( )
∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
2L( )

2L( )−1
(12)

Q � 2r5 − 1 (13)

A � b × N1 rand≥ 0.5
b × N2, rand< 0.5

{
where Xbest is the best position vector (silverback gorilla position), r4
is a random [0,1], b is a constant,N1 andN2 are random values in the
normal distribution with the problem’s dimensions. The steps of
GTO is explained in Figure 2.

After constructing the ANFIS model, it integrated with AGTO
optimizer to determine the optimal values of three input controlling
parameters corresponding to maximum hydrogen yield and energy
recovery of the MEC-DF. During the optimzation process, the three
input controlling parameters are used as decision variables and the
summation of hydrogen yield and energy recovery is assigned as the

objective function that needed to be maximum. The problem
argument of cost function can be stated as:

x � arg
x∈R

max y( ) (14)

where x is the set of the three input parameters and y is the total
performance of the MEC-DF (hydrogen yield plus energy recovery).

4 Results and discussion

As demonstrated in Table 1, the twenty collected data points
were used to build the ANFISmodel. The model is trained using 70%
of the entire data, then tested using the remaining 30%. The hybrid
training approach uses backpropagation for the backward path and
LSE for the forward path. For the models of hydrogen yield and
energy recovery, there are 10 and 12 fuzzy rules, respectively. These
models were developed until they had a lower RMSE. The ANFIS
model of MEC-DF statistical metrics is displayed in Table 2.

The training and testing sets of data for the ANFIS model of
hydrogen yield’s RMSE values are 3.3 and 8.813, respectively,
according to Table 1. The R-square values for training and
testing are 0.999 and 0.991, respectively. Compared to RSM
(Phan et al., 2023), the RMSE is decreased by 91.7% and at the
same time the R-square for prediction rises by about 5.32%. For the
ANFIS model of energy recovery, the RMSE values for the training
and testing sets of data are 0.35 and 5.13, respectively. The R-square
values for training and testing are 0.999 and 0.986, respectively. In
comparison to RSM (Phan et al., 2023), the RMSE decreased by 91%
and the R-square for prediction rises by about 3.8%. This higher
prediction accuracy can be attributed to the ANFIS model’s ability to
analyze higher-order non-linear systems than RSM, which predicts

TABLE 4 Details of 30 runs using different optimizers.

No. PSO GWO AGTO CS SMA EO No. PSO GWO AGTO CS SMA EO

1 998.58 904.88 998.58 998.57 904.94 904.94 16 998.58 904.94 998.58 904.94 998.58 998.58

2 998.58 998.39 998.58 998.57 904.94 904.94 17 777.24 904.93 998.58 998.34 998.58 904.94

3 998.58 998.54 998.58 998.58 904.94 998.52 18 998.58 998.53 998.58 904.94 904.94 998.58

4 777.24 998.54 998.58 904.92 998.58 904.94 19 777.24 998.56 998.58 997.92 904.94 998.58

5 904.94 998.54 998.58 904.9 998.58 998.58 20 904.94 998.55 998.58 904.94 904.94 904.94

6 998.58 998.57 998.58 998.53 904.94 998.58 21 904.94 998.57 998.58 904.86 904.94 904.94

7 904.94 998.57 998.58 904.8 904.94 998.58 22 998.58 998.52 998.58 998.54 998.58 998.58

8 904.94 998.56 998.58 904.92 904.94 998.56 23 904.94 998.56 998.58 904.79 904.94 904.94

9 904.94 904.93 998.58 904.94 998.58 904.94 24 904.94 904.93 998.58 997.91 904.94 904.94

10 777.24 998.54 998.58 904.89 998.58 904.94 25 998.58 998.57 998.58 998.11 998.58 904.94

11 904.94 998.47 998.58 904.93 998.58 904.94 26 998.58 904.93 998.58 998.28 904.94 998.58

12 998.58 998.54 998.58 904.91 998.58 998.58 27 904.94 998.53 998.58 996.85 904.94 904.94

13 998.58 998.56 998.58 998.58 998.58 998.58 28 998.58 998.51 998.58 998.56 998.58 998.58

14 998.58 904.91 904.94 998.57 904.94 998.58 29 777.24 998.5 998.58 998.56 998.58 904.94

15 777.24 998.53 998.58 998.46 998.58 998.57 30 904.94 998.57 998.58 998.18 904.94 904.94
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using a second-order polynomial (Nwosu et al., 2021). The
modelling phase was successful, as evidenced by the ANFIS
model’s low RMSE and strong R-square values. In Figure 3, the
MEC-DF’s three-input single-output ANFIS model is depicted. On
the other hand, Figure 4 depicts the generalised shape MFs.

Figures 5A, B indicate the surface of ANFIS models of hydrogen
yield and energy recovery respectively considering the system’s
input-output function with every two inputs at a time. The peaks
values of the hydrogen yield and energy recovery go to the dark red,
but the smallest values go to the dark blue. It was clear from the

FIGURE 9
Details of 30 runs, (A) SMA, (B) AGTO, (C) PSO, and (D) GWO, (E) EO and (F) CS.
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figure higher the buffer concentration, the better MEC’s
performance. Higher voltage (0.7–1.0 V) increased hydrogen
yield, while a lower voltage (0.5–0.7 V) benefited energy
recovery. Dilution factors less than 4-folds is suitable for MEC’s
high performance.

By accurately capturing the appropriate link between the MEC-
DF’s inputs and outputs, the proposed ANFIS model is encouraged
to predict the hydrogen yield and energy recovery of the MEC-DF.
This may be seen by comparing the ANFIS model’s predicted
outputs to the experimental data displayed in Figure 6 and vice
versa. It is evident that the measured and estimated values closely
match each other. The plots of the predictions around the line of
100% accuracy for both the training and testing stages are also
shown in Figure 7.

After constructing the ANFIS model, it integrated with AGTO
optimizer to determine the optimal values of buffer concentration,
dilution factor and applied voltage corresponding to maximum
hydrogen yield and energy recovery of the MEC-DF. Table 3
displays the optimum input values, associated hydrogen yield,
and energy recovery of the MEC-DF when using the measured
RSM, ANN-PSO, and ANFIS- AGTO. Compared to measured data,
RSM, and ANN-PSO, the MEC-DE’s overall performance has
improved by 25.78%, 22.23%, and 18.09%, respectively. The
convergence of the particles during the optimization process is
shown in Figure 8. As seen in Figure 8A, the most significant
cost function, 998.57, is perfectly attained. For the MEC-DF to
produce the most hydrogen and recover the most energy, the ideal
parameters for buffer concentration, dilution factor, and applied
voltage are 41.25 mM, 3.9, and 1.0 V, respectively.

The optimized results are contrasted with PSO, GWO, CS, SMA,
and EO to verify the robustness of AGTO. Each optimizer is run
30 times to avoid unpredictable results while a detailed statistical
analysis is carried out. Table 4 and Figure 9 show the specifics of
30 runs using various optimizers. The best value, worst value,
average value, standard deviation, and success rate (SR) are
among the statistical indicators that are estimated and shown in
Table 5. The values of the mean cost function ranged from 995.45 to
919.98. AGTO received the highest average value of 995.45, followed
by GWO, with a score of 976.69, and PSO, with a value of 919.98.
The values of the standard deviation fell between 16.81 and 82.67.
AGTO and GWO provide the smallest standard deviation of 16.81,
whereas PSO and GWO produce the maximum standard deviation
of 82.67. Values for the success rate varied from 96.67 to 43.33.
AGTO achieved the greatest SR of 96.67, followed by GWO with
76.67, and PSO with the lowest average value of 43.33.

Other tests also carried out, ANOVA and Tukey. Table 6
summarizes the results of the ANOVA analysis, conclusively
validating the distinctions among the algorithms. Meanwhile,
Figure 10 provides a visual representation of the rankings that

TABLE 5 Statistical evaluation for considered optimizers.

PSO GWO AGTO CS SMA EO

Best 998.58 998.57 998.58 998.58 998.58 998.58

Worst 777.24 904.88 904.94 904.79 904.94 904.94

Mean 919.98 976.69 995.45 957.83 948.64 951.75

STD 82.67 39.59 16.81 46.29 46.72 46.82

SR 43.33 76.67 96.67 56.67 46.67 50

TABLE 6 ANOVA results.

Source df SS MS F Prob

Columns 5 99718.2 19943.6 7.61 1.72e-06

Error 174 45038.9 2620.9

Total 179 555151.1

FIGURE 10
ANOVA ranking.
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confirm the superior stability and accuracy exhibited by the
AGTO algorithm.

Figure 11 depicts the Tukey test results, confirming the
conclusions from the ANOVA study. GWO delivered the
second-best performance, then the CS. While the PSO provided
the worst performance.

5 Conclusion

Defining the optimal values of buffer concentration, dilution
factor, and applied voltage is the challenge of the work. The main
goal of the research work is to use artificial intelligence and modern
optimization to improve the performance of microbial electrolysis
cells fed. First, using the ANFIS, a model to simulate the hydrogen
yield and energy recovery in terms of three input controlling
parameters is developed. For the ANFIS model of hydrogen yield,
compared with RSM, the RMSE reduced from 67.5 to 5.562 with
ANFIS, a decrease of 91.7%. The prediction R-square increases by
approximately 5.32% from 0.94 (using RSM) to 0.99 (using ANFIS).
For the ANFIS model of energy recovery the RMSE dropped from
31.7 to 2.83, a 91% reduction. The prediction R-square increases by
almost 3.8% from 0.95 (using RSM) to 0.986 (using ANFIS). To
determine the ideal parameters of buffer content, dilution factor, and
applied voltage corresponding to the highest hydrogen yield and
energy recovery of MEC, the developed ANFIS model is then
integrated with AGTO. Compared to measured data, RSM, and
ANN-PSO, the MEC’s overall performance has improved by
34.74%, 29.9%, and 24.38%, respectively. To confirm the reliability
of AGTO, the optimized findings from AGTO are compared with
those from PSO, GWO, CS, SMA, and EO. The mean cost function
had values ranging from 995.45 to 919.98. AGTO scored the highest
overall, with an average of 995.45, followed by GWO (976.69) and
PSO (919.98). The standard deviation values ranged from 16.81 to
82.67. The smallest standard deviation is produced by AGTO and
GWO (16.81), and the largest standard deviation is made by PSO and

GWO (82.67). The success rate ranged in value from 96.67 to 43.33.
AGTO had the highest SR (96.67), GWO came in second (76.67), and
PSO had the lowest average value (43.33). In sum, the optimized
results demonstrated the superiority of integration between
ANFIS and AGTO.
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