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The randomness and fluctuation of large-scale distributed photovoltaic (PV)
power will affect the stable operation of the distribution network. The energy
storage system (ESS) can effectively suppress the power output fluctuation of the
PV system and reduce the PV curtailment rate through charging/discharging
states. In order to improve the operation capability of the distribution network
and PV consumption rate, an optimal multi-objective strategy is proposed based
on PV power prediction. First, the back propagation (BP) neural network with an
improved genetic algorithm (GA) is used to predict PV power output.
Furthermore, an adaptive variability function is added to the GA to improve
the prediction accuracy. Then, the distribution network model containing
distributed PV and the ESS is constructed. The optimal object contains
network power loss, voltage deviation, and PV consumption. The model is
solved based on the improved multi-objective particle swarm optimization
(MOPSO) algorithm of Pareto optimality. The probabilistic amplitude is
adopted to encode the particles for avoiding local optimal. Finally, the
proposed optimal strategy is verified by the IEEE 33-bus distribution network.
The results show that the proposed strategy has an obvious effect on reducing
the network power loss and voltage deviation, as well as improving the PV
consumption rate.
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1 Introduction

In recent years, global resources and environmental issues have become increasingly
severe. With the increase in photovoltaic (PV) capacity, distributed renewable energy has
become a hot topic due to its advantages of environmental protection, low carbon, and low
investment (Jafari et al., 2022). However, the phenomenon of PV curtailment is inevitable
(Singh et al., 2021) due to source–load imbalance. The energy storage system (ESS) is an
effective solution to deal with PV power fluctuation. Therefore, installation of the ESS
cooperative with PV has become a valid method to solve the issue of PV curtailment. The
energy management strategies of ESS for participation in optimized operation of
distribution networks are studied in Murty and Kumar (2020). The capacity allocation
of the ESS in the distribution network was discussed, and a two-stage optimal allocation
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model was provided in Jiang et al. (2021). Li et al. (2021) proposed a
centralized scheduling model for the ESS participating in the
distribution network penetrated with renewable energy. The
objective function was minimized by optimizing costs related to
active power loss and voltage deviation penalty, and the second-
order cone programming method was used to simplify the problem.
However, the aforementioned works focus on optimization of the
ESS in the distribution network, while they did not consider the
collaborative operation between PV and ESS.

Large-scale integration of PV into the distribution network will
bring uncertainty and randomness. PV power prediction has been
proposed to alleviate the impact of uncertainty on the power grid, as
well as improve the collaborative operation capability of PV and ESS
(Yang and Huang, 2018). The back propagation (BP) neural
network has been widely used in the field of power forecasting
research due to its advantages such as nonlinear mapping ability,
self-learning and adaptability ability, and generalization ability (Liu
and Huang, 2022). Considering the similarity between weather
conditions and PV power generation, a new genetic
algorithm–BP (GA–BP) neural network prediction model based
on artificial classification was proposed (Meng et al., 2018). The
existing BP neural network prediction model has a large prediction
error due to the lack of a variety of numerical optimization
algorithms. GA–BP and particle swarm optimization BP
(PSO–BP) are used to construct the PV output prediction model
and prove that its combination with the algorithm can effectively
reduce the prediction error (Li et al., 2022). In Huang et al. (2022),
through the quantitative analysis of PV output fluctuation and PV
operating status, the PV output prediction model of the digital twin
system based on the GA–BP NN algorithm was further improved in
accuracy and running time compared with traditional prediction
methods. Liu et al. (2023) innovatively combined the multi-layer
GA–BP neural network with the AdaBoost algorithm to form the
AdaBoost–GA–BP strong predictor and applied it to short-term PV
prediction, proving that it had good generalization ability. In Zjavka
(2020), for the problem that the numerical weather prediction
system only provided rough local prediction of cloud cover each
time, the differential polynomial neural network algorithm D-PNN
was transformed by operational calculus, but the prediction model
was limited to the clear sky index. A convolutional autoencoder
prediction model was proposed to avoid the error of digital image
processing technology in Fu et al. (2021). To handle the
disadvantage of traditional PV power modeling methods, an
ultrashort-term PV power prediction framework was proposed
combining fluctuation pattern recognition in Wang et al. (2022).
The aforementioned works only focused on the accuracy of PV
prediction while ignoring the PV consumption strategy.

Based on the above analysis, it is necessary to add ESS devices to
the PV system to reduce fluctuations and improve consumption rates.
In Giglio et al. (2023), the proposed PV and ESS optimized energy
management system can not only maximize the use of renewable
energy but also reduce user-perceived energy prices. Shin et al. (2020)
proposed a scheduling method for energy management of electric
vehicle charging stations using PV and ESS, which canmake full use of
PV and ESS to effectively process the dynamic charging data of large-
scale electric vehicles during operation. Kim et al. (2020) proposed a
shared ESS operation strategy to arbitrage to maximize regional
profits and reduce PV curtailment. The control algorithm of

hybrid energy storage for smoothing PV power fluctuations was
studied in Ma et al. (2019), and an optimization model for power
scheduling of the ESS was established to improve the economy and
extend energy storage life. Hu and Man (2022), aiming to solve the
problem of unstable and unreasonable power consumption in
complex industrial processes, proposed a two-stage optimal
scheduling model, which can not only use PV to reduce carbon
emissions but also use the ESS to deal with the instability of PV power
generation. Ma et al. (2022) proposed a stochastic robust day-ahead
scheduling method, in which air conditioning was used as a
controllable load to replace part of the ESS to stabilize the
fluctuation of renewable energy output, promote new energy
consumption, and improve economy. Although the
aforementioned works have established a complete distribution
network model of PV and the ESS, the optimization algorithms
have problems such as low efficiency or local convergence.

A large number of improved algorithms have been studied to
solve multi-objective optimization problems (Arif et al., 2020; Chen
et al., 2020; Majeed et al., 2023; Qiao et al., 2023; Wu et al., 2023) for
the collaborative optimization model of PV and the ESS. Quantum
PSO was used to analyze the reactive power optimization of
distribution networks in Amiri (2023). The various power and
energy losses during the operation of PV and ESS were
considered in Wang et al. (2016). Then, a near-optimal energy
storage control algorithm containing reinforcement learning
mechanisms was proposed to reduce electricity costs effectively.
A collaborative scheduling model for distributed PV and ESS was
proposed in Li et al. (2023). The model was solved by using the PSO
algorithm to achieve minimized node voltage deviation and limit
generator peak power. A solar wind hybrid with double energy
storage model was established in Guo et al. (2023), and a multi-
objective planning strategy was proposed to solve the objective
function through multi-objective PSO (MOPSO). In Baghaee
et al. (2016), the annualized cost, expected load loss, and
expected energy loss of the system were taken as three objectives,
and a MOPSO algorithm with an external archiving mechanism was
used to solve the problem. Simulation analysis was conducted in
different scenarios to verify the superiority of the proposed
algorithm. This algorithm was used in Ghorbani et al. (2017) to
optimize wind solar electric hybrid systems to achieve cost reduction
and reliability improvement.

In summary, the above research studies mainly focus on the
direct combination of the traditional numerical optimization
algorithm and BP neural network, ignoring the traditional
algorithm’s limitations of falling into a local optimal solution.
When dealing with the multi-objective solution of the system,
the traditional algorithm has slow search ability and is prone to
local convergence problems. In this paper, an improved multi-
objective optimization strategy for PV power prediction has
been proposed based on the improved GA–BP neural
network, which is suitable for the distribution network with
distributed PV and the ESS. The balance of network power loss,
voltage deviation, and PV consumption rate is realized, and the
operation ability and PV consumption level of the system are
significantly improved.

The main innovations and contributions of this study are as
follows: 1) the traditional GA is improved by the adaptive
mutation rate, and the BP neural network is trained as a
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predictor to form an improved PV power output prediction
model of the GA–BP neural network, which effectively realizes
the complementary advantages of the two algorithms. 2) A
multi-objective optimization model of the distribution
network is established. The objectives of the optimization
model are active power loss cost, voltage deviation, and PV
consumption rate, and the balance and optimization among the
three objectives are realized. 3) An improved MOPSO algorithm
is proposed. The probabilistic amplitude coding method is used
to obtain the spatial position of the particles, and the traversal
speed and search ability of the solution space are accelerated.
The algorithm solves the local convergence problem and
improves the solution speed on the basis of traditional
real coding.

2 PV power prediction algorithm

2.1 BP neural network

The BP neural network is a multilayer feedforward neural
network based on error BP theory, which generally includes the
input layer, hidden layer, and output layer. The BP neural
network can significantly improve prediction accuracy in the
face of random factors. It can be achieved to adaptive results
through deeper learning and sampling training. It can reduce the
impact of the error caused by randomness by applying this
method to renewable energy and load forecasting. The
topology structure of the BP network is shown in Figure 1.
The input variables of the model are environmental data and
historical data of renewable energy, and the output variable is
the predicted renewable energy output data.

The number of input, hidden, and output layers in the model is
set to 1. The fastest descent is used as the default calculation method.
The weight adjustment of the BP neural network is presented in
Eq. (1):

Δwij � −η ∂E
∂wi

� ηδjyi � η δkwjk( )xif′ netj( )
Δwjk � −η ∂E

∂wk
� ηδkyi � η Rk − Lk( )yif′ netk( )

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
, (1)

where netj and f(netj) are defined as follows in Eq. (2):

netj � ∑k
_i�1
wijLi

f netj( ) � 1

1 + e
− netj−θj( )

θ0

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
. (2)

The weight update strategy is given in Eq. (3):

Δwij n + l( ) � Δwij n( ) + ∝ Δwij − Δwij n − l( )[ ] + ηδixi

Δwjk n + l( ) � Δwjk n( ) + ∝ Δwjk − Δwjk n − l( )[ ] + ηδiyi

⎧⎨⎩ , (3)

where x is input layer data; the positions of neurons in the input
layer, hidden layer, and output layer are determined by i, j, and k,
respectively; w is the weight parameter; Δw is the increment in
weight; E is the error function; δi is the error BP signal; yi is the bias,
L is the output; R is the actual value; f′(netj) and f′(netk) are the
derivative of hidden and output layer function, respectively; ∝ is
the smoothing coefficient, and η is the learning rate.

2.2 Power prediction based on the improved
GA–BP neural network algorithm

The prediction of traditional BP neural networks is trained
based on known values for renewable energy sources such as PV
with random fluctuation characteristics. The weights and thresholds
are obtained during initialization. Therefore, the random
characteristics of the above variables are not satisfied. The GA
can effectively optimize weights and thresholds to avoid getting
stuck in local optimal solutions (Maleki et al., 2021). An adaptive

FIGURE 1
Topology structure of the BP neural network.
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mutation rate will be used for improving the computational speed of
GAs. The threshold and weight calculation of the improved GA–BP
neural network can be used to avoid the occurrence of local minima
in the results due to improper initial value selection. The algorithm
steps are as follows:

Step 1: Encode the initial weights, thresholds, and smoothing
factors of the neural network by using real
number encoding.

Step 2: Initialize the population size and define fitness function
f as an individual fitness function based on neural
network output error function E. The formula is given
in Eq. (4).

f � 1
E + 1

. (4)

Step 3: The preserved selection method is used for selection to
prioritize individuals with higher fitness for inheritance.

Step 4: Individuals use real number crossover for operations by
using real number encoding. The crossover function is
presented in Eq. (5):

Xk+1 � ∝Yk + 1 + ∝( )Xk

Yk+1 � ∝Xk + 1 + ∝( )Yk.

∝ � min 0.2,
1

k + 1
( )

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(5)

FIGURE 2
Improved GA–BP algorithm flowchart.
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Step 5: Improve the local search ability of GAs by adding mutation
operations to maintain population diversity and avoid
premature convergence. The equation is described in Eq. (6).

aij � aij + aij − amax( )f g( ), r> 0.5,

aij + amin − aij( )f g( ), r≤ 0.5

⎧⎨⎩ (6)

where aij is mutation operator and amin and amax are the boundaries

of the GA f(g) � r(1 − g
Gmax

)2
. r is a random parameter, g is the

iteration, and Gmax is the maximum iteration limit value.

Step 6: Decode the final encoding to output the optimal solution
by determining whether the optimal value can be reached
and stop evolution if the conditions are met.

The improved GA–BP algorithm process is shown in Figure 2.

3 Distribution network
optimization model

3.1 The objective function

This paper aims to minimize active power loss and voltage
deviation and maximize PV consumption to improve the
operational efficiency of the distribution network. A multi-
objective optimization model for the distribution network is
established with a time step of 24 h a day. Furthermore, it is also
considered for the integration of load and energy storage into the
distribution network with setting constraints for each variable. The
objective function of active power loss is given in Eq. (7):

minf1 � ∑24
i�1

∑
j�ΩB

Gij U2
i,t + U2

j,t − 2Ui,tUj,t cos δij,t( )[ ], (7)

where f1 is the active power loss,ΩB is the gathering branches in the
distribution network, t is time, andGij is the conductivity between ij
branches.Ui,t andUj,t are, respectively, the voltage of codes i and j at
time t.

The voltage stability is measured by the sum of squared voltage
deviations of each node in the distribution network. The voltage
index function is given in Eq. (8):

minf2 � ∑24
t�1
∑N
i�1

Vi,t − Vi*

Vimax − Vimin( )( )2

, (8)

whereN represents the number of load nodes, Vi,t is the real voltage
of node i at time t, Vi* is the reference voltage of node i, and Vimax

and Vimin are, respectively, the maximum and minimum voltages
within the allowable range.

In order to achieve the highest PV consumption capacity in the
distribution network, the objective function is given in Eq. (9):

maxf3 � ∑N
i�1
Ppv,i, (9)

where Ppv,i is the PV power output of node i.

3.2 The constraint conditions

a) Power flow constraint: The voltage of the load node must
satisfy the balance of active and reactive power. The balance of
power flow constraint is given in Eq. (10):

FIGURE 3
Flowchart of the proposed process.
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PGi − PLi + Pa
ess,cha − Pa

ess,discha + Ppv,i − Ui∑N
j�1
Uj Gij cos ϑij + Bij sin ϑij( ) � 0

QGi − QLi + Qpv,i + QCB + Qsvc − Ui∑N
j�1
Uj Gij cos ϑij − Bij sin ϑij( ) � 0

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
,

(10)

where PGi, PLi, and Ppv,i are, respectively, the active power of the
generator, load, and PV system. Pa

ess,cha and Pa
ess,discha are the power of

energy storage systems, like the charging and discharging of distribution
networks, respectively. Bij is the electrical susceptance between nodes i
and j.QGi,QLi,QCB, andQsvc are, respectively, the reactive power of the
generator, load, capacitor, and static var compensator (SVC).

b) ESS power constraint: The ESS adopts constant power for
charging and discharging. The output power constraint is
given in Eq. (11):

FIGURE 4
IEEE33 distribution network.

FIGURE 5
GA–BP PV power prediction in (A) spring/autumn, (B) summer and (C) winter.

FIGURE 6
Absolute error under GA–BP neural network prediction in (A) spring/autumn, (B) summer and (C) winter.
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Emax � 2Pmax
ess

10%Emax
ess ≤Eess,t ≤ 90%Emax

ess

Eess,t � Eess,t−1 + ηchaPess,cha,t − 1

ηdischa
Pess,discha,t[ ],

Ucha,tPmin
ess,cha ≤Pess,cha,t ≤Ucha,tPmax

ess,cha

Udischa,tPmin
ess,discha ≤Pess,discha,t≤Udischa,tPmax

ess,discha

Ucha,t + Udischa,t ≤ 1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(11)

where Emax is the maximum energy storage capacity; Pmax
ess is the

maximum charging and discharging power of the ESS; ηcha and ηdischa

are, respectively, the charging and discharging efficiency of the ESS;
Pess,cha,t and Pess,discha,t are, respectively, the charging and discharging
power of the ESS; Ucha,t and Udischa,t are, respectively, the charging and
discharging status of the ESS; Pmax

ess,cha and P
max
ess,discha are, respectively, the

maximum values of the charging and discharging power of the ESS; and
Pmin
ess,cha and Pmin

ess,discha are, respectively, the minimum values of the
charging and discharging power of the ESS.

c) PV power output constraints: The PV output is related to the
panel area and solar irradiance. The power output constraint of
PV is given in Eq. (12):

0≤Ppv,t ≤Pmax
pv

Qpv,t � Ppv,t tan δpv
{ , (12)

where Ppv,t is the active power of PV at time t, Pmax
pv is the maximum

active power of PV, and δpv is the power factor angle of PV.

d) Static var compensator SVC constraints: The reactive power
compensator is used to regulate the reactive power distribution
of the distribution network. The operating constraint is given
in Eq. (13):

Qmin
SVC ≤QSVC,t ≤Qmax

SVC, (13)
whereQSVC,t is the compensation of the SVC at time t andQmin

SVC and
Qmax

SVC are, respectively, the lower and upper limits of SVC power.

e) On-load tap changer (OLTC) model constraints: The on-load
regulating transformers can change the output voltage by

adjusting the position of the tap to ensure the voltage of the
distribution network at an appropriate level. The operating
constraints are given in Eqs (14), (15):

FIGURE 7
Error rates under GA-BP neural network prediction in (A) spring/autumn, (B) summer and (C) winter.

FIGURE 8
PV and load power output.

FIGURE 9
Power output of PV and ESS optimization.
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V2
i, min ≤ Vbase

i,t( )2ri,t ≤V2
i, max

rmin
i ≤ ri,t ≤ rmax

i

{ ,∀t,∀i ∈ ΩOLTC, (14)

δt,ij � δij,0 + σt,ijΔδij

∑T
t�1

σt,ij − σt−1,ij
∣∣∣∣ ∣∣∣∣≤Nmax

OLTC,

−σmax
ij ≤ σt,ij ≤ σmax

ij

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(15)

whereΩOLTC is the collection of substation nodes for the OLTC, and
Vbase

i,t is the voltage on the high-voltage side of the OLTC, which is a
constant. rmax

i and rmin
i are the upper and lower limits of the square

of the OLTC ratio, respectively, and ri,t is the rate of the squared
ratio. σt,ij represents the degree of the OLTC, δt,ij is the voltage

regulation rate, Δδij is adjustable variation of adjacent degree in the
OLTC, and Nmax

OLTC is the maximum number of degree
adjustments allowed.

f) Capacitor (CB) model constraints: The CB can improve the
reactive power optimization of the distribution network. The
operating constraint is given in Eq. (16):

QCB
j,t � yCB

j,t Q
CB,step
j

yCB
j,t ≤YCB,max

j

⎧⎨⎩ , (16)

where QCB
j,t is the reactive power output of the j-th CB at time t, yCB

j,t

is the actual connection number of CB, QCB,step
j is the compensation

capacity of CB, and YCB,max
j is the maximum input number. The

decision variables are PGi, QGi, Ppv,i, Qpv,i, QCB, Qsvc, Pess,cha,
Pess,discha, Eess, Ui, θij, σ ij, ri, and yCB

j .

4 The improved MOPSO algorithm

4.1 The definition of Pareto optimal

Pareto solutions first appeared in game theory. The solution will
sacrifice other objective values when optimizing the objective value
of a solution in a model (Raut and Mishra, 2021). Ultimately, each
objective function can be optimized without discrimination.

We assume there are z1 and z2 two solutions in the optimization
model. If the following two conditions are satisfied, it can be known
as z2 dominated by z1.

1) For i ∈ [1, N], Fi(z1)≤Fi(z2)
2) At least one objective function j exists and satisfies

Fi(z1)≤Fi(z2).

FIGURE 10
Comparison of algorithm convergence.

FIGURE 11
Optimal leading edge of the Pareto solution set.

Frontiers in Energy Research frontiersin.org08

Qi et al. 10.3389/fenrg.2024.1418893

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1418893


If there is a solution set P � zi, i � 1, 2, . . . , N{ } and zi ∈ P, zi
cannot be dominated by other zi ∈ P. Then, the solution is called a
non-dominated solution in the set. The set composed of all non-
dominated zi is called the Pareto optimal set.

4.2 The improved multi-objective algorithm

The PSO algorithm simulates the information exchange
behavior within a population in nature by designing massless
particles. At the same time, it only endows particles with the
simplest movement behavior to achieve the goal of solving
intelligent optimization problems. The calculation for
optimization iteration for each particle are given in Eq. (17) and
Eq. (18):

vt+1i � hvti + c1r1 pbest,i − zti( ) + c2r2 gbset − zti( ), (17)
zt+1i � zti + vt+1i , (18)

where h is the weight coefficient, c1 and c2 are acceleration factors, t
is the current iteration count, and r1 and r2 are random parameters
within [0, 1]. pbest,i is the optimal position of i-th particle, and gbset is
the global optimal position.

Traditional PSO algorithms generally use real number encoding.
Each particle can only correspond to one position in space, which
may lead to local optimal solutions. The decision variables of the
optimization model include continuous variables and discrete
variables. The discrete variables include OLTC degree and
operation group number of CB. The continuous variables include
ESS charging and discharging power and SVC compensation
capacity. The matrix of decision variables composed of mixed
encoding of real numbers and integers is given in Eq. (19):

Pt � [ KO
t NC

t PE
t QS

t ], (19)

where Pt is the matrix composed of decision variables at time t,KO
t is

the degree of the OLTC, NC
t is the power of CB, PE

t is the charging
and discharging power of the ESS, and QS

t is the power of the SVC.

For each decision variable in Pt, satisfy the following vector in
Eq. (20):

Mk
t � [ mk

1,t mk
2,t / mk

n,t], (20)

where Mk
t is the k-th decision variable and mk

n,t represents the state
of the k-th decision variable of the n-th device at time t.

In order to avoid the problem of getting stuck in local optimal
solutions during traditional PSO coding, probability amplitude is
used as the current position for encoding of particles. The
probability amplitude encoding method can obtain two positions
in the solution space at the same time. It can also enhance the
traversal of the solution space. Therefore, the probability amplitude
encoding method can effectively improve the search ability of the
algorithm. The encoding method are given in Eq. (21) and Eq. (22):

Pk
t � cos σk1,t cos σk2,t / cos σkn,t

sin σk1,t sin σk2,t / sin σkn,t

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣, (21)

ckn,t,c �
bkn 1 + cos σkn,t( )

2
+ akn 1 − cos σkn,t( )

2

ckn,t,s �
bkn 1 + sin σkn,t( )

2
+ akn 1 − sin σkn,t( )

2

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
, (22)

where Pk
t is the matrix of particle positions; cos σkn,t and sin σkn,t are,

respectively, corresponding cosine and sine positions; akn and bkn are,
respectively, the upper and lower limits of the output of the n-th device
in the k-th decision variable; and ckn,t,c and ckn,t,s are the positions of
cosine and sine transformation into real space, respectively.

The particle updating method for multi-objective problems are
presented in Eqs (23)–(25):

Zx+1
e � Vx

e ± βx Mx
e −Xx

e

∣∣∣∣ ∣∣∣∣ ln 1
u

( ), (23)
Vx

e � φRx
e + 1 − φ( )Gx

e , (24)

Mx
e �

1
Ne

∑Ne

e�1
Rx
e , (25)

where Zx
e is the position of particle e in the x-th iteration;Mx

e is the
average of the optimal positions of all individual particles in the
population; Rx

e and G
x
e are, respectively, the local and global optimal

positions of particles; Vx
e is the local attraction factor of particle e in

the x-th iteration; βx is the linearly decreasing
contraction–expansion factor; Ne is the number of particles in
the population; and φ and u are random parameters within [0, 1].

The improved MOPSO algorithm uses the dominance
relationship between particles to find the historical optimal
solution. Then, the non-inferior solution set is updated by using
the Pareto mechanism. At the same time,Mx

e andG
x
e can be replaced

byDx
e , and R

x
e can be replaced byZ

x
e . The specific algorithm updates

are given in Eq. (26) and Eq. (27):

Xx+1
e � Vx

e ± βx Dx
e − Rx

e

∣∣∣∣ ∣∣∣∣ ln 1
u

( ), (26)
Vx

e � φRx
e + 1 − φ( )Dx

e , (27)

where Dx
e is the guiding particles. It can be chosen randomly based

on a certain probability from the extreme particles farthest and
closest to the origin of the coordinates to increase the breadth of the
Pareto solution set.

FIGURE 12
Comparison of distribution network losses before and after
optimization.
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The MOPSO algorithm is used for solving. The flowchart is
shown in Figure 3. The specific steps are as follows:

Step 1: Initialize the distribution network and various equipment
parameters, set the maximum number of iterations,
initialize the population, and use the objective function
obtained by the initialized particles as the initial optimal
solution for each particle.

Step 2: Update the speed, position, and weight of each particle by
using the improved optimization algorithm.

Step 3: Calculate the fitness of each particle and update the
individual optimal solution. Calculate the active
power loss, voltage deviation, and PV
consumption rate.

Step 4: Calculate the distance between particles and eliminate
individuals with smaller fitness within a certain distance

FIGURE 13
Voltage of distribution network nodes (A) before optimization and (B) after optimization.
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range. Sort the new population and save the top N
individuals with high fitness.

Step 5: Determine whether the iteration is completed based on the
maximum number of iterations. Output the Pareto
optimal solution set when completed. Otherwise, return
to step 2.

Step 6: Update the Pareto solution set and calculate the
satisfaction of each result in the Pareto optimal solution
set. Select the particle with the highest satisfaction as the
global optimal particle.

5 Case studies

In order to verify the effectiveness of the proposed optimization
algorithm, simulation analysis was conducted based on MATLAB
2019a. The simulation verification was used by the IEEE 33-bus
distribution network. The system structure is shown in Figure 4. The
calculation results are all standard values, with a reference voltage of
12.66 kV and an initial voltage of 1.00 p.u at each node. Distributed
PV units are connected to the distribution network through node 21,
and distributed energy storage is connected through node 17. The
rated capacity of PV units is 50 kW, and the rated capacity of energy
storage units is 25 kW. The time period is 24 h per day, and the
initial SOC is set to 0.4. The SVCs are set at nodes 2, 5, and 21,
respectively, and the CB are set at nodes 10 and 24.

5.1 The PV power prediction by the GA–BP
neural network

In this paper, 24,000 sets of continuous data from a PV power
station in spring/autumn, summer, and winter of 2022 are
selected for GA–BP training and testing. All data are
randomly shuffled to break the temporal correlation of
training data. A total of 21,000 sets of data are selected for
training, and the remaining 3,000 sets of data are used as the
test set. The variables for each data set include temperature,
humidity, and solar irradiance. The length of the test period is
24 h. The relative parameters of the BP neural network are set at
first, the maximum training frequency is 100 times, and the
learning rate is set to 0.1. Then, the relevant parameters of the
GA are set as follows: the population size is 10, the number of
genetic iterations is 30, and the crossover probability is 0.2. The
prediction results in different seasons using the improved GA–BP
neural network are shown in Figure 5.

The accuracy of prediction can be measured by the error rate in
short-term prediction by using the GA–BP the neural network:

e � yii − yii
′∣∣∣∣ ∣∣∣∣

yii
× 100%, (28)

where yii is the real value and yii
′ is the predicted value. Figure 6

shows the absolute value of the difference between the actual value
and the predicted value in different seasons. Figure 7 shows the
percentage of the error rate in different seasons based on Eq. 28. It
can be seen that the GA–BP neural network can keep the relative
error of each hour below 0.9% when making predictions in the day

ahead. Although power fluctuations are frequent, the predicted value
will be closer to the actual power output, and it has a lower error rate
within an acceptable range.

5.2 Multi-objective optimization
performance analysis

There will be a phenomenon of PV curtailment when PV units are
added to the distribution network. In order to significantly reduce the PV
curtailment rate, add the ESS into the system and combine optimization
algorithms to improve the operational capacity of the distribution
network. The PV output power predicted by the GA–BP neural
network algorithm and the load power are shown in Figure 8. It can
be seen that distributed PV start to output at 8 a.m. and reach their
highest point of output at noon. During night and early morning
periods, the PV will not supply power output. The optimized output
of PV and ESS is shown in Figure 9. It can be seen that the optimized
output curve of PV is relatively smooth. The energy storage device
operates 24 h a day. Although the daytime PV output is high, the energy
storage device operates in the charging mode. Although the PV power is
not output at night, the energy storage operates in the discharge mode.
The overall output power curve is smoother than the PV power curve
without the ESS. Although the PV output is at its maximum, the energy
storage charging power is at its maximum. Due to the inability of PV
power generation at night, energy storage releases the stored electricity
during the day for power supply. Light fluctuations are effectively
suppressed according to energy storage devices, and the PV
consumption rate reached 74.37%.

The objectives of minimizing network active power loss,
minimizing voltage deviation, and maximizing PV consumption in
the distribution network are solved by using the improved MOPSO
algorithm. The comparison of algorithm convergence is shown in
Figure 10. It is shown that the improved MOPSO proposed in this
paper has higher convergence speed and better optimization effect. The
Pareto solution set is shown in Figure 11. It can be known that the
distribution of the Pareto solution set is relatively concentrated, and the
convergence of the solution is satisfied. Any point in the solution set can
achieve the above optimization objectives. The determined optimal
solution is marked in Figure 11 with 0.407 p.u. active power loss,
1.04 p.u. voltage deviation, and 69.5% PV consumption rate.

A comparison of distribution network loss and voltage deviation
before and after optimization is shown in Figures 12, 13 to
demonstrate the effectiveness of the proposed algorithm. The
optimized voltage and network loss are improved compared to
the situation before optimization. The distribution network loss
is shown in Figure 12. It can be seen that the optimized network loss
has significantly improved within 24 h of operation. The network
loss before optimization is lower at night, but it will reach a
maximum of 0.44 p.u and 0.46 p.u during peak hours at noon
and evening, respectively. The optimized network loss decreased to
0.31 p.u and 0.40 p.u at corresponding times. This has achieved one
of goals of multi-objective strategy, i.e., minimization of power loss.

The voltage amplitude of the nodes before optimization is shown
in Figure 13A. The voltage deviation of the nodes before
optimization is large. Moreover, there will be situations where
the voltage exceeds the lower limit. The lowest voltage will reach
less than 0.90 p.u. Most nodes will have a voltage below the set lower
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limit, which is 0.95 p.u. Moreover, the voltage deviation between
each node is large, which is against for the operation of the
distribution network. The node voltage obtained after using the
optimization algorithm is shown in Figure 13B. It can be seen that
the voltage amplitude of each node has significantly improved
throughout the day. The voltage range can sustain from 0.98 p.u
to 1.06 p.u. The voltage deviation between nodes has significantly
decreased. There has been no situation where the voltage exceeds the
lower limit. This has achieved one of the voltage stability goals of
multi-objectives and improved the operational capacity of the
distribution network.

6 Conclusion

A multi-objective optimization model is established, and an
improved MOPSO algorithm is proposed for the distribution
network with distributed PV and ESS based on PV power
prediction. In response to the problem of poor prediction
accuracy in traditional algorithms, the GA–BP neural network
is adopted for PV power prediction. The prediction accuracy is
enhanced by improving the mutation function. The distribution
network model is constructed with distributed PV, energy
storage, and power compensation devices. Then, the model
can be solved by using an improved MOPSO algorithm based
on Pareto optimality. The probability amplitude is adopted in
solving the algorithm as the current position encoding of
particles to avoid getting stuck in local optimal solution and
improve global search speed. The results show that the
maximum error rate of improved PV power prediction is less
than 1%, which can precisely track on PV power output. The
network loss can be reduced by 29.55% according to the
proposed optimization strategy, and the voltage off-limit
phenomenon is eliminated. The voltage range can change to
0.98–1.06 p.u from 0.89–1.06 p.u, which can effectively reduce
voltage deviation. Moreover, the PV consumption rate can be
improved by 74.37%. Overall, the operational ability and PV
consumption level of the distribution network are improved.
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