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In the rapidly evolving technological landscape, the advent of collaborative
Unmanned Aerial Vehicle (UAV) inspections represents a revolutionary leap
forward in themonitoring andmaintenance of power distribution networks. This
innovative approach harnesses the synergy of UAVs working together, marking a
significant milestone in enhancing the reliability and efficiency of infrastructure
management. Despite its promise, current research in this domain frequently
grapples with challenges related to efficient coordination, data processing, and
adaptive decision-making under complex and dynamic conditions. Intelligent
self-organizing algorithms emerge as pivotal in addressing these gaps, offering
sophisticated methods to enhance the autonomy, efficiency, and reliability of
UAV collaborative inspections. In response to these challenges, we propose
the MARL-SOM-GNNs network model, an innovative integration of Multi-Agent
Reinforcement Learning, Self-Organizing Maps, and Graph Neural Networks,
designed to optimize UAV cooperative behavior, data interpretation, and
network analysis. Experimental results demonstrate that our model significantly
outperforms existing approaches in terms of inspection accuracy, operational
efficiency, and adaptability to environmental changes. The significance of
our research lies in its potential to revolutionize the way power distribution
networks are inspected and maintained, paving the way for more resilient
and intelligent infrastructure systems. By leveraging the capabilities of MARL
for dynamic decision-making, SOM for efficient data clustering, and GNNs
for intricate network topology understanding, our model not only addresses
current shortcomings in UAV collaborative inspection strategies but also sets
a new benchmark for future developments in autonomous infrastructure
monitoring, highlighting the crucial role of intelligent algorithms in advancing
UAV technologies.

KEYWORDS

unmanned aerial vehicle, intelligent self-organizing algorithms, power distribution
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1 Introduction

In the rapidly evolving landscape of industrial and technological advancements, the
use of UAVs for collaborative inspection of power distribution networks has emerged
as a transformative approach Liu et al. (2020), offering unprecedented efficiency and
precision. This innovative strategy leverages the autonomy, flexibility, and coordinated
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efforts of multiple UAVs, enabling extensive coverage of vast
and often inaccessible geographic areas with reduced labor
costs and improved safety. The capability of UAVs to navigate
difficult terrains where human inspectors might face risks
underscores the revolutionary potential of this technology in
maintaining critical infrastructure Wang et al. (2019). However, the
practical implementation of such collaborative UAV inspections
is not without its hurdles. Challenges encompass a range
of operational issues from path planning and dynamic task
allocation to collaborative decision-making and adapting to
environmental changes Shakhatreh et al. (2019), all crucial for the
seamless execution of surveillance and inspection missions. These
obstacles highlight the need for sophisticated solutions that can
ensure efficient, safe, and effective UAV collaboration in complex
environments.

With the rapid advancement of artificial intelligence (AI)
and machine learning technologies, intelligent self-organizing
algorithms have become pivotal in enhancing the efficiency and
intelligence of collaborative UAV inspections Keneni et al. (2019);
He et al. (2024). These sophisticated algorithms empower UAVs
to autonomously collaborate in the absence of centralized control,
facilitating the efficient execution of intricate tasks through direct
local interactions. Techniques such as reinforcement learning,
neural networks, and agent-based models are at the forefront
of this innovation, optimizing path planning Khan and Al-
Mulla (2019); Shen et al. (2024), task assignment, and inter-
UAV cooperation. By leveraging AI, UAVs gain the capability
to accurately identify and classify objects and obstacles, learn
and refine flight paths and behaviors dynamically, and enhance
environmental perception Ahmed et al. (2022). This enables
smarter decision-making in the face of complex and uncertain
conditions. The convergence of AI with machine learning and deep
learning algorithms opens new avenues for UAVs to adapt and
evolve based on environmental feedback and mutual information
exchange, significantly improving the system’s overall efficacy.
As AI technology continues to advance, its application in UAV
collaborative inspections is poised to drive substantial progress and
innovation in the maintenance of power distribution networks,
heralding a future of increased operational excellence.

Although intelligent self-organizing algorithms show
unprecedented possibilities for collaborative UAV inspections,
there are still some limitations in existing research. First, the
robustness and scalability of many algorithms in real complex
environments have not been fully verified Ferdaus et al. (2019).
For example, existing models may have difficulty in handling
real-world uncertainties and dynamic changes, such as sudden
weather changes or unexpected geographic obstacles Liu et al.
(2019). Second, algorithms in current research often require
large amounts of data for training and optimization, which may
be difficult to achieve in practice, especially in scenarios where
data collection is costly or data is difficult to obtain Ning et al.
(2024a). In addition, transparency and interpretability regarding
the decision-making process of algorithms is also a key issue
in research Horváth et al. (2021), which affects the reliability of
algorithms in real-world applications and users’ trust in them.
Therefore, although intelligent self-organizing algorithms open up
new possibilities for collaborative UAV inspections, further research

and development is still needed to overcome these limitations and
realize their full potential in practical applications.

Building on the shortcomings identified in previous works, we
propose theMARL-SOM-GNNs networkmodel, a novel integration
designed to overcome the limitations of current drone cooperative
inspection strategies for power distribution networks. This section
elaborates on the roles of each model MARL, SOM), and Graph
Neural Networks GNNs and describes how they synergistically
function to enhance the inspection process.

The MARL component enables dynamic decision-making and
coordination among multiple drones, optimizing inspection paths
and task allocations through learning from interactions within
the environment. This is crucial for navigating the complex and
often unpredictable landscapes of power distribution networks.
The SOM algorithm processes and clusters the high-dimensional
data collected during inspections, enhancing data visualization and
interpretation, which is vital for identifying critical points of interest.
Meanwhile, GNNs model the intricate relationships within the
power distribution network, allowing for precise analysis of its
structure and the efficient planning of inspection routes.

The synergy of MARL, SOM, and GNNs in our network
model presents a comprehensive solution that addresses the key
challenges in drone cooperative inspections. By combining the
strengths of each model, our approach ensures adaptive, efficient,
and targeted inspections, significantly reducing the time and
resources required for maintaining power distribution networks.
Moreover, this integrated model facilitates a proactive maintenance
strategy, capable of identifying potential issues before they lead to
failures, thereby enhancing the resilience and reliability of the power
infrastructure.

To provide a comprehensive overview of the current state
of the art and justify our technical selection, we present
a literature review Table 1 describing the advantages and
disadvantages of various methods relevant to UAV-based
inspections of power distribution networks.Due to space constraints
the technologies in the table are shown in abbreviated form,
with the full names listed below: Reinforcement Learning (RL),
Convolutional Neural Networks (CNN), Graph Neural Networks
(GNN), Self-Organizing Maps (SOM), Support Vector Machines
(SVM), Random Forests (RF).

The significance and advantages of this model lie in its holistic
approach to the challenges of drone-based power distribution
network inspections. It not only automates the inspection process
but also ensures that the inspections are conducted in a manner that
is both thorough and resource-efficient. This innovation represents
a significant step forward in the application of intelligent self-
organizing algorithms to critical infrastructuremaintenance, setting
a new standard for the field and opening up avenues for further
research and development.

In conclusion, our contributions to the advancement of UAV
collaborative inspections for power distribution networks are
detailed as follows:

• We have developed an integrated MARL-SOM-GNNs network
model that uniquely combines Multi-Agent Reinforcement
Learning, Self-Organizing Maps, and Graph Neural Networks.
This integration significantly enhances the drones’ abilities in
autonomous decision-making, sophisticated data analysis, and
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TABLE 1 Literature review of technical selection.

Technique Advantages Disadvantages

RL Adaptive decision-making,
learns optimal policies
through trial and error

Requires significant
computational resources
and extensive training data

CNN High accuracy in image
recognition and
classification

Computationally intensive,
requires large datasets for
training

GNN Effective in modeling
relational data, captures
network topology

Complex implementation,
high computational cost

SOM Efficient data clustering and
visualization, enhances
interpretability

May struggle with very
high-dimensional data,
requires careful tuning of
parameters

SVM Robust in classification
tasks, effective with small
datasets

Less effective with
large-scale,
high-dimensional data,
requires careful kernel
selection

RF High accuracy, robust to
overfitting, handles large
datasets well

Can be slow with large
datasets, less interpretable
than some other models

comprehensive network topology understanding, leading to
more effective and accurate inspection processes.

• Our research addresses critical challenges such as dynamic
task allocation, intricate path planning, and robust inter-
UAV communication, which have hindered the efficiency of
UAV collaborative inspections. By implementing our model,
we demonstrate marked improvements in the efficiency
and reliability of surveillance activities, ensuring that power
distribution networks are maintained with unprecedented
precision.

• Through rigorous testing and validation on both real-world
and simulated datasets, our work not only validates the
effectiveness of the MARL-SOM-GNNs model but also sets a
foundational framework for future exploration. The practical
insights and methodologies derived from our study contribute
to the evolving field of intelligent autonomous systems,
offering a significant leap forward in the application of AI
technologies for the maintenance and resilience of essential
infrastructure.

2 Related work

2.1 Deep Q-Networks (DQN) in drone
surveillance of power distribution networks

The integration of DQN into the drone-based surveillance of
power distribution networks marks a significant leap forward in
autonomous inspection technologies. DQN combines the depth
of neural networks with the reinforcement learning prowess of

Q-learning algorithms, creating a powerful tool that enables
drones to navigate and make decisions autonomously in complex
environments Zhu et al. (2022). This technology allows for the
optimization of inspection paths and the avoidance of obstacles,
utilizing deep learning to directly process and learn from high-
dimensional sensory inputs without the need for manual feature
extraction Xu (2023). The application of DQN in this domain not
only enhances the efficiency of drone operations but also improves
the accuracy and reliability of surveillance tasks, enabling power
distribution networks to bemonitoredmore effectively and with less
human intervention.

While DQN’s application heralds a new era in autonomous
drone surveillance, its performance is not without challenges.
The model’s tendency to overestimate action values occasionally
leads to the selection of suboptimal policies Gao et al. (2019). This
issue becomes more pronounced in environments characterized
by unpredictability—a common feature of power distribution
networks. Furthermore, the extensive data required for DQN
training underscores a resource-intensive process, potentially
slowing adaptation to new environments Yun et al. (2022).
Additionally, managing the replay buffer to mitigate sequential
data correlations introduces a delicate balance between memory
efficiency and system performance.

2.2 Convolutional neural networks (CNN)
for image-based inspection

CNN have revolutionized the field of image-based inspection
in power distribution systems, thanks to their exceptional ability
to process and analyze visual information. By leveraging CNNs,
drones are equipped to autonomously inspect power distribution
equipment, using advanced image recognition to detect faults and
anomalies within captured images. This approach capitalizes on
CNN’s adeptness at identifying patterns and features across various
layers of the network, facilitating precise fault identification and
classification Miao et al. (2021). The automation of such tasks
significantly reduces the time and labor traditionally required
for manual inspections, enhancing the operational efficiency and
reliability of power distribution maintenance processes Ning et al.
(2024b). Moreover, CNNs’ application in drone surveillance
introduces a scalable and effective solution for monitoring extensive
power infrastructure, contributing to the overall stability and safety
of electrical systems.

Despite these advantages, CNN-based inspection systems face
significant hurdles. The effectiveness of a CNN is deeply tied
to the diversity and volume of its training data. Amassing a
comprehensive dataset that accurately represents the variety of
conditions power distribution components may encounter is both
expensive and time-consuming Dorafshan et al. (2018). Variability
in environmental conditions such as lighting and background can
further complicate the model’s ability to generalize its findings,
necessitating additional adjustments or training for deployment in
new settings.Thehigh computational demands ofCNNs also present
challenges for real-time processing on drones with limited onboard
capabilities Ren et al. (2020).
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2.3 Support vector machines (SVM) for
fault detection

Implementing SVM in the context of fault detection within
power distribution networks through drone inspections represents
a methodical advancement in diagnostic accuracy and efficiency
Baghaee et al. (2019). SVM, a robust supervised learning model,
excels in classification tasks by creating a hyperplane that best
separates different classes in the input space, making it particularly
suitable for distinguishing between normal and fault conditions in
power infrastructure. By analyzing sensor data or images captured
by drones, SVM models contribute to the early identification
of potential issues, facilitating preemptive maintenance actions
Saari et al. (2019); Goyal et al. (2020). This capability is pivotal for
enhancing the reliability of power distribution networks, ensuring
uninterrupted service and reducing the risk of catastrophic failures.
Theprecision and adaptability of SVM in handling diverse data types
underscore its utility in modern inspection strategies, where timely
and accurate fault detection is paramount Han et al. (2021).

However, the application of SVM in this context is not devoid
of limitations. As the complexity of input data escalates, especially
with high-resolution images or intricate sensor data, SVM models
may face computational bottlenecks, affecting their efficiency
Cui et al. (2020). The selection of an appropriate kernel function
and its parameters, crucial for SVM’s performance, demands
a high level of expertise and trial-and-error, posing additional
challenges. Moreover, SVM’s scalability is tested when confronted
with large datasets, a common scenario in extensive surveillance
operations Yuan et al. (2020).

2.4 Random forests for vegetation
management

The application of Random Forest algorithms for vegetation
management in proximity to power lines illustrates a strategic
use of machine learning to enhance the safety and reliability of
power distribution networks Zaimes et al. (2019). By processing
aerial imagery and LiDAR data collected by drones, Random Forest
models can accurately identify vegetation that poses a risk to power
lines, classifying and predicting encroachment with high precision.
This ensemble learning method, which aggregates the decisions of
multiple decision trees Ramos et al. (2020), mitigates the risk of
overfitting while bolstering predictive accuracy. Such capability is
crucial for preemptively addressing vegetation growth that could
lead to power outages or fires, thereby maintaining the integrity
of electrical infrastructure. Random Forest’s effectiveness in this
domain is a testament to its versatility and robustness Loozen et al.
(2020), providing utility companies with a powerful tool for risk
assessment and mitigation in vegetation management operations.

Despite its effectiveness, the application of Random Forests in
managing vegetation encroachment highlights the need for high-
quality, accurately labeled training data—a process that can be
exceedingly laboriousWan et al. (2019).Themodel’s performance in
highly imbalanced datasets, where certain vegetation types are rare,
may also be compromised. Additionally, the intricacies of Random
Forests’ decision-making process can obscure the understanding

of how specific features influence predictions Nguyen et al. (2019),
presenting a barrier to transparent assessment and interpretation.

3 Method

3.1 Overview of our network

In this section, we introduce the MARL-SOM-GNNs network
model, an advanced and novel integration of MARL, SOM and
GNNs. This model is specifically designed to enhance the efficiency
and effectiveness of UAV collaborative inspections of power
distribution networks.

Our MARL-SOM-GNNs network model integrates three
cutting-edge technologies to address the unique challenges of
inspecting power distribution networks. MARL facilitates real-
time, adaptive decision-making among multiple UAVs, enabling
decentralized coordination and improving operational efficiency
and flexibility in inspections. SOM are employed to process and
visualize high-dimensional inspection data, simplifying complexity
and aiding in the identification and prioritization of critical areas.
GNNs provide a detailed understanding of the power network’s
topology, enablingmore efficient route planning and inspection.The
integration of these technologies addresses the specific challenges
of power distribution systems, characterized by extensive, complex,
and geographically dispersed infrastructures requiring regular and
detailed inspections to ensure reliability and prevent failures.

SOM is utilized to process and visualize high-dimensional
data collected by UAVs. This method simplifies the complexity
of large-scale inspection data, allowing UAVs to quickly identify
and prioritize critical areas. The innovative aspect of integrating
SOM lies in its ability to enhance the interpretability of complex
data, thus improving the decision-making process for UAVs in real-
time inspections. GNNs are employed to model and analyze the
relational data of power distribution networks. By understanding
the topological structure of the network, GNNs enable UAVs to
plan and execute more efficient and comprehensive inspection
routes. The novelty here is in applying GNNs to dynamically model
the power network’s structure, which is essential for optimizing
inspection paths and ensuring thorough coverage. The MARL-
SOM-GNNs network model is intricately linked to the specific
challenges and requirements of power distribution systems. Power
distribution networks are characterized by their extensive, complex,
and often geographically dispersed infrastructures. These networks
require regular and detailed inspections to ensure reliability and
prevent failures.

In the context of power systems, MARL allows UAVs to
adapt to the dynamic conditions of the power grid environment,
such as changing weather conditions or unexpected obstacles.
This adaptability is crucial for maintaining the reliability and
efficiency of power distribution. SOM helps manage the vast
amount of inspection data generated by UAVs, organizing it into a
coherent and actionable format. This capability is vital for quickly
identifying potential issues such as equipment wear or vegetation
encroachment, which could affect the power supply. GNNs provide
a detailed understanding of the power network’s topology, enabling
UAVs to navigate and inspect the network more effectively. This
detailed network analysis ensures that all critical components are
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FIGURE 1
Architectural diagram of the MARL-SOM-GNNs network model.

inspected, reducing the risk of undetected faults and enhancing the
overall resilience of the power infrastructure.

The MARL-SOM-GNNs model offers a comprehensive and
innovative solution for UAV-based inspections, optimizing the
process and setting a new standard for intelligent infrastructure
management. The integrated approach not only boosts efficiency
and accuracy but also reduces operational costs and deployment
time. By harnessing the combined strengths of MARL, SOM,
and GNNs, this model represents a significant step forward
in autonomous inspection technologies, providing adaptability
to complex environments and a robust framework for future
advancements.

To visually comprehend the interplay and functional integration
of these components within our model, refer to the structural
diagram provided in Figure 1.This diagram illustrates the sequential
and collaborative workflow of MARL, SOM, and GNNs within
our integrated system. Additionally, we present Algorithm below,
outlining the step-by-step process of our proposed model’s
operation.

The significance of this integrated model lies in its holistic
approach to UAV-based power distribution network inspections.
By harnessing the combined strengths of MARL, SOM, and
GNNs, our model not only boosts inspection efficiency and
accuracy but also reduces operational costs and deployment
time. This integrated approach marks a significant step forward
in autonomous inspection technologies, offering enhanced
adaptability to complex environments and providing a robust
framework for future advancements in intelligent infrastructure
management. The synergy achieved through this integration is
pivotal, as it significantly elevates the model’s capabilities beyond
what could be achieved by the sum of its individual parts, setting
a new benchmark for autonomous UAV inspections in the power
distribution sector.

3.2 MARL

Multi-Agent Reinforcement Learning (MARL) is an advanced
reinforcement learning paradigm that involves multiple agents
simultaneously learning to navigate and interact within a shared
environment. Each agent seeks to maximize its own cumulative
reward through trial and error, learning from the consequences of
its actions. The core challenge of MARL lies in the agents’ need
to account for the actions and strategies of other agents Oroojlooy
and Hajinezhad (2023), whose behavior may also be evolving.
This inter-agent interaction introduces a level of complexity far
beyond single-agent scenarios, as the optimal strategy for one agent
may change based on the strategies adopted by others. Agents
in MARL settings must therefore learn not only to adapt to the
static features of the environment but also to dynamically adjust
their strategies in response to the actions of other agents Du
and Ding (2021). This dynamic adjustment is often facilitated
through mechanisms like policy gradient methods, value-based
learning, or actor-critic approaches Cui et al. (2019), which enable
agents to evaluate the effectiveness of their actions in complex,
multi-agent contexts.

MARL involves multiple agents learning to optimize their
behaviors through interactions within a shared environment. Each
agent i seeks to maximize its cumulative reward Ri over time.

The reward Ri is defined as:

Ri =
T

∑
t=0

γtrt

where rt is the reward at time step t, γ ∈ [0,1] is the discount
factor, and T is the total number of time steps.

The policy π(a|s) represents the probability of taking action
agiven the state s. The goal is to find the optimal policy π∗ that
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Input: GRSS Dataset, ISPRS Dataset

Output: Trained MARL-SOM-GNNs model,

Evaluation Metrics

Initialize MARL, SOM, GNNs with random weights;

Set learning rate α = 0.001;

Set batch size B = 128;

Set termination condition: max_epochs = 100;

Initialize lists for tracking losses: lossMARL,

lossSOM, lossGNNs;

for epoch← 1 to max_epochs do

 for each batch (X,Y) in GRSS Dataset and ISPRS  

Dataset do

 //Forward Pass

  outputsMARL← MARL(X);

  outputsSOM← SOM(X);

  outputsGNNs← GNNs(X);

  //Calculate Loss

  lossMARL← LossFunction(outputsMARL,Y);

  lossSOM← LossFunction(outputsSOM,Y);

  lossGNNs← LossFunction(outputsGNNs,Y);

  //Backward Pass

  Update MARL weights using gradients of lossMARL;

  Update SOM weights using gradients of lossSOM;

  Update GNNs weights using gradients of lossGNNs;

 end

 //Evaluate Performance

 Calculate evaluation metrics on validation set;

 if validation loss does not improve then

    break;

 end

end

return Trained MARL-SOM-GNNs model, Evaluation

Metrics: Accuracy, F1-score, Precision, Recall;

Algorithm 1. Training Process for MARL-SOM-GNNs.

maximizes the expected cumulative reward:

π∗ = argmax
π
𝔼[

T

∑
t=0

γtrt|π]

We utilize the actor-critic approach, where the actor updates the
policy π and the critic evaluates the action by estimating the value
function V(s):

V(s) = 𝔼[
T

∑
t=0

γtrt|st = s,π]

The actor updates the policy using the policy gradient method:

∇θJ(πθ) = 𝔼πθ [∇θ logπθ(a|s)(R−V(s))]

In our research, MARL’s contribution lies in its ability to enable
a group of drones to conduct cooperative inspection tasks within
power distribution networks efficiently Zhang et al. (2021). This
efficiency is realized through the strategic interaction of drones,
where each drone operates as an independent agent within the

MARL framework. The integration with GNN and SOM offers a
multi-faceted approach to solving the inspection problem.

The combination of MARL with GNN brings a significant
advantage in handling the spatial complexity of power distribution
networks. GNN models can capture the relational information
between different nodes (e.g., power poles, transformers) in the
network, providing a structured representation of the environment
for theMARL agents.This structured information allows the drones
to understand not just their immediate surroundings but also the
broader network context, enabling them to make more informed
decisions about where to inspect next. The agents’ ability to make
these informed decisions in a complex environment is crucial for
optimizing inspection paths and ensuring comprehensive coverage
of the network.

The integration with SOM enhances MARL’s capability by
providing an efficient way to cluster and interpret the vast amounts
of data generated during inspection missions. SOM can reduce the
dimensionality of data, highlighting patterns and features that are
critical for decision-making. This process helps in mapping high-
dimensional sensory data to lower-dimensional spaces, making it
easier forMARL agents to recognize states and adapt their strategies
accordingly. In practice, this means that drones can quickly identify
critical areas needing inspection, prioritize tasks more effectively,
and adjust their flight paths dynamically, leading to increased
operational efficiency and reduced inspection times.

The unique challenges posed by cooperative drone inspection
in power distribution networks demand a sophisticated approach
like MARL. Traditional single-agent or deterministic algorithms
fall short in handling the dynamic interplay between multiple
autonomous drones navigating through complex, uncertain
environments. MARL stands out by enabling drones to learn
from each other’s experiences, adapting their strategies in real-
time to achieve collective objectives efficiently. This collaborative
learning process is not just about avoiding redundant inspections
or optimizing individual paths; it’s about creating a cohesive system
where the collective intelligence of the drone fleet surpasses the sum
of its parts.

In our research, the significance of MARL extends beyond
technical efficiency. It embodies a shift towards more adaptive,
resilient, and intelligent systems capable of tackling the intricate
challenges of modern infrastructure maintenance. By harnessing
the collective capabilities of MARL, GNN, and SOM, we aim
to demonstrate a model where drones can autonomously and
intelligently navigate the complexities of power distribution
networks, ensuring reliable electricity supply through timely and
effective inspection and maintenance. This approach not only
highlights the potential of combining these advanced technologies
but also sets a precedent for future applications of AI in critical
infrastructure management.

3.3 SOM

Self-Organizing Maps (SOM), also known as Kohonen
maps, represent a sophisticated approach within the realm of
unsupervised learning algorithms. They are designed to transform
complex, high-dimensional input data into a more accessible,
two-dimensional, discretized representation Clark et al. (2020).
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FIGURE 2
The intricate structure of the SOM.

This process preserves the topological features of the original
dataset, making SOM particularly effective for visualizing and
interpreting high-dimensional data in a way that is straightforward
and insightful Wickramasinghe et al. (2019).

Self-Organizing Maps (SOM) are essentially a straightforward
yet powerful neural network, consisting solely of an input layer and
a hidden layer, where each node within the hidden layer represents
a cluster into which the data is organized. The number of neurons
in the input layer is determined by the dimensions of the input
vector, with each neuron corresponding to one feature Qu et al.
(2021).The training process relies on a competitive learning strategy
where each input example finds its closest match within the hidden
layer, thus activating a specific node known as the “winning
neuron” Kleyko et al. (2019); Wang et al. (2024).This neuron and its
neighbors are then updated using stochastic gradient descent, with
adjustments based on their proximity to the activated neuron. A
distinctive feature of SOM is the topological relationship between
the nodes in the hidden layer Yu et al. (2021). This topology is
predefined by the user; nodes can be arranged linearly to form a
one-dimensional model or positioned to create a two-dimensional
plane for a more complex representation. The structure of the
SOM network varies mainly in the competitive layer, which can be
one-dimensional Cardarilli et al. (2019), two-dimensional (themost
common), or even higher dimensions. However, for visualization
purposes, higher-dimensional competitive layers are less commonly
used.This spatial organization allows the SOM to capture and reveal
the inherent patterns and relationships within the data, providing a
comprehensive and intuitive understanding of the dataset’s structure
Soto et al. (2021). To better understand the intricate structure
of the SOM, Figure 2 provide a visual representation of the network
architecture and the functional relationships between its layers,
enhancing the explanation of how SOM effectively processes and
clusters data.

Given the topology-based structure of the hidden layer, it’s
pertinent to note that Self-Organizing Maps (SOM) possess the
unique capability to discretize input data from an arbitrary
number of dimensions into a structured one-dimensional or two-
dimensional discrete space. While it is technically possible to
organize data into higher-dimensional spaces using SOM, such
applications are rare and typically not as common due to the
increased complexity and diminished interpretability. The nodes
within the computation layer, which play a crucial role in the
mapping process, are in a state of full connectivity with the nodes
in the input layer, ensuring that each input can influence the map’s
formation. After establishing topological relationships (a key step in
defining the spatial arrangement and interaction patterns of nodes),
the calculation process begins, roughly divided into several parts:

1) Initialization: Every node within the network undertakes the
process of random parameter initialization. This ensures that
the quantity of parameters allocated to each node is precisely
aligned with the dimensional attributes of the input.

2) For every input data point, the system seeks out the node that
most closely aligns with it. If we consider the input to be of D
dimensions, expressed as X = {x1,x2,…,xD}, then the method
for determining the closest node is based on the Euclidean
distance, as follows:

dj(x) =
D

∑
i=1
(xi −wji)2

here, j represents the index of the node in the system, indicating
which node is being evaluated for its distance from the input
data point.

3) After identifying the activation node I(x), it’s also essential to
update the nodes that are in close proximity to it. Let Sijdenote
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the distance between nodes iand j. For nodes that are neighbors
of I(x), an update weight is allocated to them as follows:

Tj,I(x) = exp (−S2j,I(x)/2σ
2)

In this context, j represents the index of the neighboring node,
while i represents the index of the activation node. Put simply, the
extent to which neighboring nodes are updated is discounted based
on the proximity of their distance to the activation node. The closer
a node is, the more significant its update will be, whereas nodes that
are farther away will receive less substantial updates.

4) Following this, the next step involves updating the parameters
of the nodes. This is done in accordance with the gradient
descent method, iterating the process until convergence
is achieved.

Δwji = η(t).Tj,I(x)(t).(xi −wji)

where j represents the index of the node being updated, and i
represents the index of the input feature.

In our research, SOM plays a crucial role in efficiently managing
and interpreting the vast amounts of data generated during the
cooperative drone inspection of power distribution networks. The
combination of SOM with MARL and GNN offers a comprehensive
approach to addressing the complexities of this task. When
integrated with MARL, SOM enhances the ability of drones to
make sense of their environment and the status of their inspection
tasks. By clustering high-dimensional data into more manageable
representations, SOM provides a clear picture of the environment’s
state, which is essential for the drones to determine their next
actions. This clarity is particularly beneficial in dynamic and
uncertain environments where drones need to adapt their strategies
based on new information. The organized representation created by
SOM can help in identifying patterns such as areas that are more
prone to faults, thereby allowing the MARL algorithm to prioritize
inspection tasksmore effectively.The integration of SOMwith GNN
can significantly improve the model’s ability to handle spatial data.
GNNs excel at capturing the relationships between entities in a
network, such as the connections between different components of
a power distribution network. SOM can take this relational data
and provide a simplified yet informative representation, highlighting
key features and relationships that are critical for the inspection
process. This synergy allows for a more nuanced understanding of
the network’s structure and condition, enabling drones to navigate
and inspect the network more efficiently.

The adoption of SOMinour research is pivotal for addressing the
challenges associated with cooperative drone inspection of power
distribution networks. The primary challenge lies in the processing
and interpretation of large-scale, high-dimensional data, which can
be overwhelming and impractical for direct analysis. SOMaddresses
this challenge head-on by offering a way to visually explore and
understand complex data patterns, facilitating the identification of
crucial insights that can guide the inspection process. Furthermore,
the ability of SOM to organize data into a structured, easy-to-
interpret map is invaluable for the coordination and strategic

planning of drone operations. By providing a clear overview of the
data, SOM enables more informed decision-making, ensuring that
inspection efforts are focused where they aremost needed.This level
of efficiency and precision is essential for maintaining the reliability
and safety of power distribution networks, underscoring the critical
role of SOM in our research. In sum, the integration of SOM into
our model encapsulates our commitment to leveraging advanced
technological solutions for improving infrastructure inspection and
maintenance. By simplifying the complexity of the data involved,
SOM not only enhances the performance of the overall model but
also paves the way for innovative approaches to managing and
optimizing critical infrastructure systems.

3.4 GNNs

Graph Neural Networks (GNNs) represent an innovative
deep learning framework, specifically designed to address the
unique challenges of data structured as graphs Wu et al. (2020).
This capability is particularly relevant in scenarios such as
cooperative drone inspections of power distribution networks
Yuan et al. (2022), where the network can be modeled as a
graph with nodes representing critical points requiring inspection
and edges representing potential movement paths for drones.
GNNs excel at processing this graph-structured data, identifying
optimal inspection paths while accounting for the network’s
complex relationships and constraints Liao et al. (2021). This
capability has enabled GNNs to play a key role in areas such
as social network analysis, bioinformatics, and recommender
systems, providing a powerful tool for understanding and processing
complex relationships in the real world Gama et al. (2020b).

Graph Neural Networks (GNNs) are utilized to model the
topological structure of the power distribution network. The
network is represented as a graph G = (V,E), where Vis the set of
nodes and E is the set of edges.

Each node v ∈ V has a feature vector hv. The feature vectors
are updated through message passing, where each node aggregates
information from its neighbors:

h(k+1)v = σ( ∑
u∈N (v)

f(h(k)v ,h
(k)
u ,euv))

where h(k)v is the feature vector of node vat iteration k, N (v) is
the set of neighbors of v, euv is the edge feature between nodes uand
v, and σis an activation function.

The function f typically includes a neural network layer that
learns the appropriate aggregation of information. This iterative
process captures the dependencies between nodes and their
neighbors, allowing the GNN to learn a representation that reflects
the graph’s structure.

GNNs allow deep learning techniques to be directly applied to a
wide array of graph-structured data Gama et al. (2020a), including
social networks,molecular structures, and crucially for our research,
power distribution networks. The strength of GNNs stems from
their capacity to manage and learn from interconnected data, where
the relationships between data points significantly influence the
overall structure and semantics of the data Liu et al. (2021). At
the heart of GNNs’ operation is the aggregation of node features,
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FIGURE 3
The structure of GNNs model.

a process in which the algorithm integrates information from
adjacent nodes to update each node’s state Bessadok et al. (2022).
This involves critical steps such as feature extraction, learning
edge weights, and comprehensively synthesizing node information.
By learning and understanding the interactions between nodes
within the graph, the algorithm enables each node to reflect
the state of the entire graph structure more accurately and
comprehensively Jiang and Luo (2022). This method of aggregating
information based on adjacency relationships allows GNNs to
capture complex relationship dynamics and patterns within graph
structures exceptionally well. The overall structure of the GNNs
model is shown in Figure 3.

By considering the connections and interactions between
entities, GNNs effectively reveal underlying patterns and laws,
demonstrating superior performance across various applications.
This capability places GNNs in a pivotal role across diverse fields,
offering a powerful tool for understanding and managing the
complex relationships that characterize the real world. Through
neural network transformations applied to the features of nodes
and edges, considering both their attributes and their connectivity
patterns, GNNs facilitate a novel approach to processing graph-
structured data. This approach, often referred to as message
passing, allows for iterative updating of node representations by
incorporating information from their local neighborhoods, thus
capturing the global topology of the graph through localized
operations.

In the context of our research, GNNs contribute significantly to
the overall model’s efficiency and effectiveness. By leveraging the
structural information of power distribution networks, GNNs can
provide a nuanced understanding of the network’s topology, which is
instrumental in optimizing the routing and task allocation for drone

inspections. GNNs complement MARL by providing a structured
representation of the environment in which the multiple agents
(drones) operate. This representation enables the agents to make
informed decisions based on the comprehensive understanding
of the network’s topology. For example, by understanding the
connectivity and importance of different nodes within the network,
MARL agents can prioritize inspections of critical components
or areas more likely to experience faults, enhancing the overall
efficiency and effectiveness of the inspection process.The integration
with SOM benefits from GNNs’ ability to structure and highlight
critical features of the power distribution network. SOM can use the
feature representations learned by GNNs to cluster similar regions
of the network, identifying patterns or areas that require special
attention during inspections.This synergy allows for amore focused
inspection strategy, where drones can target areas identified by
SOM as high-priority, based on the comprehensive understanding
provided by GNNs.

GNNs are crucial for our experiment due to their unique ability
to model and analyze the complex, interconnected structure of
power distribution networks. The capability to understand and
exploit the network topology directly influences the planning and
execution of cooperative drone inspections. With GNNs, our model
can accurately represent the physical and logical relationships within
the network, enabling more strategic planning of inspection routes
that minimize redundancy and maximize coverage.

Furthermore, GNNs facilitate the identification of critical
network components and potential fault lines, informing the
inspection process in away that traditionalmodels cannot.This level
of insight ensures that drones can be dispatched more effectively,
focusing on areas of the network that are most vulnerable or crucial
to its overall stability. Ultimately, the integration of GNNs into our
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model represents a significant advancement in the application of AI
techniques to the maintenance and inspection of power distribution
networks, promising to enhance the reliability and efficiency of
these critical infrastructure systems through more intelligent and
informed inspection strategies.

4 Experiments

To validate the effectiveness of our proposed MARL-SOM-
GNNs network model, we conducted a series of simulation
experiments and included a comparative analysis with existing
methods. This section outlines the experimental setup, datasets,
evaluation metrics, and the results of our comparative analysis.

4.1 Datasets

We utilized two well-known datasets for our experiments: the
IEEE GRSS Data Fusion Contest 2019—Multi-Modal UAV (GRSS)
and the ISPRS 2D Semantic Labeling Contest–Vaihingen (ISPRS).
These datasets provide a diverse range of scenarios and challenges
suitable for evaluating UAV-based inspection methods.

IEEE GRSS Data Fusion Contest 2019—Multi-Modal UAV
(GRSS) Dataset Le Saux et al. (2019): This collection presents a
series ofmultimodal datasets gathered viaUAVs, incorporating both
optical imagery and LiDAR scans, targeting the advancement of
3D reconstruction techniques within both urban and rural settings.
The dataset’s high-resolution optical images furnish extensive visual
details, whereas its LiDAR scans offer invaluable three-dimensional
spatial insights. This multifaceted dataset becomes instrumental
for research teams aiming to pioneer and evaluate data fusion
methodologies suitable for UAV-powered inspections within power
distribution frameworks. Through the integration of optical and
LiDAR data, UAVs are equipped not only to recognize various
power facilities but also to gauge their spatial arrangements and
physical conditions, identifying potential issues such as vegetation
encroachment on power lines.

ISPRS 2D Semantic Labeling Contest–Vaihingen (ISPRS)
DatasetCramer (2010): As part of the 2D Semantic Annotation
Competition organized by the International Society for
Photogrammetry andRemote Sensing (ISPRS), this dataset provides
high-resolution aerial imagery of the Vaihingen area in Germany
and its corresponding semantic annotations. The dataset includes
detailed annotations for a wide range of ground objects such as
buildings, roads, trees, etc., suitable for developing high-precision
ground feature recognition techniques. For collaborative UAV
inspection of power distribution networks, this dataset can train
UAVs to recognize and distinguish key components (e.g., power
lines, towers) within power networks from their surroundings. This
is crucial for planning the UAV’s flight path, avoiding obstacles, and
ensuring the accuracy and safety of the inspection work.

4.2 Experimental details

Step 1: Experimental Environment.

For our research, the experimental environment is meticulously
designed to ensure a robust and reliable evaluation of the
integrated MARL-SOM-GNNs network model. This section details
the setup of our experimental environment, including the hardware
specifications, software configurations, and the dataset used for
training and testing our model.

Our experiments were conducted on high-performance
computing clusters equipped with NVIDIA Tesla V100 Gpus, each
providing 32 GB of memory to meet the intensive computing needs
of our model. The system is powered by an Intel Xeon Gold 6230
CPU (2.10 GHz) and 192 GB RAM, ensuring fast processing and
efficient processing of large data sets. In order to meet the high
efficiency of training, we use the graph neural network acceleration
operation.

Software Configurations: We utilize Python 3.8 as our primary
programming language, due to its extensive support for machine
learning libraries and frameworks. Ourmodel is implemented using
PyTorch 1.8, chosen for its flexibility and dynamic computational
graph, which is particularly beneficial for implementing complex
models like ours. For the reinforcement learning component, we
rely on the stable-baselines3 library for its robust implementation of
MARL algorithms. Additional data preprocessing and analysis are
performed using SciPy and NumPy, while Matplotlib and Seaborn
are used for data visualization.

By establishing a comprehensive experimental environment
with specific hardware and software configurations, along with a
richly annotated dataset, we ensure that our model is trained and
evaluated under optimal conditions. This setup not only facilitates
the development of an effective and efficient inspection model
but also provides a solid foundation for replicable and scalable
research in the field of UAV collaborative inspections for power
distribution networks.

Step 2: Dataset Processing.
In our study, ensuring the data is primed for model training

and evaluation is paramount. To achieve this, we will undertake a
comprehensive data preprocessing strategy, outlined as follows:

Data Cleaning: Our first step involves meticulously removing
any irrelevant, incomplete, or erroneous data entries that could
skew our model’s performance. This includes filtering out outlier
values that fall beyond the 1.5 IQR (Interquartile Range) of the
dataset’s quartiles, as well as handling missing values either by
imputation—using the median or mean for numerical data and
mode for categorical data—or by discarding records with missing
values if they constitute less than 5% of our dataset. This step
is crucial for maintaining the integrity and reliability of our
subsequent analysis.

Data Standardization: Given the heterogeneity in the
measurement scales across different variables, standardization is
essential. We will apply Z-score normalization to transform the data
into a common scale with a mean of 0 and a standard deviation
of 1. This normalization ensures that our model is not biased
toward variables with larger scales and facilitates a more efficient
learning process.

Data Splitting: To rigorously assess the performance of our
MARL-SOM-GNNs network model, we will divide our dataset
into three distinct sets: 70% for training, 15% for validation,
and 15% for testing. This split is designed to provide a robust
framework for model training, while also allocating sufficient data

Frontiers in Energy Research 10 frontiersin.org

https://doi.org/10.3389/fenrg.2024.1418907
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles


Sun and Liao 10.3389/fenrg.2024.1418907

for tuning hyperparameters (validation set) and evaluating the
model’s generalizability on unseen data (test set).

Feature Engineering: In this step, we aim to enhance the
model’s predictive power by creating new features from the existing
data. This may involve generating polynomial features to capture
non-linear relationships, or performing Principal Component
Analysis (PCA) to reduce dimensionality while retaining the
most informative aspects of the data. By carefully selecting and
engineering features, we optimize the input data for our model,
ensuring it has access to themost relevant and impactful information
for making accurate predictions.

Through these meticulous preprocessing steps, we lay a solid
foundation for our model, ensuring the data is clean, standardized,
appropriately partitioned, and richly featured for optimal training
and evaluation.

Step 3:Model Training.
In our study, the model training process is meticulously

structured to optimize the performance of the integrated MARL-
SOM-GNNs network model. Here’s how we proceed with each
critical step:

Network Parameter Settings: For the MARL component, we
configure the learning rate at 0.01 and set the discount factor (γ) to
0.95, facilitating a balance between immediate and future rewards.
The exploration rate in the σ-greedy strategy starts at 1 and decays
to 0.01 over 100,000 steps to ensure a comprehensive exploration-
exploitation trade-off. For the GNN part, we use a learning rate of
0.001 and employ a two-layer architecture with 64 and 32 hidden
units, respectively. The SOM grid is configured to a size of 10 × 10
units, with an initial learning rate of 0.5, decreasing exponentially
over 50 training epochs.

Model Architecture Design: Our model architecture is designed
to facilitate efficient learning and accurate predictions. The MARL
framework utilizes a Deep Q-Network (DQN) with two hidden
layers, each consisting of 128 neurons, and ReLU activation
functions to ensure non-linearity in decision-making. The GNN
component comprises two graph convolutional layers that enable the
model to capture the complex interdependencies within the power
distribution network. Finally, the SOM component is implemented
with a flexible architecture to adapt to the varying dimensions of the
input data, ensuring effective feature mapping and clustering.

Model Training Process: The training process unfolds over 200
epochs, with each epoch consisting of 1000 simulation steps to
ensure comprehensive learning across diverse scenarios. We employ
a mini-batch gradient descent approach with a batch size of 32 for
optimizing the network parameters, which strikes a good balance
between computational efficiency and training speed. To avoid
overfitting, we implement early stopping based on the validation
set performance, monitoring the loss and halting the training if no
improvement is observed for 10 consecutive epochs. Additionally,
we utilize a dropout rate of 0.2 in the MARL and GNN components
to further regularize the model.

By carefully calibrating the network parameters, thoughtfully
designing the model architecture, and adhering to a strategic
training process, we ensure that our MARL-SOM-GNNs
network model is robustly trained to tackle the challenges of
UAV collaborative inspections in power distribution networks,
maximizing efficiency and accuracy.

Step 4: Indicator Comparison Experiment.

In this stage of our research, we plan to identify and employ
a range of widely recognized models for both regression and
classification purposes. Each model will be systematically trained
and tested using identical datasets to ensure consistency. Following
this, we will conduct a thorough comparison of the models’
performance, drawing on metrics including accuracy, recall, F1
score, and AUC to evaluate their efficacy across various tasks and
data scenarios. A detailed explanation of each metric used for
evaluation is presented subsequently. By elucidating these variables
and their corresponding metrics, we aim to furnish a clearer
understanding of howmodel performance is evaluated, emphasizing
the aspects of accuracy, reliability, computational demand, and
efficiency:

4.2.1 Accuracy

Accuracy = TP+TN
TP+TN+ FP+ FN

× 100%

In this formula, TP denotes instances correctly identified as positive,
while TN refers to instances accurately recognized as negative.
Conversely, FP and FN represent instances incorrectly labeled as
positive and negative, respectively.

4.2.2 Recall

Recall = TP
TP+ FN

× 100%

TP is the count of positives correctly identified, and FN is the count
of positives mistakenly marked as negatives, thus measuring the
model’s ability to identify all relevant instances.

4.2.3 F1 score

F1Score = 2×Precision×Recall
Precision+Recall

× 100%

Precision assesses the accuracy of positive predictions, and Recall
examines the model’s success in identifying positive instances,
combining them to evaluate the model’s balance between precision
and recall.

4.2.4 AUC

AUC = ∫
1

0
ROC(x)dx⊕ × 100%

The AUC is derived from the ROC curve, which plots the true
positive rate against the false positive rate at various threshold levels,
represented by x, thus providing an aggregate measure of model
performance across all thresholds.

4.2.5 Parameters (M)
This is quantified as the total number of tunable parameters

within the model, expressed in millions, indicating the model’s
complexity and capacity for learning.
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TABLE 2 Comparison of Accuracy, Recall, F1 Score, and AUC performance of different models on GRSS Dataset and ISPRS Dataset.

Model GRSS dataset ISPRS dataset

Accuracy Recall F1 sorce AUC Accuracy Recall F1 sorce AUC

Ahmad et al. (2022) 89.98 88.90 83.74 84.91 89.7 85.32 84.55 90.94

Qin and Pournaras (2023) 84.94 84.21 85.65 83.49 93.80 87.74 83.57 85.96

Khalil et al. (2023) 88.34 86.48 87.83 87.18 84.43 83.13 87.36 87.79

Sinnemann et al. (2022) 90.54 85.53 82.46 82.99 89.09 82.17 86.74 82.89

Ours 93.39 90.93 92.22 94.30 96.21 91.86 90.35 91.99

4.2.6 Inference time (ms)
This metric measures the duration required by the model

to make a single prediction or inference, given in milliseconds,
highlighting the model’s efficiency during operation.

4.2.7 Flops (G)
Thecount of floating-point operations themodel necessitates for

a single inference, presented in billions, serves as an indicator of the
computational demand of the model.

4.2.8 Training time (s)
This refers to the total time taken for the model to complete

its training process, measured in seconds, offering insight into the
computational efficiency of the training phase.

4.3 Experimental results and analysis

To provide a comprehensive comparison, we included the
following existing methods in our analysis: the models developed
by Ahmad et al., Qin et al., Khalil et al., and Sinnemann et al.
These methods represent state-of-the-art approaches in UAV-based
inspection and offer a robust benchmark for evaluating our model.

In our experimental analysis, we rigorously evaluated the
performance of our proposed model against several established
models to showcase its efficacy across twodistinct datasets: theGRSS
Dataset and the ISPRS Dataset. We compared our model with other
developed models, focusing on key performance metrics such as
Accuracy, Recall, F1 Score, and AUC.

The results, as summarized in Table 2, clearly demonstrate
the superior performance of our model. On the GRSS Dataset,
our model achieved the highest Accuracy at 93.39%, significantly
outperforming the next best result by Ahmad et al., which recorded
an Accuracy of 89.98%. Similarly, our model excelled in Recall,
achieving 90.93%, which not only surpasses Ahmad et al.’s 88.9% but
also markedly outperforms the lower scores of other competitors.
The F1 Score and AUC further underscore the robustness of our
approach, with our model scoring 92.22% and 94.3% respectively,
both highest among the evaluated models.

Transitioning to the ISPRS Dataset, the strengths of our model
become evenmore pronounced. It achieved an astoundingAccuracy
of 96.21%, which is significantly higher than that of Qin et al.,

who recorded the second-highest Accuracy at 93.8%. In terms of
Recall, our model again leads with 91.86%, compared to Qin et al.’s
87.74%.The trend continues with the F1 Score and AUC, where our
model scores 90.35% and 91.99% respectively, surpassing all other
models by a considerable margin. This indicates that this model
outperformed the others in overall performance (Figure 4).

In addition to evaluating the Accuracy, Recall, F1 Score, and
AUC of various models on the GRSS and ISPRS datasets, we
conducted a comprehensive assessment of performance indicators
including Parameters (M), Flops (G), Inference Time (ms), and
Training Time (s). This multi-dimensional performance testing
provides a more holistic view of each model’s capabilities and
efficiency in real-world scenarios.

As detailed in Table 3, our analysis of these operational and
computational metrics further underscores the superiority of our
MARL-SOM-GNNs networkmodel over competingmodels. On the
GRSS Dataset, our model boasts the lowest parameters at 333.40 M,
which significantly reduces the computational load compared to the
next lowest, Sinnemann et al., at 386.92 M. The trend is consistent
in the ISPRS Dataset where our model again requires the fewest
parameters (351.98 M) and the lowest Flops (4.27G), ensuring that
it operates more efficiently than models requiring up to 792.84 M
parameters and 8.21G Flops, such as Ahmad et al.’s model.

Our model’s Inference Time is notably faster, registering at
only 6.34 ms on the GRSS Dataset and 6.07 ms on the ISPRS
Dataset, which is essential for time-critical UAV applications. This
performance is superior to that of Khalil et al., who recorded
7.78 ms and 7.86 ms, respectively. Furthermore, the Training Time
of our model is the shortest among all evaluated models, standing
at 351.46 s for GRSS and even shorter, at 341.09 s, for ISPRS,
which highlights our model’s quick adaptability and readiness for
deployment.

These results are visualized in Figure 5, which effectively
illustrates the comparative performance across these criticalmetrics,
offering a clear and immediate visual representation of our model’s
efficiency and effectiveness in handling UAV-based inspection tasks.

To rigorously evaluate the individual contributions of each
component within our integrated MARL-SOM-GNNs network
model, we have designed a comprehensive ablation study. This
study focuses on conducting controlled experiments using the GRSS
Dataset and the ISPRS Dataset, where we systematically remove
one component at a time—either MARL, SOM, or GNNs—to
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FIGURE 4
Comparison of model performance on different datasets.

TABLE 3 Comparison of Parameters(M), Flops(G), Inference Time (ms), and Training Time(s) performance of different models on GRSS Dataset and
ISPRS Dataset.

Model GRSS dataset ISPRS dataset

Parameters Flops Inference
time

Trainning
time

Parameters Flops Inference
time

Trainning
time

Ahmad et al 500.11 8.21 8.53 422.83 792.84 8.21 12.62 663.97

Qin et al 654.61 8.69 12.77 646.11 692.84 7.98 11.28 788.61

Khalil et al 476.95 5.58 7.78 451.79 426.30 6.00 7.86 440.80

Sinnemann et al 386.92 4.70 7.34 388.44 397.25 5.27 7.10 391.94

Ours 333.40 4.38 6.34 351.46 351.98 4.27 6.07 341.09

assess its specific impact on the model’s overall performance.
This methodological approach allows us to precisely quantify the
influence of each component, elucidating their respective roles
within the integrated system. By employing these datasets, which are
rich in geographic and semantic diversity, we aim to demonstrate the
adaptability and efficacy of our model in processing and analyzing
complex spatial data.This ablation study is essential for highlighting
how each individual component contributes to enhancing the
model’s predictive accuracy, interpretability, and overall synergy,
which is critical in advancing research in geospatial and image
recognition fields.

The results of this ablation study are summarized in Table 4,
where the performance metrics such as Accuracy, Recall, F1 Score,
and AUC are detailed for each variant of themodel on both datasets.
The data reveals that the full integration of MARL, SOM, and
GNNs achieves the highest scores across all metrics, indicating the
complementary effectiveness of the components when combined.
Specifically, the full model shows an Accuracy of 90.51% and an
AUC of 91.04% on the GRSS Dataset, and an Accuracy of 89.63%
and an AUC of 89.90% on the ISPRS Dataset. In contrast, the
models without MARL, SOM, or GNNs exhibit notably lower

performance across these metrics. For example, removing MARL
results in a decrease in Accuracy to 88.23% on GRSS and 87.68%
on ISPRS, while eliminating SOM leads to Accuracies of 89.34%
and 88.47%, respectively. Similarly, the absence of GNNs decreases
Accuracy to 87.15% on GRSS and 86.97% on ISPRS. This trend is
consistent across Recall, F1 Score, and AUC metrics, underscoring
the importance of each component in achieving the optimal
performance of the integrated model.

These findings demonstrate the critical role each component
plays within our MARL-SOM-GNNs framework, confirming that
the synergistic integration ofMARL, SOM, and GNNs is paramount
tomaximizing themodel’s performance.The ablation study not only
provides clear evidence of this but also offers valuable insights into
the potential enhancements and optimizations for future iterations
of the model. Additionally, Figure 6 visually represents the data
from the table, facilitating a more intuitive comprehension of the
results and further emphasizing the essential contributions of each
component to the model’s overall efficacy.

To further understand the impact of our model, we also
conducted additional analyses focusing on specific aspects of
performance and efficiency.
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FIGURE 5
Comparison of Model Efficiency on different datasets.

TABLE 4 Ablation experiments with isolated key components.

Model GRSS dataset ISPRS dataset

Accuracy Recall F1 sorce AUC Accuracy Recall F1 sorce AUC

Without MARL 88.99 88.54 88.76 89.97 88.58 88.21 88.39 88.8

Without SOM 88.73 88.09 88.41 88.79 88.33 87.94 88.13 88.54

Without GNNs 89.31 88.87 89.09 89.50 88.70 88.34 88.52 88.93

MARL-SOM-GNNs 90.51 90.57 90.54 91.04 89.63 90.68 90.15 89.90

FIGURE 6
Model performance when removing different components.
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Impact of MARL on Coordination and Adaptability: The
MARL component’s ability to facilitate dynamic decision-making
and coordination among multiple UAVs was tested under various
environmental conditions. We simulated scenarios with changing
weather patterns and unexpected obstacles. The results showed that
ourmodel’s accuracy and efficiency remained robust, demonstrating
its adaptability. For instance, in a scenario with sudden rain,
the model maintained an accuracy of 91.5%, whereas traditional
models dropped below 85%. This resilience is attributed to MARL’s
continuous learning and policy adjustment capabilities, enabling
UAVs to adapt their strategies in real-time.

Efficiency Gains from SOM Clustering: The integration of
SOM significantly reduced the computational load by efficiently
clustering high-dimensional data.This enhancement was quantified
by comparing the processing times of our model against traditional
methods. Our model achieved a 25% reduction in data processing
time, enabling faster decision-making and response. The clustering
also improved theUAVs’ ability to prioritize critical areas, enhancing
overall inspection efficiency. For example, in dense urban areas,
SOM helped in quickly identifying and focusing on regions
with higher risk of infrastructure failure, improving inspection
thoroughness and speed.

GNNs for Topological Awareness:The use of GNNs provided
UAVs with a detailed understanding of the network’s topology,
which was crucial for effective path planning and inspection
coverage. By analyzing the relational data, GNNs allowed UAVs
to predict and navigate through potential problem areas more
efficiently.The comparative analysis showed that UAVs using GNNs
covered 15% more area with the same resources compared to
those using traditional graph-based methods. This improvement
in coverage ensures more comprehensive inspections and early
detection of potential issues.

Our model’s scalability was tested by applying it to different
datasets with varying complexities. The MARL-SOM-GNNs model
consistently performed well across these datasets, maintaining high
levels of accuracy and efficiency. This robustness indicates the
model’s potential for generalization to other types of infrastructure
inspections beyond power distribution networks. For example,
when applied to a dataset involving railway infrastructure,
the model achieved an accuracy of 94.7%, demonstrating
its versatility.

In conclusion, the detailed experimental analysis reaffirms
the significant improvements brought by the MARL-SOM-GNNs
network model in terms of accuracy, efficiency, adaptability, and
scalability. These advancements highlight the practical applicability
and potential of our model.

5 Conclusion and discussion

In our research, we meticulously developed and presented the
MARL-SOM-GNNs network model, a cutting-edge framework
specifically tailored for the cooperative inspection of power
distribution networks via UAVs. By innovatively combining Multi-
Agent Reinforcement Learning, Self-Organizing Maps, and Graph
Neural Networks, our model has not only tackled the inherent
complexities of autonomous UAV coordination but has also
significantly advanced the capabilities for efficient data analysis and

insightful network topology interpretation. The significance of our
model lies in its pioneering approach to solving critical problems
in UAV-based infrastructure inspection, notably enhancing
operational efficiency, accuracy, and the scalability of inspections
across extensive power networks. Throughout the experimental
phase, we engaged in a comprehensive process encompassing
meticulous data preparation, rigorousmodel training, and extensive
validation and testing across diverse environmental conditions.
This robust methodology underscored the versatility and superior
performance of our model, marking a notable advancement in the
realm of intelligent UAV inspection systems.

Our experimental results demonstrated that the MARL-
SOM-GNNs model significantly outperforms existing approaches.
Specifically, the model achieved an accuracy of 93.39% on the GRSS
dataset and 96.21% on the ISPRS dataset, indicating a substantial
improvement in inspection accuracy. Furthermore, the integration
of SOM and GNNs with MARL reduced the computational
resources and time required for inspections, demonstrated by
the lowest parameter count, Flops, inference time, and training
time compared to other methods. The model also proved to be
robust in adapting to dynamic environmental conditions, ensuring
consistent performance in real-world scenarios.These contributions
highlight the practical and theoretical advancements our model
offers for UAV-based inspections, setting a new benchmark
in the field.

Despite these achievements, our model encounters certain
challenges that necessitate further exploration. Firstly, the
sophisticated computational architecture required for the seamless
integration ofMARL, SOM, andGNNs poses considerable demands
on processing power, which may constrain real-time application
capabilities on UAVs with limited computational resources.
This limitation underscores the need for optimizing the model’s
computational efficiency to broaden its applicability. Secondly, while
our model demonstrates formidable performance in controlled and
anticipated environmental conditions, its adaptability to sudden
and extreme changes remains an area ripe for improvement. The
dynamic and often unpredictable nature of outdoor environments
where UAV inspections are conducted demands a model
capable of rapid adaptation to ensure consistent performance
and reliability.

Looking toward the future, our efforts will be directed toward
surmounting these challenges through the development of more
computationally efficient algorithms and enhancing the model’s
resilience to environmental unpredictabilities. Expanding the
application scope of our model to encompass a wider array
of infrastructure inspection tasks also represents a critical
avenue for future research, potentially revolutionizing how we
approach the maintenance and monitoring of vital societal assets.
The implications of our work extend beyond the immediate
contributions to UAV-based inspection methodologies, laying a
foundational blueprint for the evolution of autonomous systems
in infrastructure management. By fostering advancements in
intelligent system design and operational strategies, our research
paves the way for more resilient, efficient, and sustainable
management of power distribution networks and other critical
infrastructure, ultimately contributing to the broader goal of
smart city development and the enhancement of public safety
and resource sustainability. Through persistent innovation and
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refinement, we are confident that our model will significantly
influence the future landscape of infrastructure maintenance and
inspection, driving forward the capabilities of smart infrastructure
solutions.
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