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This work presents the mathematical/theoretical framework of the “nth-Order
Feature Adjoint Sensitivity Analysis Methodology for Response-Coupled
Forward/Adjoint Linear Systems” (abbreviated as “nth-FASAM-L”), which
enables the most efficient computation of exactly obtained mathematical
expressions of arbitrarily-high-order (nth-order) sensitivities of a generic
system response with respect to all of the parameters (including boundary
and initial conditions) underlying the respective forward/adjoint systems.
Responses of linear models can depend simultaneously on both the forward
and the adjoint state functions. This is in contradistinction to responses for
nonlinear systems, which can depend only on the forward state functions
since nonlinear operators do not admit bona-fide adjoint operators. Among
the best-known model responses that depend simultaneously on both the
forward and adjoint state functions are Lagrangians used for system
optimization, the Schwinger and Roussopoulos functionals for analyzing
reaction rates and ratios thereof, and the Rayleigh quotient for analyzing
eigenvalues and/or separation constants. The sensitivity analysis of such
responses makes it necessary to treat linear models/systems in their own
right, rather than treating them just as particular cases of nonlinear systems.
The unparalleled efficiency and accuracy of the nth-FASAM-L methodology
stems from the maximal reduction of the number of adjoint computations
(which are “large-scale” computations) for computing high-order sensitivities,
since the number of large-scale computations when applying the nth-FASAM-N
methodology is proportional to the number of model features as opposed to the
number of model parameters (which are considerably more than the number of
features). The mathematical framework underlying the nth-FASAM-L is
developed in linearly increasing higher-dimensional Hilbert spaces, as
opposed to the exponentially increasing “parameter-dimensional” spaces in
which response sensitivities are computed by other methods (statistical, finite
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differences, etc.), thus providing the basis for overcoming the curse of
dimensionality in sensitivity analysis and all other fields (uncertainty
quantification, predictive modeling, etc.) which need such sensitivities.

KEYWORDS

response-coupled forward/adjoint model, features of model parameters, adjoint
operators in Hilbert spaces, exact sensitivities of arbitrarily high order, most efficient
computation of high order response sensitivities

1 Introduction

The analysis of computational models fundamentally relies on
the use of functional derivatives (called “sensitivities”) of the results
(called “model responses”) with respect to the imprecisely known
parameters underlying the computational model. Sensitivities are
used for many purposes, including: (a) ranking the importance of
the various parameters and performing “reduced-order modeling”
by eliminating unimportant parameters and/or processes; (b)
quantifying the uncertainties induced in a model response due to
uncertainties in the model’s parameters; (c) performing “model
validation” by comparing computational and experimental results
to address the question “does the model represent reality?”; (d)
performing data assimilation and model calibration as part of
forward and inverse “predictive modeling” to obtain best-
estimate predicted results with reduced predicted uncertainties;
(e) prioritizing improvements while optimizing the model.

Response sensitivities are computed by using either
deterministic or statistical methods. The simplest deterministic
method for computing response sensitivities is to use finite-
difference schemes in conjunction with re-computations using
the model with “judiciously chosen” altered parameter values.
Evidently, such methods can at best compute approximate values
of a very limited number of sensitivities. Deterministic methods that
can compute more exactly the values of first-order sensitivities
include the “Green’s function method” (Kramer et al., 1981), the
“forward sensitivity analysis methodology” (Cacuci, 1981), and the
“direct method” (Dunker, 1984), which rely on analytical or
numerical differentiation of the computational model under
investigation to compute local response sensitivities exactly. On
the other hand, “statistical methods” construct an approximate
response distribution (often called “response surface”) in the
parameters space, and subsequently use scatter plots, regression,
rank transformation, correlations, and so-called “partial correlation
analysis,” in order to identify approximate expectation values,
variances and covariances for the responses. These statistical
quantities are subsequently used to construct quantities that play
the role of approximate first-order response sensitivities. Thus,
statistical methods commence with “uncertainty analysis” and
subsequently attempt an approximate “sensitivity analysis” of the
approximately computed model response (called a “response
surface”) in the phase-space of the parameters under
consideration. The currently popular statistical methods for
uncertainty and sensitivity analysis are broadly categorized as
sampling-based methods (Iman et al., 1981a; Iman et al., 1981b),
variance-based methods (Cukier et al., 1978; Hora and Iman, 1986),
and Bayesian methods (Rios Insua, 1990). Various variants of the
statistical methods for uncertainty and sensitivity analysis are
reviewed in the book edited by Saltarelli et al. (2000).

For a computational model comprising many parameters, the
conventional deterministic and statistical methods become
impractical for computing sensitivities higher than first-order
because they are subject to the “curse of dimensionality,” a term
coined by Bellman (1957) to describe phenomena in which the
number of computations increases exponentially in the respective
phase-space. It is known that the “adjoint method of sensitivity
analysis” has been the most efficient method for computing exactly
first-order sensitivities, since it requires a single large-scale (adjoint)
computation for computing all of the first-order sensitivities,
regardless of the number of model parameters. The idea
underlying the computation of response sensitivities with respect
to model parameters using adjoint operators was first used by
Wigner (1945) to analyze first-order perturbations in nuclear
reactor physics and shielding models based on the linear neutron
transport (or diffusion) equation, as subsequently described in
textbooks on these subjects (Weiberg and Wigner, 1958; Weisbin
et al., 1978; Williams, 1986; Shultis and Faw, 2000; Stacey, 2001).
Cacuci (1981) is credited (see, e.g., Práger and Kelemen, 2014; Luo
et al., 2020) for having conceived the rigorous “1st-order adjoint
sensitivity analysis methodology” for generic large-scale nonlinear
(as opposed to linearized) systems involving generic operator
responses and having introduced these principles to the earth,
atmospheric and other sciences.

Cacuci (2015), Cacuci (2016) has extended his 1st-order adjoint
sensitivity analysis methodology to enable the comprehensive and
exact computation of 2nd-order sensitivities of model responses to
model parameters (including imprecisely known domain
boundaries and interfaces) for large-scale linear and nonlinear
systems. The unparalleled efficiency of the 2nd-order adjoint
sensitivity analysis methodology for linear systems (Cacuci, 2015)
was demonstrated (see Cacuci and Fang, 2023, and references
therein) by applying this methodology to compute exactly the
21,976 first-order sensitivities and 482,944,576 second-order
sensitivities (of which 241,483,276 are distinct from each other)
for an OECD/NEA reactor physics benchmark (Valentine, 2006).
This benchmark is modeled by the neutron transport equation
involving 21,976 uncertain parameters, the solving of which is
representative of “large-scale computations.” The neutron
transport equation was solved using the software package
PARTISN (Alcouffe et al., 2008) in conjunction with the
MENDF71X cross section library (Conlin et al., 2013), which
comprises 618-group cross sections based on ENDF/
B-VII.1 nuclear data (Chadwick et al., 2011). The spontaneous
fission source was computed using the code SOURCES4C
(Wilson et al., 2002). Contrary to the widely held belief that
second- and higher-order sensitivities are negligeable for reactor
physics systems, it was found (see Cacuci and Fang, 2023, and
references therein) that many 2nd-order sensitivities of this OECD/
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NEA benchmark’s leakage response to the benchmark’s uncertain
parameters were much larger than the largest 1st-order ones, which
motivated the investigation of the largest 3rd-order sensitivities,
many of which were found to be even larger than the 2nd-order
ones. This finding has motivated the development of the
mathematical framework for determining and computing the
4th-order sensitivities, many of which were found to be larger
than the 3rd-order ones. This sequence of findings has motivated
the development by Cacuci (2022) of the “nth-Order
Comprehensive Adjoint Sensitivity Analysis Methodology for
Response-Coupled Forward/Adjoint Linear Systems” (which is
abbreviated as “nth-CASAM-L”). The “nth-CASAM-L”
mathematical framework was developed specifically for linear
systems because the most important model responses produced
by such systems can depend simultaneously on both the forward and
adjoint state functions governing the respective linear system.
Among the most important responses of linear systems that
involve both the forward and adjoint functions are various
Lagrangian functionals, the Raleigh quotient for computing
eigenvalues and/or separation constants when solving partial
differential equations, and the Schwinger functional for first-
order “normalization-free” solutions (see, e.g., Lewins, 1965;
Williams and Engle, 1977; Stacey, 2001). These functionals play
fundamental roles in optimization and control procedures,
derivation of numerical methods for solving equations
(differential, integral, integro-differential), etc. Nonlinear
operators do not admit adjoint operators, so responses in
nonlinear systems can only depend on the system’s forward state
functions. Therefore, the sensitivity analysis of responses that
simultaneously involve both forward and adjoint state functions
makes it necessary to treat linear models/systems in their own
right, rather than treating them as particular cases of
nonlinear systems.

The traditional methods of sensitivity analysis aim at computing
sensitivities of responses directly to the primary parameters
(i.e., microscopic cross sections, isotopic number densities, etc.)
involved in the computational model of the physical system under
consideration. Although the sensitivities to the primary model
parameters are ultimately of interest for subsequent use in
predictive modeling activities (which includes the quantification
of the uncertainties induced in responses by uncertainties in the
primary model parameters, assimilation of experimental data for
calibrating the model’s parameters and improving the model’s
predictions), the primary parameters seldom appear explicitly in
the equations underlying the model. For example, the primary
model parameters (e.g., microscopic cross sections, atomic
number densities) do not appear explicitly in the forward and
adjoint transport equations modeling (Cacuci and Fang, 2023)
the above-mentioned OECD/NEA reactor physics benchmark.
What appear explicitly in these equations are the macroscopic
cross sections, which are functions of the primary model
parameters, and which can be considered to be features of the
transport equation. This fact has motivated the development by
Cacuci (2024a), Cacuci (2024b) of the “nth-Order Features Adjoint
Sensitivity Analysis Methodology for Nonlinear Systems (nth-
FASAM-N),” which significantly reduces the computational effort
computing efficiently and exactly sensitivities of model responses to
model features (i.e., functions of the primary model responses), and

subsequently compute the sensitivities to responses to the primary
model parameters by using the sensitivities to the model features.

Paralleling the mathematical framework of the nth-FASAM-N,
it is the purpose of this work to develop a methodology which will
enable the efficient and exact computation of sensitivities of model
responses to model features for response-coupled forward and adjoint
linear systems; this newmethodology will be abbreviated as the “nth-
FASAM-L” methodology. The mathematical framework of this
methodology is established in Section 2 of this work by using the
proof by “mathematical induction” as follows: (i) establish the
mathematical framework underlying the nth-CASAM-L for n =
1; (ii) assume that the mathematical framework is valid for an
arbitrarily high-order, n; (iii) prove that the mathematical
framework proposed for n is also valid for n+1. Section 3
presents a concluding discussion that prepares the ground for an
illustrative application of the nth-FASAM-L methodology to a
representative energy-dependent neutron slowing down model of
fundamental importance to reactor physics, which will be presented
in an accompanying manuscript (because of word limitations per
article), designated as “Part II (Cacuci, 2024c).”

2 The Nth-order function/feature
adjoint sensitivity analysis methodology
for response-coupled forward and
adjoint linear systems (Nth-FASAM-L)

The mathematical framework of the nth-FASAM-L
methodology, to be presented in this Section, was established
while striving to maximize the computational efficiency of the
mathematical framework of the “nth-Order Comprehensive
Adjoint Sensitivity Analysis Methodology for Coupled Forward/
Adjoint Linear Systems” (abbreviated as: nth-CASAM-L)”
conceived by Cacuci (2022). The starting point for both the nth-
CASAM-L and the nth-FASAM-L is the generic mathematical
modeling of a response-coupled forward/adjoint linear system,
which is presented in Section 2.1, for convenient referencing.

The validity of mathematical framework underlying the nth-
FASAM-L methodology will be established in this Section by using
the “proof by mathematical induction” comprising the usual steps,
as follows:

1. Conjecture the pattern underlying the nth-FASAM-L, for
arbitrary n, based on prior experience.

2. Prove that the conjectured pattern for arbitrary n, is valid for
the lowest value of n, i.e., for n � 1.

3. Assuming that that the pattern underlying the nth-FASAM-L
is valid for an arbitrarily high-order n, prove that this pattern is
also valid for n → n + 1, i.e., for the (n + 1)th-FASAM-L.

2.1 Mathematical modeling of response-
coupled linear forward and adjoint systems
establishing the mathematical framework of
the nth-FASAM-L methodology

The mathematical model of a process and/or state of a physical
system comprises equations that relate the system’s independent
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variables and parameters to the system’s state/dependent variables.
A linear physical system can generally be modeled by a system of
coupled equations written generically in operator form as follows:

L x; g α( )[ ]φ x( ) � Q x; g α( )[ ], x ∈ Ω α( ). (1)

The quantities that appear in Eq. 1 are defined as follows:

1. The vector φ(x) ≜ [φ1(x), . . . ,φTD(x)]† is a TD-dimensional
column vector of dependent variables and where the sub/
superscript “TD” denotes the “Total (number of) Dependent
variables.” The functions φi(x), i � 1, ..., TD, denote the
system’s “dependent variables” (also called “state
functions”). The symbol “≜” denotes “is defined as” or “is
by definition equal to.” Transposition is indicated by a dagger
(†) superscript.

2. The components of the vector α ≜ (α1, . . . , αTP)† ∈ RTP

denote the primary model parameters, where the subscript/
superscript “TP” indicates “Total number of Primary
Parameters” and where RTP denotes the TP-dimensional
subset of the set of real scalars. Without loss of generality,
the model parameters can be considered to be real scalar
quantities, having known nominal (or mean) values and,
possibly, known higher-order moments or cumulants
(i.e., variance/covariances, skewness, kurtosis), which are
usually determined from experimental data and/or processes
external to the physical system under consideration. These
imprecisely known model parameters are considered to
include imprecisely known geometrical parameters that
characterize the physical system’s boundaries in the phase-
space of the model’s independent variables. The nominal
parameter values will be denoted as α0 ≜ [α01, ..., α0i , .., α0TP]†;
the superscript “0” will be used throughout this work to denote
“nominal” or “mean” values.

3. The components of the TI-dimensional column vector
x ≜ (x1, . . . , xTI)† ∈ RTI denote the model’s independent
variables xi, i � 1, ..., TI, where the sub/superscript “TI” denotes
the “Total number of Independent variables.” The vector x ∈ RTI

of independent variables is considered to be defined on a
phase-space domain Ω(α) ≜ −∞ ≤ λi(α) ≤ xi ≤ ωi(α) ≤∞ ;{
i � 1, ..., TI}, the boundaries of which may depend on some
of the model parameters α. The lower boundary-point of an
independent variable is denoted as λi(α), while the
corresponding upper boundary-point is denoted as ωi(α). The
boundary of Ω(α), which will be denoted as ∂Ω[λ(α); ω(α)],
comprises the set of all of the endpoints λi(α), ωi(α), i � 1, ..., TI,
of the respective intervals on which the components of x are
defined, i.e., ∂Ω[λ(α); ω(α)] ≜ λi(α) ∪ ωi(α), i � 1, ..., TI{ }.

4. The components Lij(x; α) of the TD × TD-dimensional
matrix L(x; α) ≜ [Lij(x; α) ], i, j � 1, ..., TD, are operators
that act linearly on the dependent variables φj(x) and also
depend on the uncertain model parameters α.

5. The vector g(α) ≜ [g1(α), . . . , gTG(α)] is a TG-dimensional
vector having components gi(α), i � 1, ..., TG, which are real-
valued functions of (some of) the primary model parameters
α ∈ RTP. The quantity TG denotes the total number of such
functions which appear exclusively in the definition of the
model’s underlying equations. Such functions customarily
appear in models in the form of correlations that describe

“features” of the system under consideration, such as material
properties, flow regimes. etc. Usually, the number of functions
gi(α) is considerably smaller than the total number of model
parameters, i.e., TG≪TP. For example, the numerical model
(Cacuci and Fang, 2023) of the OECD/NEA “Polyethylene-
Reflected Plutonium” reactor physics benchmark (Valentine,
2006) comprises 21,976 uncertain primary model parameters
(including microscopic cross sections and isotopic number
densities) but the neutron transport equation, which is
solved numerically to determine the neutron flux
distribution within the benchmark, does not use these
primary parameters directly but instead uses just several
hundreds of “group-averaged macroscopic cross sections”
which are functions/features of the microscopic cross
sections and isotopic number densities (which in turn are
uncertain quantities that would be components of the vector
of primary model parameters). In particular, a component
gj(α) may simply be one of the primary model parameters
αj, i.e., gj(α) ≡ αj.

6. The TD-dimensional column vectorQ[x;g(α)]≜ (q1, ....,qTD)†,
having components qi[x;g(α)], i� 1, ...,TD, denotes
inhomogeneous source terms, which usually depend
nonlinearly on the uncertain parameters α. Since the right-side
of Eq. 1 may contain distributions, the equality in this equation is
considered to hold in the weak (i.e., “distributional”) sense.
Similarly, all of the equalities that involve differential equations
in this work will be considered to hold in the distributional sense.

7. When L[x; g(α)] contains differential operators,
corresponding boundary and initial conditions which define
the domain of L[x; g(α)] must also be given. Since the
complete mathematical model is considered to be linear in
φ(x), the boundary and/or initial conditions needed to define
the domain of L[x; g(α)] must also be linear in φ(x). Such
linear boundary and initial conditions are represented in the
following operator form:

B x; g α( ); λ α( );ω α( )[ ] φ x( ) � C x; g α( ); λ α( );ω α( )[ ],
x ∈ ∂Ω λ α( );ω α( )[ ] (2)

In Eq. 2, the quantity B[x; g(α); λ(α);ω(α)] denotes a matrix
of dimensions NB × TD having components denoted as
Bij(x; α); i � 1, ..., NB; j � 1, ..., TD, which are operators that act
linearly on φ(x) and nonlinearly on the components of g(α); the
quantity NB denotes the total number of boundary and initial
conditions. The NB-dimensional column vector
C[x; g(α); λ(α);ω(α)] comprises components that are operators
which, in general, act nonlinearly on the components of g(α).

Physical problems modeled by linear systems and/or operators
are naturally defined in Hilbert spaces. The dependent variables
φi(x), i � 1, ..., TD, for the physical system represented by Eqs 1, 2
are considered to be square-integrable functions of the
independent variables and are considered to belong to a Hilbert
space which will be denoted as H0(Ω), where the subscript “zero”
denotes “zeroth-level” or “original.” Higher-level Hilbert spaces,
which will be denoted as H1(Ω),H2(Ω), etc., will also be
introduced and used in this work. The Hilbert space H0(Ω) is
considered to be endowed with the following inner product,
denoted as 〈φ(x),ψ(x)〉0, between two elements φ(x) ∈ H0(Ω)
and ψ(x) ∈ H0(Ω):
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〈φ x( ),ψ x( )〉0 ≜ ∏TI
i�1

∫ωi α( )

λi α( )
φ x( ) · ψ x( ) dx

�∑TD
j�1

∫ω1 α( )

λ1 α( )
... ∫ωi α( )

λi α( )
... ∫ωTI α( )

λTI α( )
φj x( )ψj x( ) dx1 ...dxi...dxTI.

(3)
The “dot” in Eq. 3 indicates the “scalar product of two vectors,”

which is defined in Eq. 4, below, as follows:

φ x( ) · ψ x( ) ≜ ∑TD
i�1

φi x( )ψi x( ). (4)

The product-notation ∏TI
i�1

∫ωi(α)

λi(α)
[]dxi in Eq. 3 denotes the

respective multiple integrals.
The linear operator L[x; g(α)] admits an adjoint operator,

which will be denoted as L*[x; g(α)] and which is defined
through the following relation for a vector ψ(x) ∈ H0:

〈ψ x( ), L x; g α( )[ ] φ x( )〉0 � 〈L* x; g α( )[ ] ψ x( ),φ x( )〉0
� 〈ψ x( ),Q x; g α( )[ ]〉0
� 〈Q* x; g α( )[ ],φ x( )〉0. (5)

In Eq. 5, the formal adjoint operator L*[x; g(α)] is the TD × TD
matrix comprising elements Lji*[x; g(α)] which are obtained by
transposing the formal adjoints of the forward operators
Lij[x; g(α)]. Hence, the system adjoint to the linear system
represented by Eqs 1, 2 can generally be represented as follows:

L* x; g α( )[ ]ψ x( ) � Q* x; g α( )[ ], x ∈ Ω α( ), (6)
B* x; g α( ); λ α( );ω α( )[ ]ψ x( ) � C* x; g α( ); λ α( );ω α( )[ ],

x ∈ ∂Ω λ α( );ω α( )[ ]. (7)

When the forward operator L[x; g(α)] comprises differential
operators, the operations (e.g., integration by parts) that implement
the transition from the left-side to the right side of Eq. 5 give rise to
boundary terms which are collectively called the “bilinear
concomitant.” The domain of L*[x; g(α)] is determined by
selecting adjoint boundary and/or initial conditions so as to
ensure that the bilinear concomitant vanishes when the selected
adjoint boundary conditions are implemented together with the
forward boundary conditions given in Eq. 2. The adjoint boundary
conditions thus selected are represented in operator form by Eq. 7.

The results computed using a mathematical model are
customarily called “model responses” (or “system responses” or
“objective functions” or “indices of performance”). For linear
physical systems, the system’s response may depend not only
on the model’s state-functions and on the system parameters
but may simultaneously also depend on the adjoint state
function. As has been discussed by Cacuci (2022, 2023a),
Cacuci D. G. (2023), any response of a linear system can be
formally represented (using expansions or interpolation, if
necessary) and fundamentally analyzed in terms of the
following generic integral representation:

R φ x( ),ψ x( ); f α( )[ ] ≜ ∫ω1 α( )

λ1 α( )
... ∫ωTI α( )

λTI α( )
S φ x( ),ψ x( ); g α( ); h α( ); x[ ]dx1...dxTI,

(8)

where S[φ(x),ψ(x); g(α); h(α); x] is a suitably differentiable
nonlinear function of φ(x),ψ(x), and α. The integral
representation of the response provided in Eq. 8 can represent
“averaged” and/or “point-valued” quantities in the phase-space of
independent variables. For example, if R[φ(x),ψ(x); f(α)]
represents the computation or the measurement (which would be
a “detector-response”) of a quantity of interest at a point xd in the
phase-space of independent variables, then S[φ(x),ψ(x); g(α);
h(α); x] would contain a Dirac-delta functional of the form
δ(x − xd). Responses that represent “differentials/derivatives of
quantities” would contain derivatives of Dirac-delta functionals
in the definition of S[φ(x),ψ(x); g(α); h(α); x]. The vector
h(α) ≜ [h1(α), . . . , hTH(α)], having components hi(α), i � 1, ...,
TH, which appears among the arguments of the function
S[φ(x),ψ(x); g(α); h(α); x], represents functions of primary
parameters that often appear solely in the definition of the
response but do not appear in the mathematical definition of the
model, i.e., in Eqs 1, 2, 6, 7. The quantity TH denotes the total
number of such functions which appear exclusively in the definition
of the model’s response. Evidently, the response will depend directly
and/or indirectly (through the “feature”-functions) on all of the
primary model parameters. This fact has been indicated in Eq. 8 by
using the vector-valued function f(α) as an argument in the
definition of the response R[φ(x),ψ(x); f(α)] to represent the
concatenation of all of the “features” of the model and response
under consideration. The vector f(α) of “model features” is thus
defined as follows:

f α( ) ≜ g α( ); h α( ); λ α( );ω α( )[ ]† ≜ f1 α( ), ..., fTF α( )[ ]†; TF ≜ TG

+ TH + 2TI.

(9)
As defined in Eq. 9, the quantity TF denotes the total number of

“feature functions of the model’s parameters” which appear in the
definition of the nonlinear model’s underlying equations
and response.

Solving Eqs 1, 2, at the nominal (or mean) values, denoted as
α0 ≜ [α01, ..., α0i , .., α0TP]†, of the model parameters, yields the nominal
forward solution, which will be denoted as φ0(x). Solving Eqs 6, 7 at
the nominal values, α0, of the model parameters yields the nominal
adjoint solution, which will be denoted as ψ0(x). The nominal value
of the response, R[φ0(x),ψ0(x); f(α0)], is determined by using the
nominal parameter values α0, the nominal value φ0(x) of the
forward state function, and the nominal value ψ0(x) of the
adjoint state function.

The definition provided by Eq. 8 implies that the model response
R[φ(x),ψ(x); f(α)] depends on the components of the feature
function f(α), and would therefore admit a Taylor-series
expansion around the nominal value f0 ≜ f(α0), having the
following form:

R f α( )[ ] � R f0( ) + ∑TF
j1�1

∂R f( )
∂fj1

{ }
f0
δfj1 +

1
2
∑TF
j1�1

× ∑TF
j2�1

∂2R f( )
∂fj1∂fj2

{ }
f0
δfj1δfj2 + ... (10)

where δfj ≜ [fj(α) − f0
j]; f0

j ≜ fj(α0) ; j � 1, ..., TF. The
“sensitivities of the model response with respect to the (feature)
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functions” are naturally defined as being the functional derivatives of
R[f(α)] with respect to the components (“features”) fj(α) of f(α).
The notation ·{ }f0 indicates that the quantity enclosed within the
braces is to be evaluated at the nominal values f0 ≜ f(α0). Since
TF≪TP, there will be fewer derivatives of the response with respect
to the feature functions than there are response derivatives with
respect to the primary model parameters. Hence, the computations
of the functional derivatives of R[f(α)] with respect to the functions
fj(α), which appear in Eq. 10, will be considerably less expensive
computationally than the computation of the functional derivatives
involved in the Taylor-series of the response with respect to the
model parameters. The functional derivatives of the response with
respect to the primary parameters can be obtained from the
functional derivatives of the response with respect to the
“feature” functions fj(α) by simply using the chain rule, i.e.,:

∂R α( )
∂αj1

{ }
α0
� ∑TF

i1�1

∂R f( )
∂fi1

∂fi1 α( )
∂αj1

{ }
α0
;

∂2R α( )
∂αj1∂αj2
{ }

α0

� ∂

∂αj2
∑TF
i1�1

∂R f( )
∂fi1

∂fi1 α( )
∂αj1

{ }
α0
; (11)

and so on. The evaluation/computation of the functional derivatives
∂fi1(α)/∂αj1, ∂2fi1(α)/∂αj1∂αj2, etc., does not require computations
involving the model, and is therefore trivial (computationally) by
comparison to the evaluation of the functional derivatives
(“sensitivities”) of the response with respect to either the functions
(“features”) fj(α) or the model parameters αi, i � 1, ..., TP.

The range of validity of the Taylor-series shown in Eq. 10 is
defined by its radius of convergence. The accuracy −as opposed to
the “validity”− of the Taylor-series in predicting the value of the
response at an arbitrary point in the phase-space of model
parameters depends on the order of sensitivities retained in the
Taylor-expansion: the higher the respective order, the more accurate
the respective response value predicted by the Taylor-series. In the
particular cases when the response happens to be a polynomial
function of the “feature” functions fj(α), the Taylor series is
actually exact.

In turn, the functions fi(α) can also be formally expanded in a
multivariate Taylor-series around the nominal (mean) parameter
values α0, namely,:

fi α( ) � fi α0( ) + ∑TP
j1�1

∂fi α( )
∂αj1

{ }
α0
δαj1 +

1
2
∑TP
j1�1

× ∑TP
j2�1

∂2fi α( )
∂αj1∂αj2
{ }

α0
δαj1δαj2 +

1
3!
∑TP
j1�1
∑TP
j2�1

× ∑TP
j3�1

∂3fi α( )
∂αj1∂αj2∂αj3
{ }

α0
δαj1δαj2δαj3 + ..., (12)

The domain of validity of the Taylor-series in Eq. 12 is defined
by its own radius of convergence.

The choice of feature functions fi(α) is not unique but can be
tailored by the user to the problem at hand. The two most important
guiding principles for constructing the feature functionsfi(α) based
on the primary parameters are as follows:

(i) As shown in Section 2.2 while establishing the mathematical
framework underlying the nth-FASAM-L, the number of

large-scale computations needed to determine the
numerical value of the second- and higher-order
sensitivities is proportional to the number of first-order
sensitivities of the model’s response with respect to the
feature functions fi(α). Consequently, it is important to
minimize the number of feature functions fi(α), while
ensuring that all of the primary model parameters are
encompassed within the expressions constructed for the
feature functions fi(α). In the extreme case when some
primary parameters, αj, cannot be grouped into the
expressions of the feature functions fi(α), then each of the
respective primary model parameters αj becomes a feature
function fj(α).

(ii) The expressions of the features functions fi(α) must be
independent of the model’s state functions; they must be
exact, closed-form, scalar-valued functions of the primary
model parameters αj, so the exact expressions of the
derivatives of fi(α) with respect to the primary model
parameters αj can be obtained analytically (with “pencil
and paper”). The motivation for this requirement is to
ensure that the numerical determination of the subsequent
derivatives of the features functions fi(α) with respect to the
primary model parameters αj becomes trivial
computationally. In the extreme case when no feature
function can be constructed, the feature functions are the
primary parameters themselves, in which case the nth-
FASAM-L methodology becomes identical to the
previously established nth-CASAM-L methodology
(Cacuci, 2022)

2.2 Establishing the mathematical
framework of the nth-FASAM-L
methodology

Cacuci D. G. (2023), Cacuci (2024a), Cacuci (2024b) has
recently developed the “nth-Order Features Adjoint Sensitivity
Analysis Methodology for Nonlinear Systems (nth-FASAM-N)”
which enables the computation of arbitrarily-high-order
sensitivities of responses to features/functions of parameters for
nonlinear models/systems. Together, the nth-CASAM-L and the
nth-FASAM-N provide the basis for the development of the “nth-
Order Features Adjoint Sensitivity Analysis Methodology for
Response-Coupled Forward and Adjoint Linear Systems (Nth-
FASAM-L)” to be presented in this Section. In particular,
comparing the mathematical framework of the 1st-FASAM-L to
the framework of the 1st-CASAM-L (Cacuci and Fang, 2023)
suggests that the components fi(α), i � 1, ..., TF, of the “feature
function” f(α) ≜ [f1(α), ..., fTF(α)]† will play within the 1st-
FASAM-L the same role as played by the components
αj, j � 1, ..., TP, of the “vector of primary model parameters”
α ≜ (α1, . . . , αTP)† within the framework of the 1st-CASAM-L. It
can therefore be conjectured that the same correspondence would be
expected to hold in general, between the general frameworks of the
nth-FASAM-L and the nth-CASAM-L methodologies. As will be
demonstrated in this Section, this conjecture is indeed correct.

Considering the analogy to the framework of the nth-CASAM-L
methodology (Cacuci, 2022), it is conjectured that that the
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G-differential of the (n-1)th-order sensitivity of the model’s response
R[u(x); f(α)] with respect to the components f1, ..., fTF of the
“feature” function f(α) ≜ [f1(α), ..., fTF(α)]† will have the
following form:

δR n−1( ) jn−1; ...; j1;u n( ); f[ ]{ }
α0

� ∑TF
jn�1

∂

∂fjn

∫ω1 α( )

λ1 α( )
dx1... ∫

ωTI α( )

λTI α( )
dxTIS

n−1( ) jn−1, ..., j1;u n( ); α( )δfjn

⎧⎪⎪⎨⎪⎪⎩
⎫⎪⎪⎬⎪⎪⎭

α0

+ 〈a n( ) jn−1, ..., j1; x( ), q n( )
V 2n;u n( ) 2n; x( ); f ; δf[ ] 〉n{ }

α0

− P̂
n( )

a n( );u n( ); f ; δf( ){ }
α0
≡ ∑TF

jn�1
R n( ) jn, ..., j1;u

n( ); a n( ); f( ){ } α0( )δfjn,

(13)

such that the nth-order sensitivity of the model’s response
R[u(x); f(α)] with respect to the components fj1, ..., fjn of the
“feature” function f(α) ≜ [fj1(α), ..., fjn(α)]† is expected to have
the following functional form:

R n( ) jn; ...; j1; u
n( ) 2n; jn−2, ..., j1; x( ); a n( ) 2n; jn−1, ..., j1; x( ); f α( )[ ]

≜ ∫ω1 α( )

λ1 α( )
dx1... ∫

ωTI α( )

λTI α( )
dxTIS

n( ) jn; ...; j1;u
n( ); a n( ); f α( )[ ]

≜ ∂nR u x( ); f α( )[ ]/∂fjn ...∂fj1; j1 � 1, ..., TF; jn � 1, ..., jn−1; n � 2, 3, ...

(14)

where TF denotes the “total number of features,” i.e., functions of
the primary model parameters.

It is also conjectured that the nth-level adjoint functions
u(n)(2n; jn−2, ..., j1; x) and a(n)(jn−1, ..., j1; 2n; x), which are needed
to compute the nth-order sensitivities shown in Eq. 14, are obtained
as follows:

(i) u(n)(2n; jn−2, ..., j1; x) ≜ [u(n−1)
(2n−1; jn−3, ..., j1; x), a(n−1)(2n−1; jn−2, ..., j1; x)]† are the
solutions of the following nth-Level Forward/Adjoint System
(nth-LFAS) for jn � 1, ..., jn−1; n≥ 3:

F n( ) 2n × 2n; f α( )[ ]u n( ) 2n; jn−2, ..., j1; x( )
� q n( )

F 2n; u n−1( ); f α( )[ ]; x ∈ Ω ; (15)
b n( )
F 2n; u n( ); f( ) � 0; x ∈ ∂Ω; (16)

(ii) a(n)(jn−1, ..., j1; 2n; x) are the solutions of the following nth-
Level Adjoint Sensitivity System (nth-LASS) for jn �
1, ..., jn−1; n≥ 3:

A n( ) 2n × 2n; f α( )[ ]a n( ) 2n; jn−1, ..., j1; x( ) � s n( ) 2n; u n( ); f( ); x ∈ Ω;

(17)
b n( )
A u n( ) 2n; jn−1, ..., j1; x( ); a n( ) 2n; jn−1, ..., j1; x( ); f[ ]{ }

α0
� 0, x ∈ ∂Ω.

(18)
Through their implicit dependence on lower-level forward and

adjoint functions, the block-matrix valued operators
F(n)[2n × 2n; f(α)] and A(n) [2n × 2n; f(α)], as well as the source
terms q(n)F [2n; u(n−1); f(α)] and s(n)(2n; u(n); f), also depend on
lower-level indices jk, k< n, but this dependence is not material
to establishing the general framework of the nth-FASAM-L and has
therefore been omitted, to keep the notation as simple as possible.

2.3 Proving that the conjectured
mathematical framework of the nth-FASAM-
L methodology is correct for n � 1

The proof that the framework conjectured in Section 2.2 for the
nth-FASAM-L methodology is indeed correct/valid when n � 1 (for
the 1st-FASAM-L methodology) parallels the proof used in (Cacuci,
2022) to show that the framework of the nth-CASAM-L
methodology reduces to the corresponding 1st-CASAM-L
methodology when n � 1. In preparation for subsequent
generalizations towards establishing the generic pattern for
computing sensitivities of arbitrarily high-order, the function
u(1)(2; x) ≜ [φ(x),ψ(x)]† will be called the “1st-level forward/
adjoint function” and the system of equations satisfied by this
function (which is obtained by concatenating the original
forward and adjoint equations together with their respective
boundary/initial conditions) will be called “the 1st-Level Forward/
Adjoint System (1st-LFAS)” and will be re-written in the following
concatenated matrix-form:

F 1( ) 2 × 2; x; f[ ]u 1( ) 2; x( ) � q 1( )
F 2; x; f( ); x ∈ Ω α( ) ; (19)

b 1( )
F u 1( ) 2; x( ); f[ ] � 0; x ∈ ∂Ω λ α( );ω α( )[ ]; (20)

where the following definitions were used:

F 1( ) 2 × 2; x; f[ ] ≜ L x; f( ) 0
0 L* x; f( )( );

u 1( ) 2; x( ) ≜ φ x( ),ψ x( )[ ]†;
(21)

q 1( )
F 2; x; f( ) ≜ Q x; g( )

Q* x; g( )( );
b 1( )
F 2; u 1( ) 2; x( ); f[ ] ≜ B x; f( )φ x( ) − C f( )

B* x; f( )ψ x( ) − C* f( )( ). (22)

In the list of arguments of the matrix F(1)[2 × 2; x; f], the
argument “2 × 2” indicates that this square matrix comprises
four component sub-matrices, as indicated in Eq. 21. Similarly,
the argument “2” that appears in the block-vectors u(1)(2; x),
q(1)F (2; x; f), and b(1)F [2; u(1)(2; x); f] defined in Eq. 22 indicates
that each of these column block-vectors comprises two sub-vectors
as components. Also, throughout this work, the quantity “0” will be
used to denote either as a vector with zero-valued components or a
matrix zero-valued components, depending on the context. For
example, the vector “0” in Eq. 20 is considered to have as many
components as the vector b(1)F [u(1)(2; x); f]. On the other hand, the
quantity “0” which appears in Eq. 21 may represent either a (sub)
matrix or a vector of the requisite dimensions.

The primary parameters α are subject to uncertainties; their
nominal (or mean) values, denoted as α0, are considered to be
known, but these values will differ from the true values α, which
are unknown, by variations δα ≜ (δα1, . . . , δαTP)†, where
δαi ≜ αi − α0i . The parameter variations δα will induce
variations δf(α) ≜ [δf1(α), . . . , δfTF(α)]† in the vector-valued
“feature” function f(α), around the nominal value f0 ≜ f(α0),
and will also induce variations δφ(x) and δψ(x), respectively,
around the nominal solutions φ0,ψ0, through the equations
underlying the model. All of these variations will induce
variations in the model response R[u(1)(2; x); f] ≡
R[φ(x),ψ(x); f(α)].
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Formally, the first-order sensitivities of the response R[u(1)(2; x); f]
with respect to the components of the feature function f(α) are provided
by the first-order Gateaux (G-)variation of R(φ,ψ, f) at the phase-space
point (φ0,ψ0, f0), which is defined as follows:

δR φ0,ψ0, f0; δφ, δψ, δf( ) ≜ d

dε
R φ0 x( ) + εδφ x( ),ψ0 x( ) + εδψ x( ); f0 + εδf[ ]{ }

ε�0

≡
d

dε
R u 1,0( ) 2; x( ) + εv 1( ) 2; x( ); f0 + εδf[ ]{ }

ε�0

≡ δR u 1,0( ) 2; x( ); f0; v 1( ) 2; x( ), δf[ ]. (23)

The definitions provided in Eq. 24, below, were used in Eq. 23:

u 1,0( ) 2; x( ) ≜ φ0 x( ),ψ0 x( )[ ]†; v 1( ) 2; x( ) ≜ δφ x( ), δψ[ ]†. (24)

The numerical methods (e.g., Newton’s method and variants
thereof) for solving large-scale systems require the existence of the
first-order G-derivatives of the original model equations and of the
model’s response; these will be assumed to exist. When the 1st-order
G-derivatives exists, the variation δR[u(1,0)(2; x); f0; v(1)(2; x), δf]
can be written as follows:

δR u 1,0( ) 2; x( ); f0; v 1( ) 2; x( ), δf[ ] � δR u 1( ) 2; x( ); f ; δf[ ]{ }
dir

+ δR u 1( ) 2; x( ); f; v 1( ) 2; x( )[ ]{ }
ind
.

(25)

In Eq. 25, the “direct-effect” term δR[u(1)(2; x); f ; δf]{ }dir
comprises only dependencies on δf(α) and is defined as follows:

δR u 1( ) 2; x( ); f ; δf[ ]{ }
dir

≜
∂R u 1( ); f( )

∂f
δf{ }

α0
. (26)

The following convention/definition was used in Eq. 26:

∂[]
∂f

δf ≜ ∑TF
i�1

∂[]
∂fi

δfi �∑TG
i�1

∂[]
∂gi

δgi +∑TH
i�1

∂[]
∂hi

δhi +∑TI
i�1

∂[]
∂ωi

δωi

+∑TI
i�1

∂[]
∂λi

δλi. (27)

The notation on the left-side of Eq. 27 represents the inner product
between two vectors, but the “dagger” symbol “(†)” which indicates
“transposition” has been omitted in order to keep the notation as simple
as possible. “Daggers” indicating transposition will also be omitted in
other inner products, whenever possible, while avoiding ambiguities.

In Eq. 25, the “indirect-effect” term δR[u(1)(2; x); f ; v(1)(2;{
x)]}ind depends only on the variations v(1)(2; x) ≜ [δφ(x), δψ]† in
the state functions, and is defined as follows:

δR u 1( ) 2; x( ); f ; v 1( ) 2; x( )[ ]{ }
ind

≜ ∫ω1 α( )

λ1 α( )
dx1... ∫

ωTI α( )

λTI α( )
dxTI

∂S φ,ψ; g; h( )
∂u 1( ) 2; x( ) v 1( ) 2; x( )

⎧⎪⎪⎨⎪⎪⎩
⎫⎪⎪⎬⎪⎪⎭

α0

≜ ∫ω1 α( )

λ1 α( )
dx1... ∫

ωTI α( )

λTI α( )
dxTI

∂S φ,ψ; g; h( )
∂φ

δφ

⎧⎪⎪⎨⎪⎪⎩
⎫⎪⎪⎬⎪⎪⎭

α0

+ ∫ω1 α( )

λ1 α( )
dx1... ∫

ωTI α( )

λTI α( )
dxTI

∂S φ,ψ; g; h( )
∂ψ

δψ

⎧⎪⎪⎨⎪⎪⎩
⎫⎪⎪⎬⎪⎪⎭

α0

. (28)

In Eqs 26, 28, the notation { }α0 has been used to indicate that
the quantity within the brackets is to be evaluated at the nominal
values of the parameters and state functions. This simplified
notation is justified by the fact that when the parameters take on
their nominal values, it implicitly means that the corresponding
state functions also take on their corresponding nominal values.
This simplified notation will be used throughout this work.

The direct-effect term can be computed after having solved the
forward system modeled by Eqs 1, 2, as well as the adjoint system
modeled by Eqs 6, 7, using the nominal parameter values to obtain
the nominal values φ0,ψ0 of the forward and adjoint
dependent variables.

On the other hand, the indirect-effect term
δR[u(1)(2; x); f ; v(1)(2; x)]{ }ind defined in Eq. 28 can be
quantified only after having determined the variations
v(1)(2; x) ≜ [δφ(x), δψ]† in the state functions of the 1st-Level
Forward/Adjoint System (1st-LFAS). The variations v(1)(2; x) are
obtained as the solutions of the system of equations obtained by
taking the first-order G-differentials of the 1st-LFAS defined by Eqs
19, 20, which are obtained by definition as follows:

d

dε
F 1( ) 2 × 2; x; f0 + εδf[ ] u 1,0( ) 2; x( ) + εv 1( ) 2; x( )[ ]{ }

ε�0

� d

dε
q 1( )
F 2; x; f0 + εδf[ ]{ }

ε�0
, (29)

d

dε
b 1( )
F 2; u 1,0( ) 2; x( ) + εv 1( ) 2; x( ); f0 + εδf[ ]{ }

ε�0
� 0 2[ ] . (30)

Carrying out the differentiations with respect to ε in Eqs 29, 30
and setting ε � 0 in the resulting expressions yields the following
matrix-vector equations:

V 1( ) 2 × 2; x; f[ ]v 1( ) 2; x( ){ }α0 � q 1( )
V 2; u 1( ) 2; x( ); f ; δf[ ]{ }

α0
;

x ∈ Ω α0( ); (31)

b 1( )
v u 1( ); v 1( ); f ; δf( ){ }

α0
� 0; x ∈ ∂Ω λ α0( );ω α0( )[ ]; (32)

where:

V 1( ) 2 × 2; x; f[ ] ≜ L x; f( ) 0
0 L* x; f( )( ) � F 1( ) 2 × 2; x; f[ ]; (33)

q 1( )
V 2; u 1( ); f ; δf[ ] ≜ q 1( )

1 φ; f ; δf( )
q 1( )
2 ψ; f ; δf( )( );

b 1( )
v u 1( ); v 1( ) ; f ; δf( ) ≜ b 1( )

1 φ; δφ; f ; δf( )
b 1( )
2 ψ; δψ; f ; δf( )( ); (34)

q 1( )
1 φ; f ; δf( ) ≜ ∂ Q − Lφ x( )[ ]

∂f
δf ≜ ∑TF

j1�1
s 1( )
1 j1;φ; f( )δfj1 (35)

q 1( )
2 ψ, f ; δf( ) ≜ ∂ Q* − L*ψ x( )[ ]

∂f
δf ≜ ∑TF

j1�1
s 1( )
2 j1;ψ; f( )δfj1 (36)

b 1( )
1 φ; δφ; f ; δf( ) ≜ Bδφ + ∂ Bφ − C( )

∂f
δf ; (37)

b 1( )
2 ψ; δψ; f ; δf( ) ≜ B*δψ + ∂ B*ψ − C*( )

∂f
δf . (38)

In order to keep the notation as simple as possible in Eqs 31‒38,
the differentials with respect to the various components of the
feature function f(α) have all been written in the form
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(∂[]/∂f)δf , keeping in mind the convention/notation introduced
in Eq. 27. The system of equations comprising Eqs 31, 32 will be
called the “1st-Level Variational Sensitivity System (1st-LVSS)”
and its solution, v(1)(2; x), will be called the “1st-level
variational sensitivity function,” which is indicated by the
superscript “(1)”. The solution, v(1)(2; x), of the 1st-LVSS
will be a function of the components of the vector of
variations δf . In principle, therefore, if the response
sensitivities with respect to the components of the feature
function f(α) are of interest, then the 1st-LVSS would need
to be solved as many times as there are components in the
variational features-function δf . On the other hand, if the
response sensitivities with respect to the primary parameters
are of interest, then the 1st-LVSS would need to be solved as
many times as there are primary parameters. Solving the 1st-
LVSS involves “large-scale computations.”

Solving the 1st-LVSS can be avoided altogether by using the
ideas underlying the “adjoint sensitivity analysis methodology”
originally conceived by Cacuci (1981), and subsequently
generalized by Cacuci (2022), Cacuci D. G. (2023) to enable
the computation of arbitrarily high-order response
sensitivities to primary model parameters for both linear
and nonlinear models. Thus, the need for solving repeatedly
the 1st-LVSS for every variation in the components of the
feature function (or for every variation in the model’s
parameters) is eliminated by expressing the indirect-effect
term δR[u(1)(2; x); f ; v(1)(2; x)]{ }ind defined in Eq. 28 in terms
of the solutions of the “1st-Level Adjoint Sensitivity System”

(1st-LASS), which will be constructed by implementing the
following sequence of steps:

1. Introduce a Hilbert space, denoted as H1, comprising vector-
valued elements of the form χ(1)(2; x) ≜ [χ(1)1 (x), χ(1)2 (x)]†,
where the components χ(1)i (x) ≜ [χ(1)i,1 (x), ..., χ(1)i,j (x), ...,
χ(1)i,TD(x)]†, i � 1, 2, are square-integrable functions. Consider
further that this Hilbert space is endowed with an inner
product denoted as 〈χ(1)(2; x), θ(1)(2; x)〉1 between two
elements, χ(1)(2; x) ∈ H1, θ(1)(2; x) ∈ H1, which is defined
as follows:

〈χ 1( ) 2; x( ), θ 1( ) 2; x( )〉1 ≜∑2
i�1
〈χ 1( )

i x( ), θ 1( )
i x( )〉0. (39)

2. In the Hilbert H1, use Eq. 39 to form the inner product of Eq.
31 with a yet undefined vector-valued function
a(1)(2; x) ≜ [a(1)1 (x), a(1)2 (x)]† ∈ H1 to obtain the
following relation:

〈a 1( ) 2; x( ),V 1( ) 2 × 2; x; f0[ ]v 1( ) 2; x( )〉1{ }α0
� 〈a 1( ) 2; x( ), q 1( )

V 2; u 1( ) 2; x( ); f ; δf[ ] 〉1{ }
α0
. (40)

3. Using the definition of the adjoint operator in the Hilbert space
H1, recast the left-side of Eq. 40 as follows:

〈a 1( ) 2; x( ),V 1( ) 2 × 2; x; f[ ]v 1( ) 2; x( )〉1{ }α0
� 〈v 1( ) 2; x( ),A 1( ) 2 × 2; x; f[ ]a 1( ) 2; x( ) 〉1{ }α0

+ P 1( ) v 1( ) 2; x( ); a 1( ) 2; x( ); f ; δf[ ]{ }
α0
, (41)

where P(1)[v(1)(2; x); a(1)(2; x); f ; δf]{ }α0 denotes the bilinear
concomitant defined on the phase-space boundary x ∈ ∂Ω(α0),
and where A(1)[2 × 2; x; f] is the operator formally adjoint to
V(1)[2 × 2; x; f], as defined in Eq. 42 below:

A 1( ) 2 × 2; x; f[ ] ≜ V 1( ) 2 × 2; x; f[ ]{ }* � L* x; f( ) 0
0 L x; f( )( ). (42)

4. Require the first term on right-side of Eq. 41 to represent the
indirect-effect term defined in Eq. 28, to obtain the
following relation:

A 1( ) 2 × 2; x; f[ ]a 1( ) 2; x( ) � q 1( )
A 2; u 1( ) 2; x( ) ; f[ ], x ∈ Ω α0( ); (43)

where the source term on the right-side of Eq. 43 is defined in Eq.
44, below:

q 1( )
A 2; u 1( ) 2; x( ) ; f[ ] ≜ ∂S u 1( ); f( )

∂u 1( ) 2; x( )[ ]† ≜ ∂S u 1( ); f( )/∂φ[ ]†
∂S u 1( ); f( )/∂ψ[ ]†⎛⎝ ⎞⎠ .

(44)

5. Implement the boundary conditions represented by Eq. 32 into
Eq. 41 and eliminate the remaining unknown boundary-values
of the function v(1)(2; x) from the expression of the bilinear
concomitant P(1)[v(1)(2; x); a(1)(2; x); f ; δf]{ }α0 by selecting
appropriate boundary conditions for the function
a(1)(2; x) ≜ [a(1)1 (x), a(1)2 (x)]†, to ensure that Eq. 43 is well-
posed while being independent of unknown values of v(1)(2; x)
and of δf . The boundary conditions thus chosen for the
function a(1)(2; x) ≜ [a(1)1 (x), a(1)2 (x)]† can be represented in
operator form as follows:

b 1( )
A u 1( ) 2; x( ); a 1( ) 2; x( ); f[ ]{ }

α0
� 0, x ∈ ∂Ω λ α0( );ω α0( )[ ]. (45)

The selection of the boundary conditions for
a(1)(2; x) ≜ [a(1)1 (x), a(1)2 (x)]† represented by Eq. 45 eliminates
the appearance of the unknown values of v(1)(2; x) in
P(1)[v(1)(2; x); a(1)(2; x); f ; δf]{ }α0 and reduces this bilinear
concomitant to a residual quantity containing boundary terms
which involve only known values of u(1)(2; x), a(1)(2; x), f , and
δf . This residual quantity will be denoted as
P̂
(1)[ u(1)(2; x); a(1)(2; x); f ; δf]{ }

α0
. In general, this residual

quantity does not automatically vanish, although it may do so
occasionally.

6. The system of equations comprising Eq. 43 together with
the boundary conditions represented Eq. 45 will be called
the 1st-Level Adjoint Sensitivity System (1st-LASS). The
solution a(1)(2; x) ≜ [a(1)1 (x), a(1)2 (x)]† of the 1st-LASS will
be called the 1st-level adjoint sensitivity function. The 1st-
LASS is called “first-level” (as opposed to “first-order”)
because it does not contain any differential or functional-
derivatives, but its solution, a(1)(2; x), will be used below
to compute the first-order sensitivities of the response
with respect to the components of the feature function
f(α).

7. Using Eq. 40 together with the forward and adjoint boundary
conditions represented by Eqs 32, 45 in Eq. 41 reduces the
latter to the following relation:
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〈a 1( ) 2; x( ), q 1( )
V 2; u 1( ) 2; x( ); f ; δf[ ] 〉1{ }

α0

� 〈v 1( ) 2; x( ),A 1( ) 2 × 2; x; f[ ]a 1( ) 2; x( ) 〉1{ }α0
+ P̂

1( )
u 1( ) 2; x( ); a 1( ) 2; x( ); f ; δf[ ]{ }

α0
. (46)

8. In view of Eqs 28, 43, the first term on the right-side of Eq. 46
represents the indirect-effect term δR[u(1)(2; x); f ; v(1)]{ }ind. It
therefore follows from Eq. 46 that the indirect-effect term can
be expressed in terms of the 1st-level adjoint sensitivity
function a(1)(2; x) ≜ [a(1)1 (x), a(1)2 (x)]† as follows:

δR u 1( ) 2; x( ); f ; v 1( ) 2; x( )[ ]{ }
ind

� 〈a 1( ) 2; x( ), q 1( )
V 2; u 1( ) 2; x( ); f ; δf[ ] 〉1{ }

α0

− P̂
1( )

u 1( ) 2; x( ); a 1( ) 2; x( ); f ; δf[ ]{ }
α0

≡ δR u 1( ) 2; x( ); a 1( ) 2; x( ); f ; δf[ ]{ }
ind
. (47)

As indicated by the identity shown in Eq. 47, the variations δφ
and δψ have been eliminated from the original expression of the
indirect-effect term, which now depends on the 1st-level adjoint
sensitivity function a(1)(2; x) ≜ [a(1)1 (x), a(1)2 (x)]†. Adding the
expression obtained in Eq. 47 with the expression for the direct-
effect term defined in Eq. 26 yields, according to Eq. 25 the following
expression for the total 1st-order sensitivity δR(φ,ψ, f ; δφ,{
δψ, δf)}α0 of the response R[φ(x),ψ(x); f] with respect to the
components of the feature function f(α):

δR φ,ψ, f ; δφ, δψ, δf( ){ }α0
� ∂R u 1( ); f( )

∂f
δf{ }

α0

+ 〈a 1( ) 2; x( ), q 1( )
V 2; u 1( ) 2; x( ); f ; δf[ ] 〉1{ }

α0

− P̂
1( )

u 1( ) 2; x( ); a 1( ) 2; x( ); f ; δf[ ]{ }
α0

≡ ∑TF
j1�1

R 1( ) j1; u
1( ) 2; x( ); a 1( ) 2; x( ); f α( )[ ]δfj1{ }

α0
.

(48)
The identity which appears in Eq. 48 emphasizes the fact that the

variations δφ and δψ, which are expensive to compute, have been
eliminated from the final expressions of the 1st-order sensitivities
R(1)[j1; u(1)(2; x); a(1)(2; x); f(α)] of the response with respect to
the components fj1(α), j1 � 1, ..., TF, of the “features function”
f(α). The dependence on the variations δφ and δψ has been
replaced in the expression of R(1)[j1; u(1)(2; x); a(1)(2; x); f(α)]
by the dependence on the 1st-level adjoint sensitivity function
a(1)(2; x) ≜ [a(1)1 (x), a(1)2 (x)]†. It is very important to note that
the 1st-LASS is independent of variations δf(α) in the
components of the feature function and is consequently also
independent of any variations δα in the primary model
parameters. Hence, the 1st-LASS needs to be solved only once to
obtain the 1st-level adjoint sensitivity function
a(1)(2; x) ≜ [a(1)1 (x), a(1)2 (x)]†. Subsequently, the “indirect-effect
term” is computed efficiently and exactly by simply performing
the integrations required to compute the inner product over the
adjoint function a(1)(2; x) ≜ [a(1)1 (x), a(1)2 (x)]†, as indicated on the
right-side of Eq. 48. Solving the 1st-Level Adjoint Sensitivity System
(1st-LASS) requires the same computational effort as solving the

original coupled linear system, entailing the following operations: (i)
inverting (i.e., solving): the left-side of the original adjoint equation
with the source [∂S(u(1); α)/∂φ]† to obtain the 1st-level adjoint
sensitivity function a(1)1 (x); and (ii) inverting the left-side of the
original forward equation with the source [∂S(u(1); α)/∂ψ]† to
obtain the 1st-level adjoint sensitivity function a(1)2 (x).

The 1st-order sensitivities R(1)[j1; u(1)(2; x); a(1)(2; x); f(α)],
j1 � 1, ..., TF, can be expressed as an integral over the
independent variables as follows:

R 1( ) j1; u
1( ) 2; x( ); a 1( ) 2; x( ); f α( )[ ]

≜ ∫ω1 α( )

λ1 α( )
dx1... ∫

ωTI α( )

λTI α( )
dxTIS

1( ) j1; u
1( ) 2; x( ); a 1( ) 2; x( ); f α( )[ ]. (49)

In particular, if the residual bilinear concomitant is non-zero,
the functions S(1) [j1; u(1)(2; x); a(1)(2; x); f(α)] would contain
suitably defined Dirac delta-functionals for expressing the
respective non-zero boundary terms as volume-integrals over the
phase-space of the independent variables. Dirac-delta functionals
would also be used in the expression of
S(1) [j1; u(1)(2; x); a(1)(2; x); f(α)] to represent terms containing
the derivatives of the boundary end-points with respect to the
model and/or response parameters.

The response sensitivities with respect to the primary model
parameters would be obtained by using the expression obtained in
Eq. 49 in conjunction with the “chain rule” of differentiation
provided in Eq. 11.

It is important to compare the results produced by the 1st-
FASAM-L (for obtaining the sensitivities of the model response with
respect to the model’s features) with the results produced by the 1st-
CASAM methodology (the 1st-Order Comprehensive Adjoint
Sensitivity Analysis Methodology for Response-Coupled Forward/
Adjoint Linear Systems), which provides the expressions of the
responses sensitivities directly with respect to the model’s
primary parameters. Recall that the 1st-CASAM-L (Cacuci, 2022)
yields the following expression for the 1st-order sensitivities of the
response with respect to the primary model parameters:

∂R j1; u 1( ) 2; x( ); a 1( ) 2; x( ); α[ ]
∂αj1

{ }
α0

� ∫ω1 α( )

λ1 α( )
dx1... ∫

ωTI α( )

λTI α( )
dxTI

∂S u 1( ) 2; x( ); α[ ]
∂αj1

⎧⎪⎪⎨⎪⎪⎩
⎫⎪⎪⎬⎪⎪⎭

α0

+∑TI
k�1

× ∏TI
m�1,k ≠ j

∫ωm α( )

λm α( )
dxmS u 1( ) 2; ...,ωk, ...( ); α[ ] ∂ωk α( )

∂αj1

⎧⎪⎪⎨⎪⎪⎩
−S u 1( ) 2; ..., λk, ...( ); α[ ] ∂λk α( )

∂αj1
}α0

+ 〈a 1( ) 2; x( ), ∂

∂αj1
q 1( ) u 1( ) 2; x( ); α[ ] 〉1{ }

α0

− ∂

∂αj1
P̂

1( )
u 1( ); a 1( ); α[ ]{ }

α0
; j1

� 1, ..., TP. (50)
The same 1st-level adjoint function a(1)(2; x) appears in Eq. 50

as well as in Eq. 49. Therefore, a single “large-scale computation”
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(needed to solve the 1st-LASS to determine the 1st-level adjoint
function) is required for obtaining either the response sensitivities
with respect to the components, fj(α), j � 1, ..., TF, of the feature
function f(α) using the 1st-FASAM-L, or for obtaining the response
sensitivities directly with respect to the primary model parameters
αj, j � 1, ..., TP, using the 1st-CASAM-L. On the other hand, the use
of the 1st-CASAM-L would require performing a number of TP
integrations to compute all of the response sensitivities with respect
to the primary parameters, but the 1st-FASAM-L would require only
TF integrations (TF≪TP) to compute all of the response
sensitivities with respect to the components fj(α) of the feature
function. Hence, the 1st-FASAM-L is more efficient than the 1st-
CASAM-L, so the 1st-FASAM-L is the most efficient method for
computing the exact expressions of the first-order sensitivities of a
generic model response of the form R[φ(x),ψ(x); α] with respect to
the components of the “features” function f(α), and subsequently
with respect to the primary model parameters. As will be shown in
the sequel, the computational savings provided by the nth-FASAM-
L increase massively by comparison to the nth-CASAM-L (or any
other method) as the order “n” of the computed
sensitivities increases.

The expression obtained in Eq. 48 is the same as the particular
form taken on by general expression provided in Eq. 13 for
n � 1, where:

(i) the 1st-level forward/adjoint function
u(1)(2; x) ≜ [φ(x),ψ(x)]† is the solution of the 1st-LFAS
defined by Eqs 19, 20, which has the same expression as
the particular form taken on by the nth-LFAS, cf. Eqs 15, 16,
for n � 1;

(ii) the 1st-level adjoint sensitivity function
a(1)(2; x) ≜ [a(1)1 (x), a(1)2 (x)]† is the solution of the 1st-
LASS defined by Eqs 43, 45, which has the same
expression as the particular form taken on by the nth-
LFAS, cf. Eqs 17, 18, for n � 1.

Thus, the first step in the “proof by mathematical induction” of
the pattern underlying the nth-FASAM-L has been completed,
having shown that this pattern holds for n � 1.

2.4 Proving that the conjectured
mathematical framework of the nth-FASAM-
L methodology also holds for n → n + 1,
i.e., for the (n + 1)th-FASAM-L framework

The last step of the “proof by mathematical induction” to
establish the validity the nth-FASAM-L framework is to show
that the formalism assumed to be correct for the computation of
the nth-order sensitivities also holds true for the computation of the
(n + 1)th-order sensitivities. This proof entails showing that the
formulas obtained by computing the (n + 1)th-order sensitivities
using Eqs 14‒18 as the starting point will be the same as would be
obtained by replacing “n” with “(n + 1)” in Eqs 14‒18.

The nth-order response sensitivity defined in Eq. 14 can be
considered to be a function of the (n + 1)th-level function
u(n+1)(2(n+1); x) ≜ [u(n)(2n; x), a(n)(2n; x)]†, which is the solution
of the (n + 1)th-Level Forward/Adjoint System, abbreviated as “(n + 1)

th-LFAS”, which is obtained by concatenating Eqs 15‒18 and is
written in the following form:

F n+1( ) 2n+1 × 2n+1; f α( )[ ]u n+1( ) 2n+1; x( )
� q n+1( )

F 2n+1; u n( ) 2n; x( ); f α( )[ ]; x ∈ Ω ; (51)
b n+1( )
F 2 n+1( ); u n+1( ); f( ) ≜ b n( )

F , b n( )
A( )† � 0; x ∈ ∂Ω. (52)

The following definitions were used in Eqs 51, 52, where the
explicit dependence on the indices jk, k � 1, ..., n, has been omitted,
for simplicity:

F n+1( ) 2n+1 × 2n+1; f α( )[ ] ≜ diag F n( ),A n( )( );
u n+1( ) 2n+1; x( ) ≜ u n( ) 2n; x( ), a n( ) 2n; x( )[ ]†; (53)

q n+1( )
F 2n+1; u n+1( ) 2n+1; x( ); f α( )[ ] ≜ q n( )

F 2n; x; f( ), q n( )
A 2n; u n( ); f( )[ ]†.

(54)
Next, it will be assumed that, for each index j1, ..., jn, the 1st-

order total G-differential of the nth-order sensitivities
R(n)[jn; ...; j1; u(n+1)(2n+1; x); f(α)] exists and is linear in the
variational functions v(n+1)(2n+1; jn−1, ..., j1; x) ≜ [v(n)(2n; x),
δa(n)(2n; x)]† and δf in a neighborhood around the
nominal values of the respective state functions and
components of the feature function. In this case, the 1st-
order total G-differential of R(n)[jn; ...; j1; u(n+1); f] is by
definition obtained as follows:

δR n( ) jn; ...; j1; u
n+1( ); f[ ]{ }

α0
≜

d

dε
R n( ) jn; ...; j1;u

n+1( ) + εv n+1( ); f + εδf[ ]{ }
ε�0

≜ ∑TF
jn+1�1

∂R n( ) ...;u n+1( ); f[ ]
∂fjn+1

{ }
α0
δfjn+1

+ δR n( ) jn; ...; j1; u
n+1( ); v n+1( ); f[ ]{ }

ind
, (55)

where the quantity δR(n)[jn; ...; j1; u(n+1); v(n+1); f]{ }ind denotes the
“indirect-effect term” and is defined as follows:

δR n( ) jn; ...; j1; u
n+1( ); v n+1( ); f[ ]{ }

ind

≜ ∫ω1 α( )

λ1 α( )
dx1... ∫

ωTI α( )

λTI α( )
dxTI

∂S n( )

∂u n+1( ) x( )v
n+1( ) x( ){ }

α0
. (56)

The vector v(n+1)(2n+1; jn−1, ..., j1; x), which is needed to evaluate
the indirect-effect term δR(n)[jn; ...; j1; u(n+1); v(n+1); f]{ }ind, is the
solution of the (n + 1)th-Level Variational Sensitivity System,
abbreviated as (n + 1)th-LVSS, which is obtained by taking the
(first-order) G-differential of the (n + 1)th-LFAS defined by Eqs 53,
54. Performing this G-differentiation yields the following relations
which define the (n + 1)th-LVSS:

d

dε
F n+1( ) 2n+1 × 2n+1; f0 + εδf[ ] u n+1,0( ) 2n+1; x( ) + εv n+1( ) 2n+1; x( )[ ]{ }

ε�0

� d

dε
q n+1( )
F 2n+1; u n,0( ) 2n; x( ) + εv n( ) 2n; x( ); f0 + εδf[ ]{ }

ε�0
; x ∈ Ω ;

(57)
d

dε
b n+1( )
F 2n+1; u n+1,0( ) 2n+1; x( ) + εv n+1( ) 2n+1; x( ); f0 + εδf[ ]{ }

ε�0
� 0; x ∈ ∂Ω;

(58)
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Carrying out the differentiation with respect to ε in Eqs 57, 58,
and setting ε � 0 in the resulting expressions yields the following
(n+1)th-LVSS for the (n + 1)th-level variational
function v(n+1)(2n+1; jn−1, ..., j1; x):

V n+1( ) 2n+1 × 2n+1; x; f[ ]v n+1( ) 2n+1; x( ){ }α0
� q n+1( )

V 2n+1; u n+1( ) 2n+1; x( ); f ; δf[ ]{ }
α0
; x ∈ Ω; (59)

b n+1( )
v u n+1( ); v n+1( ) ; f ; δf( ){ }

α0
� 0; x ∈ ∂Ω . (60)

Solving the (n + 1)th-LVSS is prohibitive computationally.
Therefore, the need for solving the (n + 1)th-LVSS will be
avoided by expressing the indirect-effect term
δR(n)[jn; ...; j1; u(n+1); v(n+1); f]{ }ind in an alternative way, which
eliminates the appearance of the variational function
v(n+1)(2n+1; jn−1, ..., j1; x) by replacing it with the solution of the
“(n + 1)th-Level Adjoint Sensitivity System,” abbreviated as (n + 1)th-
LASS). This (n + 1)th-LASS will be constructed below by
implementing the same sequence of logical steps as were
followed when constructing the first- (and lower-) level adjoint
sensitivity systems, namely,:

(i) The (n + 1)th-LASS is constructed in a Hilbert space, denoted
as Hn+1, comprising block-vectors of the form
χ(n+1)(2n+1; x) ∈ Hn+1, χ(n+1)(x) ≜ [..., χ(n+1)k (x), ...]†, for
k � 1, ..., 2n+1, each of these comprising elements having the
following structure: χ(n+1)k (x) ≜ [χ(n+1)k,1 (x), ..., χ(n+1)k,TD (x)]†. The
inner product between two elements, χ(n+1)(x) ∈ Hn+1 and
θ(n+1)(x) ∈ Hn+1, of the Hilbert space Hn+1, will be denoted as
〈χ(n+1)(x), θ(n+1)(x)〉n+1 and is defined as follows:

〈χ n+1( ) 2n+1; x( ), θ n+1( ) 2n+1; x( )〉 n+1( ) ≜ ∑2
n+1

i�1
〈χ n+1( )

i 2n+1; x( ), θ n+1( )
i 2n+1; x( )〉0.

(61)

(ii) Using the definition provided in Eq. 61, form the inner product
in Hn+1 of Eq. 59 with a yet undefined vector-valued function
a(n+1)(jn, ..., j1; x) ≜ [..., a(n+1)k (jn, ..., j1; x), ...]† ∈Hn+1; k � 1,
..., 2n+1, j1 � 1, ..., TF, j2 � 1, ..., j1; jn+1 � 1, ..., jn, to obtain
the following relation:

〈a n+1( ) jn, ..., j1; x( ),V n+1( ) 2n+1 × 2n+1; x; f[ ]v n+1( ) 2n+1; x( )〉n+1{ }α0
� 〈a n+1( ) jn, ..., j1; x( ){ , q n+1( )

V 2n+1;u n+1( ) 2n+1; x( ); f; δf[ ]〉n+1}α0
� 〈v n+1( ) 2n+1; x( ),A n+1( ) 2n+1 × 2n+1; x; f[ ]a n+1( ) jn, ..., j1; x( ) 〉n+1{ }α0
+ P n+1( ) v n+1( ); a n+1( ); f ; δf[ ]{ }

α0
, (62)

where P(n+1)[v(n+1); a(n+1); f ; δf]{ }α0 denotes the bilinear
concomitant defined on the phase-space boundary x ∈ ∂Ω,
evaluated at the nominal values of the model parameter and
respective functions, and where A(n+1)[2n+1 × 2n+1; x; f] is the
formal adjoint of the matrix-valued operator
V(n+1)[2n+1 × 2n+1; x; f] as defined in Eq. 63, below:

A n+1( ) 2n+1 × 2n+1; x; f[ ] ≜ V n+1( ) 2n+1 × 2n+1; x; f[ ]{ }*. (63)

(iii) The first term on right-side of the second equality in Eq. 62 is
now required to represent the indirect-effect term
δR(n)[jn; ...; j1; u(n+1); v(n+1); f]{ }ind. This is achieved by
requiring that the (n+1)th-level adjoint sensitivity function
a(n+1)(jn, ..., j1; x) ≜ [..., a(n+1)k (jn, ..., j1; x), ...]† ∈ Hn+1;

k � 1, ..., 2n+1, be the solution of the following (n+1)th-
LASS defined in Eqs. 64, 65, below, for j1 � 1, ..., TP;
j2 � 1, ..., j1;. . . jn � 1, ..., jn−1:

A n+1( ) 2n+1 × 2n+1; x; f[ ]a n+1( ) jn, ..., j1; x( ) � s n+1( )
A jn, ..., j1; f( ),

(64)
b n+1( )
A a n+1( ) jn, ..., j1; x( ); u n+1( ) jn−1, ..., j1; x( ); f[ ]{ }

α0
� 0, x ∈ ∂Ω,

(65)
where the vector s(n+1)A (jn, ..., j1; f) ≜ [..., s(n+1)k (jn, ..., j1; f), ...]†,
k � 1, ..., 2n+1, comprises 2n+1 components defined in Eq. 66,
below, for each j1 � 1, ..., TP; j2 � 1, ..., j1;. . .; jn � 1, ..., jn−1:

s n+1( )
A jn, ..., j1; f( ) ≜ ∂S n( )/∂u n+1( ) x( ). (66)

(iv) The (n + 1)th-level adjoint boundary conditions represented
by Eq. 65 are selected so as to eliminate, in conjunction with
the boundary conditions represented by Eq. 60, all of the
unknown values of the functions v(n+1)(2n+1; jn−1, ..., j1; x) in
the expression of the bilinear concomitant
P(n+1)[v(n+1); a(n+1); f ; δf]{ }α0 . This bilinear concomitant
may vanish after implementing the boundary conditions
represented by Eqs 60, 65. However, if it does not vanish,
this bilinear concomitant will be reduced to a residual
quantity which will comprise only known values of
a(n+1)(jn, ..., j1; x), u(n+1)(jn−1...j1; x), f(α) and δf(α), and
which will be denoted as P̂

(n+1)(a(n+1); u(n+1); f ; δf){ }
α0
.

(v) Using in Eq. 56 the equations underlying the (n + 1)th-
LASS together with the relation provided in Eq. 62
yields the following expression for the indirect-effect
term δR(n)[jn; ...; j1; u(n+1); v(n+1); f]{ }ind in terms of the
(n + 1)th-level adjoint sensitivity functions
a(n+1)(jn, ..., j1; x), for each j1 � 1, ..., TP; j2 � 1, ..., j1;. . .;
jn � 1, ..., jn−1:

δR n( ) jn; ...; j1; u
n+1( ); v n+1( ); f[ ]{ }

ind

� − P̂
n+1( )

a n+1( );u n+1( ); f ; δf( ){ }
α0
+ 〈a n+1( ) jn, ..., j1; x( ),{

× q n+1( )
V 2n+1;u n+1( ) 2n+1; x( ); f ; δf[ ] 〉n+1}α0 . (67)

Adding the result obtained in Eq. 67 for the indirect effect term
to the result provided in Eq. 55 for the direct effect term yields the
following expression for the total nth-order G-variation of
the response:

δR n( ) jn; ...; j1;u
n+1( ); f[ ]{ }

α0

� ∑TF
jn+1�1

∂

∂fjn+1
∫ω1 α( )

λ1 α( )
dx1...∫ωTI α( )

λTI α( )
dxTIS

n( ) jn, ..., j1;u
n+1( ); α( )δfjn+1{ }

α0

+ 〈a n+1( ) jn, ..., j1; x( ), q n+1( )
V 2n+1; u n+1( ) 2n+1; x( ); f ; δf[ ] 〉n+1{ }

α0

− P̂
n+1( )

a n+1( );u n+1( ); f ; δf( ){ }
α0

≡ ∑TF
jn+1�1

R n+1( ) jn+1, ..., j1; u n+1( ); a n+1( ); f( ){ } α0( )δfjn+1 , (68)

where R(n+1)(jn+1, ..., j1; u(n+1); a(n+1); f) denotes the (n + 1)th-order
partial sensitivity of the response R[u(1)(x); α] with respect to the
components of the feature function f(α), evaluated at the nominal
parameter values α0.
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The result obtained in Eq. 68 for the expression of the (n + 1)th-
order sensitivity, which was obtained by determining the first-order
differential of the nth-order sensitivity, is identical to the expression
that would be obtained by advancing the index, from n to (n + 1), in
the expression of the nth-order sensitivity that was conjectured in
Eq. 13. Thus, the proof by mathematical induction of the general
mathematical framework underlying the nth-CASAM-L is
thereby completed.

The essential characteristics of the nth-FASAM-L methodology
are tabularized in Tables 1‒4, below, to underscore the conceptual
parallelism between the nth-FASAM-L and the nth-CASAM-L
(Cacuci, 2022) methodologies.

An overview, in tabular form, of the computational frameworks
of the nth-CASAM-L, nth-CASAM-N, nth-FASAM-L, and nth-
FASAM-N methodologies, highlighting their objectives,
characteristics, and interrelationships is presented in Table 5, below.

Formally, the results produced by the nth-FASAM-L can be
written in the same mathematical forms as those produced by the
nth-CASAM-L, with the fundamental difference that the number of
large-scale computations needed within the nth-FASAM-L is
dictated by the number TF of “feature function components”
whereas the number of large-scale computations needed within
the nth-CASAM-L is dictated by the number TP of primary
model parameters. In particular, a single large-scale adjoint
computation is needed to solve the 1st-LASS (which is the same
for both the 1st-FASAM-L and the 1st-CASAM-L) to obtain the
first-order sensitivities with respect to the model parameters.
Obtaining the second-order sensitivities of the response with
respect to the primary model parameters requires at most

TP(TP + 1)/2 large-scale computations (to solve the 2nd-LASS)
within the 2nd-CASAM-L. Obtaining the same second-order
sensitivities using the 2nd-FASAM-L requires at most
TF(TF + 1)/2 large-scale computations (to solve the 2nd-LASS)
followed by analytical derivations to obtain the second-order
sensitivities with respect to the model parameters from the
second-order sensitivities with respect to the components of the
feature function produced by the 2nd-FASAM-L. The same parallel
holds for the computation of all of the higher-order sensitivities: the
computation of the 3rd-order sensitivities with respect to the
primary model parameters requires at most
TP(TP + 1)(TP + 2)/3! computations if using the 3rd-CASAM-L,
as opposed to at most TF(TF + 1)(TF + 2)/3! large-scale
computations plus analytical derivations if using the 3rd-
CASAM-L. The computation of the 4th-order sensitivities with
respect to the primary model parameters requires at most
TP(TP + 1)(TP + 2)(TP + 3)/4! computations if using the 4th-
CASAM-L, as opposed to at most
TF(TF + 1)(TF + 2)(TF + 3)/4! large-scale computations plus
analytical derivations if using the 4th-CASAM-L; and so on.
Since TF≪TP, it is evident that the nth-FASAM-L methodology
becomes increasingly more efficient than the nth-CASAM-L as the
order of computed sensitivities increases.

3 Concluding discussion

This work has presented the “nth-Order Feature Adjoint
Sensitivity Analysis Methodology for Response-Coupled Forward/

TABLE 1 1st-FASAM-L: 1st-order (n = 1) sensitivities of response to model features.

1st-LFAS F(1)[2 × 2; x; f]u(1)(2; x) � q(1)F (2; x; f); x ∈ Ω; b(2)F (22; u(2); f) ≜ ( b(1)F , b(1)A )† � 0; x ∈ ∂Ω; u(1)(2; x) ≜ [φ(x),ψ(x)]†

1st-LVSS V(1)[2 × 2; x; f]v(1)(2; x) � q(1)V [2; u(1)(2; x);
f ; δf]; x ∈ Ωb(2)F (22;u(2); f) ≜ ( b(1)F , b(1)A )† � 0; x ∈ ∂Ω; v(1)(2; x) ≜ [δφ(x), δψ]†

1st-Level
Hilbert Space H1: 〈χ(1)(2; x), θ(1)(2; x)〉1 ≜∑2

i�1
〈χ(1)i (x), θ(1)i (x)〉0〈φ(x),ψ(x)〉0 ≜ ∑TD

j�1
∫ω1(α)

λ1(α)
... ∫ωi(α)

λi(α)
... ∫ωTI(α)

λTI(α)
φj(x)ψj(x) dx1 ...dxi ...dxTI .

1st-LASS A(1)[2 × 2; x; f]a(1)(2; x) � q(1)A [2; u(1)(2; x) ; f], x ∈ Ω; b(1)A [u(1)(2; x); a(1)(2; x); f] � 0, x ∈ ∂Ω; a(1)(2; x) ≜ [a(1)1 (x), a(1)2 (x)]†

1st-Order Resp. Sensitivities to Model
Features

R(1)[j1; u(1)(2; x); a(1)(2; x); f(α)]; j1 � 1, ..., TF

TABLE 2 2nd-FASAM-L: 2nd-order (n = 2) sensitivities of response to model features.

2nd-LFAS = 1st-LFAS
+1st-LASS

F(2)[22 × 22; f(α)]u(2)(22; x) � q(2)F [22; u(1)(2; x); f(α)]; x ∈ Ωb(2)F (22; u(2); f) ≜ ( b(1)F , b(1)A )† � 0;

x ∈ ∂Ω; u(2)(22; x) ≜ [u(1)(2; x), a(1)(2; x)]†

2nd-LVSS V(2)[22 × 22; x; f]v(2)(22; x) � q(2)V [22;u(2)(22; x); f; δf]; x ∈ Ω; b(2)v (u(2); v(2) ; f ; δf) � 0; x ∈ ∂Ω; v(2)(22; x) ≜ [v(1)(2; x), δa(1)(2; x)]

2nd-Level Hilbert space
H2: 〈χ(2)(22; x), θ(2)(22; x)〉2 ≜∑2

2

i�1
〈χ(2)i (22; x), θ(2)i (22; x)〉0

2nd-LASS A(2)[22 × 22; x; f]a(2)(22; j1; x) � s(2)(22; j1; u(2); f); x ∈ Ω; j1 � 1, ..., TF;

b(2)A [u(2)(22; x); a(2)(22; j1; x); f]{ }
α0
� 0, x ∈ ∂Ω, j1 � 1, ..., TF.

a 2( ) 22; j1; x( ) ≜ a 2( )
1 j1; x( ), a 2( )

2 j1; x( ), a 2( )
3 j1; x( ), a 2( )

4 j1; x( )[ ]†
� .., a 2( )

k j1; x( ), ..[ ]†; k � 1, ..., 22.

2nd-order Resp. Sensitivities to
Model Features

R(2)[j2; j1;u(2)(x); a(2)(j1; x); f(α)]; j1 � 1, ..., TF; j2 � 1, ..., j1.
Distinct Sensitivities: TF(TF + 1)/2!
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Adjoint Linear Systems” (abbreviated as “nth-FASAM-L”), which is
the most efficient methodology for computing exact expressions of
sensitivities of model responses to features of model parameters and,
subsequently, to the model parameters themselves for such linear
systems. This efficiency stems from the maximal reduction of the
number of adjoint computations (which are “large-scale”
computations), by comparison to the extant high-order adjoint
sensitivity analysis methodology nth-CASAM-N (the “nth-Order
Comprehensive Adjoint Sensitivity Analysis Methodology for
Nonlinear Systems”). Specific details are as follows:

(i) Comparing the mathematical framework of the nth-FASAM-N
methodology to the framework of the nth-CASAM-N
methodology indicates that the components
fi(α), i � 1, ..., TF, of the “feature function”
f(α) ≜ [f1(α), ..., fTF(α)]† play within the nth-FASAM-N
the same role as played by the components αj, j � 1, ..., TP,
of the “vector of primary model parameters” α ≜ (α1, . . . , αTP)†
within the framework of the nth-CASAM-N. It is important to
note that the total number of model parameters is always larger
(usually bywidemargin) than the total number of components of
the feature function f(α), i.e., TP≫TF.

(ii) The 1st-FASAM-N and the 1st-CASAM-N methodologies
require a single large-scale “adjoint” computations for solving
the 1st-LASS (1st-Level Adjoint Sensitivity System), so they are

comparably efficient for computing the exact expressions of the
first-order sensitivities of a model response to the model’s
uncertain parameters, boundaries, and internal interfaces.

(iii) For computing the exact expressions of the second-order
response sensitivities with respect to the primary model’s
parameters, the 2nd-FASAM-N methodology requires, at
most, as many large-scale “adjoint” computations as there
are “feature functions of parameters” fi(α), i � 1, ..., TF
(where TF denotes the total number of feature functions) for
solving the left-side of the 2nd-LASSwithTF distinct sources on
its right-side. By comparison, the 2nd-CASAM-Nmethodology
requires at most TP (where TP denotes the total number of
model parameters) large-scale computations for solving the
same left-side of the 2nd-LASS but with TP distinct sources.
Since TF≪TP, the 2nd-FASAM-N methodology is
considerably more efficient than the 2nd-CASAM-N
methodology for computing the exact expressions of the
second-order sensitivities of a model response to the model’s
uncertain parameters, boundaries, and internal interfaces.

(iv) For computing the exact expressions of the third-order
response sensitivities with respect to the primary model’s
parameters, the 3rd-FASAM-N requires at most
TF(TF + 1)/2 large-scale “adjoint” computations for
solving the 3rd-LASS with TF(TF + 1)/2 distinct sources,
while the 3rd-CASAM-N methodology requires at most

TABLE 3 nth-FASAM-L: nth-order sensitivities of response to model features.

nth-LFAS
=(n-1)th-LFAS +(n-1)th-LASS

F(n)[2n × 2n; f(α)]u(n)(2n; x) � q(n)F [2n; u(n−1)(2n−1; x); f(α)]; b(n)F (2(n);u(n); f) ≜ ( b(n−1)F , b(n−1)A )† � 0; x ∈ ∂Ω;
F(n)[2n × 2n; f] ≜ diag(F(n−1) ,A(n−1)); u(n)(2n; jn−2 , ..., j1; x) � [u(n−1)(2n−1; jn−3 , ..., j1; x), a(n−1)(2n−1;
jn−2 , ..., j1; x)]†; q(n)F [2n; u(n)(2n; x); f(α)] ≜ [q(n−1)F (2n−1; x; f), q(n−1)A (2n−1; x; f)]†;

nth-LVSS V(n)[2n × 2n; x; f]v(n)(2n; x) � q(n)V [2n; u(n)(2n; x); f ; δf]; x ∈ Ω;
v(n)(2n; jn−2 , ..., j1; x) ≜ [v(n−1)(2n−1; x), δa(n−1)(2n−1; x)]†b(n)v (u(n); v(n) ; f ; δf) ≜ [b(n−1)V , δb(n−1)A ]† � 0; x ∈ ∂Ω .

nth-Level Hilbert space
Hn : 〈χ(n)(2n; x), θ(n)(2n; x)〉n ≜∑2

n

i�1
〈χ(n)i (2n; x), θ(n)i (2n; x)〉0

nth-LASS A(n)[2n × 2n; x; f]a(n)(2n; jn−1 , ..., j1; x) � s(n)A (2n; jn−1 , ..., j1; f) ;
b(n)A [a(n)(jn−1 , ..., j1; x); u(n)(jn−2 , ..., j1; x); f] � 0, x ∈ ∂Ω;A(n)[2n × 2n; x; f] ≜ V(n)[2n × 2n; x; f]{ }*

nth-order Resp. Sensitivities to
Model Features

R n( ) jn; ...; j1; u
n( ) 2n; jn−2 , ..., j1; x( ); a n( ) 2n; jn−1 , ..., j1; x( ); f α( )[ ]

≜ ∂nR φ x( ),ψ x( ); α[ ]/∂fj1 ...∂fjn ; j1 � 1, ..., TF; j2 � 1, ..., j1; .....jn � 1, ..., jn−1;
Distinct Sensitivities: TF(TF + 1)(TF + 2)...(TF + n − 1)/n!

TABLE 4 (n + 1)th-FASAM-L: (n + 1)th-order sensitivities of response to model features.

(n + 1)th-LASS
= nth-LFAS + nth-LASS

F(n+1)[2n+1 × 2n+1; f(α)]u(n+1)(2n+1; x) � q(n+1)F [2n+1; u(n)(2n; x); f(α)]; F(n+1)[2n+1 × 2n+1; f(α)] ≜ diag(F(n) ,A(n)); u(n+1)
(2n+1; jn−1 , ..., j1; x) � [u(n)(2n; jn−2 , ..., j1; x), a(n)(2n; jn−1 , ..., j1; x)]†q(n+1)F [2n+1; u(n+1)(2n+1; x);
f(α)] ≜ [q(n)F (2n; x; f), q(n)A (2n; u(n); f)]†b(n+1)F (2(n+1); u(n+1); f) ≜ ( b(n)F , b(n)A )† � 0; x ∈ ∂Ω.

(n + 1)th-LVSS V(n+1)[2n+1 × 2n+1; x; f]v(n+1)(2n+1; x) � q(n+1)V [2n+1; u(n+1)(2n+1; x); f; δf]; x ∈ Ω;
v(n+1)(2n+1; jn−1 , ..., j1; x) ≜ [v(n)(2n; x), δa(n)(2n; x)]†b(n+1)v (u(n+1); v(n+1) ; f ; δf) ≜ [b(n)V , δb(n)A ]† � 0; x ∈ ∂Ω .

(n + 1)th-Level Hilbert space
Hn+1: 〈χ(n+1)(2n+1; x), θ(n+1)(2n+1; x)〉(n+1) ≜ ∑2

n+1

i�1
〈χ(n+1)i (2n+1; x), θ(n+1)i (2n+1; x)〉0

(n + 1)th-LASS A(n+1)[2n+1 × 2n+1; x; f]a(n+1)(2n+1; jn, ..., j1; x) � s(n+1)A (2n+1; jn, ..., j1; f),A(n+1)[2n+1 × 2n+1; x; f] ≜ V(n+1)[2n+1 × 2n+1; x; f]{ }*;
b(n+1)A [a(n+1)(jn, ..., j1; x); u(n+1)(jn−1 , ..., j1; x); f] � 0, x ∈ ∂Ω;

(n + 1)th- Resp. Sensitivities to
Model Features

R n+1( ) jn+1 , ..., j1; u n+1( ); a n+1( ); f( ) ≜ ∂n+1R φ x( ),ψ x( ); α[ ]/∂fj1 ...∂fjn+1 ;
j1 � 1, ..., TF; ...jn+1 � 1, ..., jn;
Distinct Sensitivities: TF(TF + 1)(TF + 2)...(TF + n)/(n + 1)!
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TP(TP + 1)/2 large-scale computations for solving the 3rd-
LASS with TP(TP + 1)/2 distinct sources. The same
computational-count of ”large-scale computations” caries over
when computing the higher-order sensitivities, i.e., the formula
for calculating the “number of large-scale adjoint computations”
is formally the same for both the nth-FASAM-N and the nth-
CASAM-N methodologies, but the “variable” in the formula for
determining the number of adjoint computations for the nth-
FASAM-N methodology is TF (i.e., total number of feature
functions) while the counterpart for the formula for determining
the number of adjoint computations for the nth-CASAM-N is
methodology is TP (i.e., total number of model parameters).
Since TF≪TP, it follows that the higher the order of computed
sensitivities, the mode efficient the nth-FASAM-Nmethodology
becomes by comparison to the nth-CASAM-N methodology.

(v) When amodel has no “feature” functions of parameters, but only
comprises primary parameters, the nth-FASAM-Nmethodology
becomes identical to the nth-CASAM-N methodology.

(vi) Both the nth-FASAM-N and the nth-CASAM-N
methodologies are formulated in linearly increasing higher-
dimensional Hilbert spaces −as opposed to exponentially
increasing parameter-dimensional spaces− thus overcoming
the curse of dimensionality in sensitivity analysis of
nonlinear systems. Both the nth-FASAM-N and the nth-
CASAM-N methodologies are incomparably more efficient
and more accurate than any other methods (statistical, finite
differences, etc.) for computing exact expressions of response
sensitivities (of any order) with respect to the model’s uncertain
parameters, boundaries, and internal interfaces.

The question of “when to stop computing progressively higher-
order sensitivities ?” has been addressed by Cacuci (2022), Cacuci D.
G. (2023) in conjunction with the question of convergence of the
Taylor-series expansion of the response in terms of the uncertain
model parameters, cf; Eqs 10, 12. These Taylor-series expansions
provide the fundamental premise, even if not explicitly recognized,
for obtaining the expressions provided by the “propagation of
errors” methodology (as originally proposed by Tukey, 1957; and
generalized by Cacuci, 2022) for the cumulants of the model

response distribution in the phase-space of model parameters.
The convergence of these Taylor-series, which depend on both
the response sensitivities with respect to parameters and the
uncertainties associated with the parameter distribution, must
be ensured. This can be done by ensuring that the combination
of parameter uncertainties and response sensitivities are
sufficiently small to fall inside the respective radius of
convergence of each of these Taylor-series expansions. The
application of the nth-FASAM-N to a representative response-
coupled forward/adjoint linear model stemming from the field of
energy-dependent particle transport in a mixture of materials will
be presented in the accompanying work designated as “Part II”
(Cacuci, 2024c).
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TABLE 5 The nth-CASAM-L, nth-CASAM-N, nth-FASAM-L, nth-FASAM-N methodologies: main features.

Methodology Objective Characteristics Inter-relationships

nth-FASAM-L Develop forward and adjoint operators in
linearly increasing Hilbert spaces to enable
the most efficient computation of exact
expressions of any-order sensitivities of
responses to features/functions of primary
model parameters

Especially applicable to response-coupled forward/
adjoint linear models. Also applicable to responses
that depend just on the forward or just the adjoint
state functions in linear systems

Reduces to the nth-CASAM-L in the absence of
“feature functions,” i.e., when the feature
functions coincide with the primary parameters

nth-CASAM-L Develop forward and adjoint operators in
linearly increasing Hilbert spaces to enable
the most efficient computation of exact
expressions of any-order sensitivities of
responses to primary model parameters

Same characteristics as nth-FASAM-L, but directly
considering the primary model parameters

Becomes identical to the nth-FASAM-L in the
absence of “feature functions” of parameters

nth-FASAM-N Same objective as the nth-FASAM-L, but for
nonlinear models

Subsumes the nth-FASAM-L if the responses
depend just on the forward state functions

Reduces to the nth-CASAM-N in the absence of
“feature functions,” i.e., when the feature
functions coincide with the primary parameters

nth-CASAM-N Same objective as the nth-CASAM-L, but for
nonlinear models

Subsumes the nth-CASAM-L if the responses
depend just on the forward state functions

Becomes identical to the nth-FASAM-N in the
absence of “feature functions” of parameters
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