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Voltage instability, power imbalance, and unreliability are caused mainly by
equipment failure in the distribution system, so it is important to accurately
and quickly assess the status of distribution network equipment. However, it is
challenging to detect equipment failures, the traditional XGBoost algorithm is
unsuitable because some evaluation indices are incompetent to quantify. To
address these issues, we propose a fast evaluation method for the state of
electrical distribution equipment based on fuzzy decision-making. Firstly, key
indices are selected from themulti-source equipment information. Secondly, this
paper constructs the mapping between key indices and equipment status scores
by combining the fuzzy iterative method and the XGBoost algorithm. Finally, the
proposed assessment model is confirmed by using the distribution transformers
as an example. The result shows that the proposed multi-source information
assessment method can quickly and accurately determine the operation status of
electrical distribution equipment, and the proposed method has better accuracy
than the traditional method.
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1 Introduction

With social and economic development, the scale of the power grid is gradually
expanding, prompting higher reliability requirements. The distribution network is an
essential part of the power system. It is responsible for the critical task of supplying
power directly to customers (Liang et al., 2009). At the same time, the clear aims of
operational status analysis improving the reliability of the power supply. It is an integral part
of operations and maintenance in the power system (Guan, 2022). Through testing and
evaluating equipment such as distribution transformers (DTs) and circuit breakers, system
operators can ensure the safe and stable operation of distribution equipment and improve
the economy of power supply companies.

In the research on equipment evaluation, there is more research on primary
equipment such as generators, transformers, circuit breakers, etc., and less on
medium- and low-voltage equipment. Most of them are limited to studying the
remaining life of power transformers, and the distribution equipment still needs to
form a set of quantitative evaluation methods (Fang et al., 2023). However, the location
dispersion, the large amount of monitoring data, and the lack of uniform evaluation
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standards have brought significant challenges in assessing
equipment status (Yuan et al., 2019; Tamma et al., 2021).

The transformer is the main equipment for distributing
power and transforming voltage to a wide range of
customers, and people have always valued it (Guo and Liu,
2005). Methods such as fuzzy evaluation and artificial
intelligence are widely used in transformer status assessment
(Zhu et al., 2008; Xie et al., 2012; Chen, 2017; Zhou et al., 2020;
Lv, 2022). Zhou et al. proposed a transformer condition
assessment method based on an interval grey number
dynamic grey target (Lv, 2022). The accuracy of the proposed
transformer condition assessment method is verified by
integrating the dynamic changes of transformer operation
data and index information in multi-dimensional time
phases. Zhu et al. used the transformer oil chromatography
data as the operational condition assessment index, proposed a
new method to transform the qualitative indexes into
quantitative indexes, and finally used the obtained
assessment results as the training set of the SVM and
obtained the transformer’s status level (Xie et al., 2012).
However, the model consideration is relatively single, and the
assessment results are not accurate. Reference (Zhou et al.,
2020) studied the power transformer condition evaluation
index system in depth, as well as the calculation method and
model of the transformer health index based on fuzzy logic.
Reference (Chen, 2017) established an insulation state
evaluation system and proposed a transformer insulation
state evaluation method based on fuzzy cloud theory. The
affiliation degree cloud model was utilized to describe its
fuzziness and randomness. Zhe et al. applied a conventional
approach to evaluate transformers’ condition and introduced a
condition assessment model using support vector regression.
However, this method heavily relies on the size of the
transformer’s sample capacity (Zhu et al., 2008). References
(Ahmad and Senroy, 2020; Zhang et al., 2020) proposed a cloud
model for transformer condition assessment considering the
randomness of the data and the ambiguity of the evaluation
level, which successfully realized the transformation between
qualitative and quantitative indicators. Zhang et al. proposed a
condition assessment index system based on the transformer
test category, and the evaluation level was divided by solving the
relative deterioration of the index. Finally, the confidence
criterion was introduced for comprehensive judgment (Zhang
et al., 2010). The model is more subjective, and new solutions
need to be proposed to reduce the interference of human factors
in the model. Zheng et al. introduced the grey assessment
decision theory (Wang et al., 2012), but the index system was
not comprehensive enough to consider the data of all the
transformer components, and the results were more one-
sided and lacked persuasive power.

The current evaluation method for distribution network
equipment is not comprehensive. It lacks a quantitative
assessment method and is greatly influenced by subjective factors,
such as the experts’ experience. Therefore, it is important to establish
an assessment method that better aligns with the actual operating
conditions of the electrical distribution equipment. The proposed
method allows for the assessment of distribution transformers,

providing a valuable reference for the economic and operational
reliability of power system operators.

In this paper, we propose a state assessment model for
distribution network equipment. This model integrates multi-
source information derived from the operational data of the
equipment, taking into account critical state variables. To
establish the relationship between the multi-sources information
and the equipment’s state, we utilize a data-driven fuzzy iterative
method and the XGBoost algorithm. This enables a more accurate
evaluation of the equipment’s condition. Additionally, the paper
introduces a method for multi-source information to assess the
operation status of distribution equipment, using DTs as an
example. This method effectively determines the equipment’s
operation status by leveraging various types of information,
offering a more comprehensive evaluation compared to other
approaches.

2 Characteristic extraction and
evaluation of key condition indicators
of power distribution equipment

There are five categories of key equipment for the distribution
network, which are DTs, switchgear, cables, overhead lines, and
pole-mounted switches. During operation, a large amount of data is
generated, including real-time and historical data, hardware
information, and environ-mental conditions. To accurately
determine the operating status of equipment, it is necessary to
process data and extract key condition indicators that
characterize the equipment’s operation. Establishing a scientific
and comprehensive evaluation system for condition indicators is
significant for the status evaluation of distribution
network equipment.

DT is an important equipment in the distribution network, and
its operation status is closely related to the reliability of the power
supply. The Table A1 in the appendix displays various types of faults
in DT, including insulation, short-circuit, discharge, and mechanical
drive operating mechanism faults. Since the DTs used in industry
and large users are mainly step-down transformers and mostly oil-
immersed transformers, the condition indicators in Table A1 are
selected and classified according to the principle of selecting key
condition indicators by referring to standards such as “Guidelines
for Condition Evaluation of Equipment in Distribution Networks”
(State Grid Corporation, 2011), and the results are shown in Table 1.

Once the condition indicators are selected, it is necessary to
score them to further evaluate the state of the DT. According to
the uniform regulations, the evaluation principles for each
condition indicators are shown in the third column of
Table 1. Before evaluation, the condition indicators of the
transformer shown in Table 1 need to be normalized due to
their qualitative and quantitative indicators varying in orders of
magnitude and dimensions. The condition indicators that makes
the status of the equipment better when the value gets smaller or
lower, such as winding DC resistance and oil temperature, are
processed by Eq. 1; The state quantities (withstand voltage,
insulation resistance, etc.) that make the equipment state
better when the value becomes larger or higher are handled
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by Eq. 2. (Wang and Zhao, 2020). Empirical data gives the degree
of deterioration in the qualitatively measured condition
indicators such as running time and sealing performance.

μi,j �

0 μi,j ≤ μi,j,0
μi,j − μi,j,0
μi,j,1 − μi,j,0

μi,j,0 < μi,j ≤ μi,j,1

1 μi,j > μi,j,1

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩ (1)

μi,j �

1 μi,j < μi,j,1
μi,j,0 − μi,j
μi,j,0 − μi,j,1

μi,j,1 ≤ μi,j < μi,j,0

0 μi,j ≥ μi,j,0

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩ (2)

Where the value of the subscript i of μi,j(i � 1, 2, ..., 9) is
determined by the condition indicators; j indicates the relative
deterioration degree of the condition indicators, μi,j is the
observed value divided by the ideal value, and the range of values
is [0,1]; μi,j,0 is the baseline value, and μi,j,1 denotes the attention
value or the warning value, the values of μi,j,0 and μi,j,1 are obtained
by (Wang and Zhao, 2020).

According to the evaluation criteria of condition indicators
given in Table 1, combined with a large number of experts and
long-term experience in the field (China Electric Power, 2008), the
assessment set of DT key condition indicators in Table 1 is obtained,
as shown in Table 2.

2.1 Weight determination based on fuzzy
iteration and XGBoost

After selecting the key condition indicators for distribution
network equipment, reasonable weights must be assigned to each
status variable before conducting a comprehensive state assessment.
In this paper, we use the eclectic fuzzy decision-making and

multilevel fuzzy integrated evaluation model to analyze the pre-
data of DT’s. Then, the weight ratios of the assessment set are
constantly updated by the XGBoost algorithm, which reduces the
influence of subjective factors brought by experts and improves the
reliability of data analysis. Finally, an expert database was
established.

2.2 Solution process for eclectic fuzzy
decision-making weights

The flow chart for eclectic fuzzy decision-making is illustrated in
Figure 1. Beginning with the original sample data, First, virtualizing
the fuzzy positive ideal and fuzzy negative ideal. The fuzzy positive
ideal is composed of the maximum value of the fuzzy indicator in
each indicator, while the fuzzy negative ideal is composed of the
minimum value of the fuzzy indicator in each indicator (Zadeh,
1965). Next, the weighted Euclidean distance is used to calculate the
distance between each alternative object and the fuzzy positive ideal
and fuzzy negative ideal. Based on this, the degree of affiliation of
each alternative object belonging to the fuzzy positive ideal is
calculated. The greater the degree of affiliation, the more
desirable the scheme is.

The basic solution steps for eclectic fuzzy decision-making are
as follows.

Step 1: Transform the indicator data into triangular
fuzzy numbers;

Suppose that F(R) is an overall fuzzy set on R and the set
M ∈ F(R). The affiliation function μM of M is denoted as follows:

μM x( ) �

x − l

m − l
, x ∈ l, m[ ]

x − u

m − u
, x ∈ m, u[ ]

0, x< l or x> u

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩ (3)

TABLE 1 Classification of key state variables of DT.

Classification Specific parts Condition indicators

Hardware situation Sealing method Sealing ability μ1

Degree of insulation Withstand voltage test μ2

System contamination Contamination μ3

Non-electricity protection device Insulation resistance μ10

Winding and bushing DC resistance μ11

Operational situation Oil level Oil level μ4

Winding and bushing outer temperature Temperature μ5

Grounding condition Grounding down conductor appearance μ6

Respirator Respirator status μ7

Load situation Load rate μ12

Three-phase load balancing Three-phase unbalance rate μ13

Human factors Equipment identity Completeness of identification μ8

Tap changer Tap changer performance μ9
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Where l≤m≤ u, M is triangular fuzzy number, denoted as
M � (l, m, u). According to Eq. 3, the qualitative indicators,
quantitative indicators, and weight data in the condition
indicators are unified into a triangular fuzzy number.

The qualitative indicators μi(i � 1, 2, ..., 9) in DT are converted
to quantitative indicators according to Table 3

The quantitative indicator values μi(i � 10, 11, ..., 13) of DT
critical state quantities are expressed in the form of a triangular
fuzzy number as shown in Eq. 4.

μi � μi, μi, μi( ) (4)

After transforming all indicators into triangular fuzzy numbers,
the matrix of fuzzy indicators is obtained and denoted
as F � (fij)m×n

The weighted triangular fuzzy number of quantitative indicators
is obtained according to Eq. 4 and is expressed as Eq. 5:

w � w1, w1, w1( ), w2, w2, w2( ), ... wi, wi, wi( )[ ] (5)

The weighted triangular fuzzy numbers of qualitative indicators
were obtained according to the transformation method in Table 3.

Step 2: Fuzzy indicator matrix normalization process;

Assuming that there areN evaluation objects and the evaluation
indicator j(j ∈ n) corresponds to N fuzzy indicator values in F,
which are denoted as xi � (ai, bi, ci), (i � 1, 2, ..., N), the formula for
the normalization of xi is as follows:

①. If xi is the value of the fuzzy indicator corresponding to the
cost-based indicator, the normalization formula is Eq. 6:

yi � min ai( )
ci

,
min bi( )

bi
,
min ci( )

ai
∧ 1( ) (6)

②. If xi is the fuzzy indicator value corresponding to the income-
based indicators, the normalization formula is

yi � ai
max ci( ),

bi
max bi( ),

ci
max ai( ) ∧ 1( ) (7)

The normalized fuzzy indicator matrix is denoted as R � (yij)m×n.
Step 3: Constructing the fuzzy decision-making

matrix D � (rij)m×n

The fuzzy decision-making matrix can be obtained by weighting
R, as shown in Eq. 8:

TABLE 2 Key condition indicators assessment set of DT.

State variables Description Assessment set

Good Normal Attention Abnormal Serious

Sealing ability μ1 Oil leakage situation μ1,1 0.2 0.2 0.3 0.2 0.1

Oil dripping situation μ1,2 0 0 0.1 0.1 0.8

Oil spilling situation μ1,3 0 0 0 0 1

Withstand voltage test μ2 Pressure resistance μ2,1 0 0 0 0.1 0.9

Contamination μ3 A small amount of Contamination μ3,1 0.9 0.1 0 0 0

More pollution μ3,2 0.8 0.1 0.1 0 0

Obviously damaged rust μ3,3 0.1 0.2 0.3 0.3 0.1

Severely contaminated and blocked μ3,4 0 0 0.2 0.5 0.3

Oil level μ4 Oil level gauge indicates
Abnormality μ4,1

0.1 0.2 0.3 0.2 0.2

Oil level gauge no
Indication μ4,2

0.1 0.1 0.3 0.3 0.2

Temperature μ5 Temperature of connector is too high μ5,1 0.1 0.3 0.4 0.2 0

Rise of temperature is not normal μ5,2 0.1 0.2 0.3 0.3 0.1

Grounding down conductor
appearance μ6

Lack of connection μ6,1 0.1 0.2 0.3 0.3 0.1

Insufficient depth μ6,2 0.2 0.3 0.4 0.1 0

Respirator
Condition μ7

The respirator is completely discolored by
moisture μ7,1

0.3 0.3 0.3 0.1 0

The respirator is completely breathless μ7,2 0.3 0.3 0.3 0.1 0

Identification
Integrity μ8

Lack of identification μ8,1 0 0.1 0.2 0.5 0.2

Wrong identifies or no identified μ8,2 0 0 0.1 0.4 0.5

Tap changer
Performance μ9

Tap position power indicates abnormal μ9,1 0 0.5 0.5 0 0
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rij � wΘyij i � 1, 2, ..., N, j � 1, 2, ..., N( ) (8)

Step 4: Determine the fuzzy positive ideal M+ and the fuzzy
negative ideal M−, as shown in Eqs 9, 10;

M+ � M+
1 ,M

+
2 , ...,M

+
N( ) (9)

M− � M−
1 ,M

−
2 , ...,M

−
N( ) (10)

where component M+ � max r1j, r2j, ..., rnj{ }, (j � 1, 2, ..., 15) is
the fuzzy maximum value corresponding to the fuzzy
indicator value of the j column in the fuzzy decision-making
matrix D; where component M− � min r1j, r2j, ..., rnj{ }, (j �
1, 2, ..., 15) is the fuzzy minimum value corresponding to the
fuzzy indicator value of the j column in the fuzzy decision-
making matrix D.

Step 5: Determine the distance d+i , d−i between the object i and
M+, M−, as shown in Eqs 11, 12

d+
i �

������������∑N
j�1

rij −M+
j( )2√√

, i � 1, 2,/, N (11)

d−
i �

������������∑N
j�1

rij −M−
j( )2√√

, i � 1, 2,/, N (12)

Step 6: Fuzzy optimal decision-making.
Let the assessment object i obeys the fuzzy positive ideal with

affiliation degree μi, as shown in Eq. 13

μi �
d−
i

d+
i + d−

i

, i � 1, 2,/, N (13)

Obviously 0≤ μi ≤ 1, the closer rij is toM+, the closer μi is to 1.
Utilizing the classification results of the degree of affiliation to
rank the merits of the samples can get the fuzzy expert group
assessment set of the multi-level fuzzy comprehensive
evaluation model.

2.3 Multi-level fuzzy comprehensive
assessment model based on
XGboost algorithm

XGBoost (Chen and Guestrin, 2016) is an integrated learning
algorithm based on gradient advancement that shows good
performance in classification and regression problems. To reduce
the influence of subjective factors brought about by expert
experience and to avoid errors caused by data redundancy or
error omission, this paper adopts a combination of eclectic fuzzy
decision-making and the XGboost algorithm to improve the
assessment accuracy of DT. This model integrates multiple weak
learners together to build a strong learner, as follows:

For a dataset D � xi, yi{ } containing n samples and m features,
the output values of the integratedmodel withKweak learners are as
shown in Eq. 14:

ŷi �∑K
k�1

fk xi( ) (14)

FIGURE 1
Flow chart of eclectic fuzzy decision-making model.

TABLE 3 Index transformation of triangular fuzzy number method.

Quantitative value attributes Cost indicator Profitability indicator

(0,0,1) Highest Lowest

(1,1,2) Very high Very low

(2,3,4) High Low

(4,5,6) General General

(6,7,8) Low High

(7,8,9) Very low Very high

(9,10,10) Lowest Highest
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Where f is a function of each classification and regression tree
and f(x) � ωq(x)(w ∈ RT, q: RM → T). For each tree, q denotes the
tree structure that maps samples to specific leaf nodes, T denotes the
number of leaf nodes, and ω denotes the weights of the leaf nodes.

The XGBoost model is trained by additive approach, the optimal
structure of this model is found by successively adding tree and
segmentation features. Therefore, the predicted value of the nth tree
is ŷ(t)

i � ŷ(t−1)
i + ft(xi).

The objective function of the final model consists of two parts,
the loss function l and the regularization termΩ, as shown in Eq. 15:

obj �∑n
i�1
l yi, ŷi( ) +∑K

k�1
Ω fk( ) (15)

where the loss function represents the predictive power of the model
and the regularization term restricts the structure of the tree, as
shown in Eq. 16:

Ω f( ) � γT + 1
2
λ∑T
j�1
ω2
j (16)

where γ and λ are two parameters that control the complexity, and
the smaller their values are, the more complex the tree structure is.

A second-order Taylor expansion of the objective function can
be approximated as Eq. 17:

obj t( ) �∑n
i�1

l yi, ŷ
t−1( )( ) + gift xi( ) + 1

2
hif

2
t xi( )[ ] +Ω ft( )

+ constant (17)

Where gi � ∂ŷ(t−1)
i

l(yi, ŷ
(t−1)
i ) and hi � ∂2

ŷ(t−1)
i

l(yi, ŷ
(t−1)
i ) are the first

and second order partial derivatives of the loss function, respectively,
and the objective function after expanding the regularization term and
removing the constant term is expressed as Eq. 18:

obj t( ) �∑T
j�1

∑
i∈Ij

gi
⎛⎝ ⎞⎠ωj + 1

2
∑
i∈Ij

hi + λ⎛⎝ ⎞⎠ω2
j

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ + γT (18)

where Ij is the index set that assigns the data point to the j leaf node.
In Eq. 7, ωj is independent, therefore, the minimal value of the

objective function and the corresponding ω*
j can be obtained by

direct derivation of ωj, as shown in Eqs 19, 20.

ω*
j � − ∑gi∑hi + λ

(19)

obj* � −1
2
∑T
j�1

∑gi( )2∑hi + λ
+ γT (20)

After obtaining the weight distribution, it is replaced with step
3 in the basic solution step of eclectic fuzzy decision-making, and
then the final expert group assessment set is obtained by repeated
iterations.

3 Case study

In this section, the proposed state assessment approach is
verified in the distribution transformers. We obtained the data,

including state parameters and health index, fromDTs of 50 units in
20 maintenance periods.

3.1 DT basic parameters

Table 2 displays the 13 important state quantities of the DT,
which consist of four quantitative and nine qualitative markers.
The rated values of the five major factor sets of DT are derived
using the frequency statistics method in order to reduce data
redundancy and clearly demonstrate the algorithm’s accuracy.
This method includes four qualitative metrics (grounding down
conductor appearance µ6, sealing ability µ1, withstand voltage
test µ2, and identification integrity µ8) in addition to one
quantitative metric (winding DC resistance). The relevant data
are divided into training and test sets according to the ratio of 7:3.
All the cases were obtained by using Python 3.8 in a 3.4 GHz Intel
Core i5-7500 computer with 8 GB of RAM, and the configuration
of XGBoost-related parameters is shown in Supplementary
Table S4.

3.2 Data pre-processing

According to the health index of the DT, it is categorized into
[S1,S2,S3,S4,S5] five states. S1 indicates that the transformer is in
good condition with low risk of failure. S5 indicates that the
transformer is in very poor condition with a high risk of failure.
The lower the status number, the better the condition of the
transformer. The percentage of transformers in various health
states in the dataset is shown in Figure 2.

The dataset’s character-labeled data must first undergo
preprocessing in order to be used. There are five values that
make up the health index: good, normal, attention, abnormal,
and serious, which are converted into (Liang et al., 2009; Yuan
et al., 2019; Tamma et al., 2021; Guan, 2022; Fang et al., 2023).
Figure 3 shows the result of encoding the transformer health state
using one-hot encoding.

FIGURE 2
Percentage of transformer health status in the data set.
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3.3 Analysis of example results

In this part, the health status of the transformer is evaluated by
fuzzy iteration and XGBoost. The model is applied to the test set and
the predictions of the model can be calculated as shown in Figure 4.

The actual and predicted categories are formed into rows and
columns of a matrix, respectively, each element in the confusion
matrix represents a categorization result, and the elements on the
diagonal line indicate the number of correct predictions. Obviously,
the lager the elements on the diagonal, the better the confusion
matrix, and the confusion matrix is shown in Figure 5. The accuracy
of S2 is 94.01%, the accuracy of S3 is 94.86%, and the accuracy of the
other three categories is 100%. The model produces confusion only
between S2 and S3, and all other categories are correctly categorized.

In the multiclassification problem, as shown in Figure 6, if S2 is
set as a positive sample and the other categories are considered as
negative samples, we can classify the results as True Positive (TP),
False Positive (FP), True Negative (TN) and False Negative (FN).
Similarly, the other categories can be divided in this way. We can
calculate the situation of the evaluation indicators for each category
based on the prediction results, and we can calculatethe the
suituation of the evaluation indicators by the model through the
macro-averaging method.

Accuracy is the percentage of correct predictions to the total
sample, and is expressed as Eq. 21:

A � TP + TN

TP + FP + TN + FN
(21)

Precision is the percentage of true positive samples to the total
positive samples in the predicted results, and is expressed as Eq. 22:

P � TP

TP + FP
(22)

Recall is the percentage of true positive samples to actual positive
samples in the predicted results, and is expressed as Eq. 23:

R � TP

TP + FN
(23)

The F1 indicator (F1-score) is the average of precision and recall,
and can be expressed as Eq. 24:

F1 � 2PR
P + R

(24)

According to the above equation, we can calculate the precision
index of the evaluation results of the proposed model. The recall rate

FIGURE 3
One-Hot code of transformer health status.

FIGURE 4
Prediction results of fuzzy decision model.

FIGURE 5
Confusion matrix of prediction results of XGBoost model.

FIGURE 6
Prediction results classification diagram.
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is 97.77%, the accuracy rate is 96.86%, the precision rate is 97.78%,
and the F1 indicator is 97.77%. The evaluation indicators of the
proposed method are all above 96%. Therefore, the method can
accurately and comprehensively identify the aging condition
of cables.

The importance weights of the characteristic state quantities are
shown in Figure 7. Winding DC resistance, sealing ability and
insulation performance are the three key variables for evaluating
the health status of the transformer.

3.4 Comparative analysis of algorithms

In order to validate the performance of the proposed model, this
section compares the algorithm proposed in the paper with other
classification models concluding traditional XGBoost model,
random forest (RF) (Breiman, 2001), decision tree (DT)
(Fürnkranz et al., 2011), and support vector machine (SVM)
(Cortes and Vapnik, 1995). These classification algorithms are
briefly described below.

The DT model classifies the instances based on the feature
values, the nodes of the decision tree contain judgments on the
features, and then, the model outputs the classification results based
on the judgments of each node.

The RF model consists of multiple independent decision trees,
each decision tree in the forest classifies the samples individually,
and the category with the highest score among all the decision tree is
used as the classification result of RF.

SVM is a linear classifier, the idea is to find a suitable hyperplane
for sample classification, it is usually used to deal with binary
classification problems, but it also can be used to deal with
multiclassification problems using a one-to-one approach.

Themodel evaluation results of the fuzzy decision-based XGBoost
algorithm and the other four models are shown in Table 4. The model
evaluation accuracy of SVM is the lowest among all the models, which
is due to the fact that traditional SVM is a linear classifier and cannot
handle nonlinear problems well. RF and XGBoost are integrated
learning models, while DT belongs to the weak learner model, its
performance is weaker than of RF and XGBoost models.

The XGBoost algorithm shows better evaluation compared to all
other methods. The regular XGBoost algorithm increases the
regularization term compared to other algorithms, which
improves the model accuracy and avoids overfitting. And among
all the algorithms, the model proposed in the paper has the best
performance. From the comparative results, it is clear that the use of
fuzzy decision making method to optimize the qualitative state
quantities by incorporating them into the classification model
does improve the performance of the XGBoost model.

The sensitivity (sensitivity curve,SC) curve is plotted based on
the false positive rate (FPR) and true positive rate (TPR) of the
model. The goodness of the model can be quantified by the area
under the SC curve (AUC) (Bradley, 1997). The TPR and FPR are
expressed as Eq. 25.

TPR � TP

TP + FN
, FPR � FP

FP + TN
(25)

FIGURE 7
Weight of feature state.

TABLE 4 Evaluation effect indicators of all models.

Model name Accuracy (%) Precision (%) Recall (%) F1 indicator (%)

This article model 96.86 97.78 97.77 97.77

Traditional XGBoost model 95.60 96.57 96.85 96.71

RF model 95.20 96.17 96.51 96.33

DT model 93.87 94.91 94.22 94.06

SVM model 93.33 92.35 92.73 92.26

FIGURE 8
Comparison of SC curves of each mode.
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The SC curves for each model are shown in Figure 8. If the
prediction is completely random, the curve is a straight line with
slope 1. Among the multiple curves, the curve positions and AUC
values allow a visual comparison of the model’s performance. The
larger the AUC value, the more accurate the prediction. The curve of
the fuzzy decision-based XGBoost model is closer to the upper left
corner with an AUC of 0.988 9, it indicates that the model has a good
performance in prediction accuracy.

The P-R curve can be plotted on the basis of the checking
accuracy and the checking precision. In multiple classification
problems, the area under the P-R curve is called the mean of
average precision (mAP) for each category, and this value
describes the accuracy of classification. The P-R curve is shown
in Figure 9. The fuzzy decision based XGBoost model has the best
curve performance with the largest mAP value among all models at
0.985 9. The DT model with the smallest mAP, it is 0.9211.

4 Conclusion

Equipment breakdowns are the primary source of voltage instability,
power imbalance, and unreliability in power systems. This work
proposes a transformer health state evaluation model based on the
fuzzy decision-making XGBoost algorithm in order to precisely analyze
the DT health state. Nevertheless, the traditional XGBoost algorithm
cannot quantitatively measure the assessment indexes of transformer
health state, in order to overcome the difficulty, this paper combines the
fuzzy iterative method with the XGBoost algorithm, constructs the
mapping relationship between the key indexes and the state scores of
the equipment, and puts forward a fuzzy decision-making based rapid
assessment method of the state of the distribution equipment, which
realizes the multi-source data fusion of systematic assessment.

The experimental results show that the accuracy, precision, recall
and F1 indicator of the fuzzy decision-based XGBoostmodel are 96.86%,
97.78%%, 97.77%% and 97.77%%, respectively, the result are superior to
the traditional XGBoost, RF, DT and SVM models mentioned in the
paper. By comparing with the XGBoost model, which is constructed
directly using quantitative parameters, the XGBoost model useing fuzzy
decision theory does improve the evaluation performance. In addition,

the AUC and mAP values of the XGBoost model are larger than the
other threemodels, indicating that the proposedmodel has better overall
performance. The results show that the XGBoost transformer health
state assessment model proposed in the paper is more accurate, and the
model can effectively assess the DT state.
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Appendix A

TABLE A1 Critical state evaluation set of DT.

Component State quantity Reflected state

Winding and bushing DC resistance DC resistance exceeds the range

Insulation resistance Insulation resistance is not normal

Temperature The temperature of the joint is abnormal and the temperature rise is abnormal

Load rate Overload

Degree of contamination Severely contaminated or rusted appearance

Appearance integrity Damaged appearance

The temperature of respirator Exceed the factory defaults

Three-phase unbalance rate Three-phase unbalance rate is not normal

Tap changer Performance Operation is not Normal

Cooling system Mechanical properties Dry change fan vibration is not normal

Temperature Temperature control device is abnormal

Tank Ground distance of the bench The distance to the ground is not enough

Sealing Finishing seal aging

Oil level Oil level is not normal

Oil temperature Oil temperature is abnormal

Non-electricity protection device Insulation resistance Unqualified insulation

Ground wire Exterior Insufficient connection or insufficient depth of grounding body

Insulation Grounding resistance Grounding resistance is abnormal

Withstand voltage test Pressure resistance is unqualified

Identification Identification integrity Equipment identification is vague, incomplete, wrong, etc.
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