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Efficient steam energy production was essential for reducing energy
consumption and operational costs while enhancing productivity, particularly
in industrial settings prone to explosions due to boiler parameter control issues.
This challenge was especially acute in the food and beverage industry amid rising
energy costs and stricter environmental regulations, highlighting the importance
of optimizing steam energy production. This study focused on refining
operational parameters in a steam production plant to maximize steam energy
output. It utilized mathematical models and optimization tools to identify ideal
operational conditions and investigate extreme scenarios. Design-Expert version
13.0 statistical software and Response Surface Methodology (RSM) via Centre
Composite Design (CCD) were employed to create a comprehensive design
matrix encompassing key variables like time, pressure levels, temperature, mass
flow rate, and steam energy production across three experimental levels. The
research revealed that increased pressure and time significantly boosted steam
energy production by leveraging water’s energy content rise under initial
conditions, thus improving efficiency by reducing required water mass
circulation. Moreover, elevated temperature and extended operation
enhanced economizer efficiency, leading to increased heat recovery and
reduced steam generation. Steam generation also increased with temperature
and time due to the pressure rise during boiling, necessitating more energy for
steam conversion. An optimum yield of steam energy of 620 Cal was attained at a
time, pressure, temperature, and mass flow rate of 1 h, 16.97 MPa, 249.5°C, and
59.85 kg/s, respectively. Themathematical model developed is accurate, reliable,
responsive, and can replicate the experimental data due to the high F-value
(24.48), low CV (0.94) low p-value (< 0.005), and high R2 (0.9821) value close to 1.
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This research promises to enhance the efficiency of steam energy production in the
food and beverage industry by reducing the need for resource-intensive
experimental procedures, thus lowering costs and resource consumption.
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1 Introduction

In today’s industrial landscape, where energy costs are rising,
and environmental regulations are becoming more stringent,
enhancing steam energy production has become a critical priority
for many industries (Kumar et al., 2020; Onokwai et al., 2023a;
Olusanya et al., 2023; Efetobor et al., 2024). Efficient steam energy
production can lead to reduced energy consumption, increased
productivity, and lower operating costs (Dieckhoffff et al., 2014).
However, achieving optimal steam energy production requires
attention to various operating factors. Ensuring proper regulation
of a boiler’s operational parameters is crucial, given the significant
risks of explosion associated with high working pressures and
temperatures (Guo et al., 2017). Additionally, the financial
implications of boiler operation and maintenance, including the
expenses related to construction and fuel consumption, should not
be overlooked (Dieckhoffff et al., 2014; Ahmadi and Dincer, 2018).

Plant steam also referred to as industrial steam, is utilized in the
processing of food and beverages. This type of steam is generated by
treating softened water, de-alkalized water, or reverse osmosis water
with pre-heating and chemical treatment to prevent the formation of
corrosion and scale in the system (Onokwai et al., 2023b). While
steam is generally perceived as a clean and sanitary energy source
that can be utilized in various applications, including heat
exchangers, boiling systems, and hot water generation, it may
also be used in direct contact with the process or product
(Osueke et al., 2015a; Osueke et al., 2015b; Onokpite et al.,
2023). In such cases, it is crucial to ensure the steam’s quality
and purity to prevent any potential contamination that could
compromise human health or the final product’s quality (Guo
et al., 2017).

In the food and beverage sector, manufacturers must ensure the
safety and quality of their products by identifying potential hazards
and implementing control measures (Akinbami et al., 2002). Studies
(Wang et al., 2023; Pealy, 2024) showed how the food and beverage
industry is constantly working to maintain product safety and
quality by implementing strict control procedures and cutting-
edge technologies. During steam energy generation, potential
sources of contamination include the boiler feed water, the steam
distribution system, and any equipment or materials that interface
with the steam.

To prevent contamination, manufacturers may implement
measures such as using high-quality feed water, regularly
cleaning and sanitizing the steam system, and using appropriate
materials and design features to prevent the buildup of
contaminants (Egeonu et al., 2015; As’ad et al., 2019). In modern
industrial settings, steam energy production plays a crucial role in
powering various processes and operations. As a result, the
efficiency and reliability of steam plants are essential factors that

directly impact overall energy consumption and productivity. In this
regard, the design and operation of steam boilers represent a critical
area of focus for maximizing steam energy production (Singha and
Forcinito, 2018; Salahi et al., 2023).

Boiler efficiency is influenced by several factors, including the
selection of appropriate boiler designs, fuel types, and combustion
systems. For instance, a poorly designed or operated boiler can result
in decreased efficiency, increased fuel consumption, and higher
emissions. Therefore, it is crucial to select the right boiler design
and fuel type based on the specific needs of the industrial process.
Moreover, the quality of feedwater and its treatment can also impact
boiler efficiency and lifespan. High-quality feed water can help
minimize corrosion, scale formation, and other forms of damage
that can affect the lifespan of boilers. Therefore, implementing
proper water treatment measures and ensuring the quality of
feedwater is essential for maintaining boiler efficiency and
extending the lifespan of steam generation equipment (Szymon
et al., 2016; Albana and Dahdah, 2023).

Researchers have investigated different approaches to enhance
steam generation. Madu (2018) examined crucial factors that affect
the variables for achieving effective operation of a typical steam
power plant. The study yielded a specific work output of
854.65 kJ/kg at turbine pressures of 20 bar and 2 bar, and the
plant’s thermal efficiency was 26.08%, while the rate of heat loss
by the condenser and heat generation were 4114.55 and 5027.74 J/s,
respectively.

The results showed wet steam at points 4 and 6s, but superheated
steam at points 3 and 5. The study recommended optimizing the
enthalpy values at points 3 and 5 to enhance the plant’s thermal
efficiency. Egeonu et al. (2015) presented a successful application of
genetic algorithms to optimize the performance of a power plant
boiler, which has practical significance for improving the efficiency
and cost-effectiveness of power generation. The results showed that
the application of genetic algorithms in the thermodynamic
optimization of the Egbin power plant boiler leads to a 4.76%
and 3.89% increase in thermal efficiency.

Podlasek et al. (2016) applied a PLC control system to
automatically adjust the pressure and temperature of the
generated steam, which is necessary to ensure the optimal
performance of the steam engines under varying load conditions.
In a study on a boiler in a petrochemical company, Khoshhal et al.
(2010) used numerical simulation to show that NOx emissions were
consistent with measured values, indicating that NOx emissions are
highly dependent on temperature and oxygen concentration.
Similarly, Thornock et al. (2014) used numerical simulation, and
large Eddy Dissipation (LES), to predict NOx formation in a steam
generator, and proposed a burner design that resulted in lower NOx
values. In their study on fuel-staged Low-NOx Burners (LNB), Liu
et al. (2016) predicted flow field, temperature, OH molar fraction,
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and NO distribution, concluding that the number of staged guns had
a significant effect on OH distribution but a negligible impact on the
flow field and NO emission. In the study by Ye et al. (2017), a 3-D
computational fluid dynamics (CFD) model to scrutinize the fluid
dynamics inside an OTSG was created, and evaluated the impact of
various structural configurations on coolant flow parameters.

Additionally, Liu et al. (2017) utilized numerical simulations to
optimize the position and angle of staged gun injection for reducing
NO pollutants and confirmed their findings with experiments.
Ensuring effective control of a boiler’s operational conditions is
crucial due to the potential hazards posed by high working pressures
and temperatures, such as the risk of explosion. In addition to
construction costs, there are high operating costs (due to significant
fuel consumption) and maintenance expenses associated with these
conditions. However, finding and maintaining optimal operating
conditions for a steam boiler is challenging due to the complexity
and inter-relatedness of all variables. Direct testing on a boiler is
difficult and dangerous, as it involves manipulating operating
conditions and requires significant time and money. Therefore,
simulation may be a viable alternative method of analysis
(Díaz, 2001).

Researchers have explored the intricacies of optimizing the
operating conditions of a steam boiler, considering factors such
as safety risks, operational costs, and the intricate interactions of
multiple variables (Zhang et al., 2014; Varganova et al., 2023).
Nevertheless, there is a lack of information in the literature
regarding the optimization of more than three operating factors
such as time, pressure, temperature, and mass flow rate using
response surface methodology (RSM) to enhance steam energy
production. RSM combines statistics and numerical optimization
to generate empirical equations that clarify condition-response
relationships. RSM combines statistical and numerical
optimization techniques to generate empirical equations and
determine the impact of specific conditions on targeted responses
(Meshalkin et al., 2017; Onokwai et al., 2023c).

In RSM, the input variables are independent conditions, and the
performance measures are considered responses (Laouge et al.,
2020). During RSM, numerical optimization capabilities are
embedded in Design-Expert version 13, allowing for the
extraction of optimal numerical solutions (best values) from a
given set of input factors and responses within the software
(Maddah et al., 2019). Previous research by Onokwai et al.
(2019) also implemented RSM to optimize the energy and exergy
efficiency of a parabolic dish cooker and found that solar irradiances
and temperature had a significant impact on efficiency. Similarly,
pyrolysis operating parameters were optimized using RSM to
enhanced the yield of pyrolysis products (Hassan et al., 2017).

The focus of this study was to utilize RSM to improve the
operational factors of a steam production plant by modeling and
optimizing these factors. The main goal was to understand the
relationship between operating conditions and steam generation
and to identify the optimal process conditions using RSM to
optimized steam production. In this study, four steam energy
generation operating factors such as time, pressure level,
temperature, and mass flow rate. The influence of individual and
two most important interactive factors on steam energy generation
was investigated using RSM. The essence is to reduce the bottleneck
in performing rigorous experimental runs and enhance the

efficiency of steam energy production in the food and beverage
industry by reducing costs and materials.

2 Methodology

2.1 Research design

This study employed the central composite design (CCD) as the
experimental framework for optimizing the steam energy
production process systematically. Utilizing response surface
methodology (RSM) in conjunction with CCD, facilitated by
Design-Expert version 13.0 statistical software (as detailed in
Table 1), was the chosen approach. While methods such as
Central Composite Design (CCD) and Box-Behnken Design
(BBD) are commonly used for RSM, CCD was specifically
selected in this investigation. The rationale behind this choice lies
in CCD being a widely accepted statistical method for fitting second-
order models and optimizing operational factors in steam energy
production, as highlighted by previous research (Park et al., 2008;
Martin et al., 2020; Yahya et al., 2021; Nainggolan et al., 2023;
Umelo-Ibemere, 2023). The study by (Szpisják-Gulyás et al., 2023)
further demonstrates how flexible and efficient CCD is in fitting
second-order models to optimize a wide range of processes,
especially when it comes to the production of steam energy and
related fields. CCD stands out for its reliability, time and resource
efficiency, ability to deduce regression model equations from
pertinent experiments, exploration of interactions among
independent factors influencing steam energy production, and
efficiency in suggesting the minimum number of test runs when
considering the effects of various operating conditions on the final
output (Maddah et al., 2019). Given that this study involves four
operating parameters with one response variable (steam energy),
RSM proves invaluable in reducing analysis time. This is achieved
through enhanced computational capabilities, converting numerical
data into coded parameters within its black box, and subsequently
recalculating it back to numerical data. Additionally, RSM facilitates
the grouping of analyses for multi-objective functions (Akhtar et al.,
2023). RSM aids in statistical judgments, considering factors such as
p-values and F-values, guiding decisions on whether to adopt
fractional factorial design for 1st-degree polynomial relationships
or central composite design for 2nd-degree polynomial relationships
for all independent factors and the response variable (Szpisják-
Gulyás et al., 2023). Intriguingly, RSM also facilitates the exploration
of interactions between independent parameters and the
response variable, allowing for maximization, minimization, or
specific target setting (Hossain et al., 2017). Since the interactions
are limited to the 2nd order, the central composite design (CCD)
proves to be highly effective in this context (Kumar et al., 2019).
Furthermore, RSM investigates the influence of individual
factors, the square of individual factors, and the interaction
between two factors on steam energy production as shown in
Eq. 1. This study employed key operational factors, specifically
time (ranging from 1 to 5 h), pressure levels (ranging between
5 and 20 MPa), temperatures spanning from 100°C to 300°C, and
mass flow rates ranging from 50 to 100 kg/s. Each factor was
systematically varied at three levels throughout the
experimental runs.
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These factors were carefully chosen due to the influence on the
quality and quantity of steam energy production as postulated by
Chien and Schrodt (1995); Bouamama et al. (2006); Stanley and
Pedrosa (2011); Bouamama et al. (2015); Qi et al. (2015). A
mathematical expression (Eq. 1) was derived to depict the
relationship between these operating factors and the response
variable, steam energy production. Subsequently, the constant,
linear, quadratic, and interactive coefficients were computed. The

optimization of these operating factors aimed to enhance steam
energy yield. The statistical model’s accuracy and significance were
assessed through various criteria, including probability (p-value),
lack-of-fit, Fisher (F) value, coefficient of variation (CV), coefficient
of determination (R2), and the comparison between the adjusted and
predicted R2 values (Ehsan et al., 2019; Okokpujie et al., 2023). This
rigorous evaluation ensures the robustness and reliability of the
mathematical model.

TABLE 1 Experimental design matrix and the corresponding Steam energy production.

Factor 1 Factor 2 Factor 3 Factor 4 Response 1

Std Run A:Time (hr) B:
Pressure (Mpa)

C: Temperature (oC)
(kg/s)

D: Mass Flow rate Steam Energy
Production

17 1 1 12.5 200 75 604

16 2 5 20 300 100 573

1 3 1 5 100 75 621

18 4 5 12.5 200 75 601

12 5 5 20 100 100 548

9 6 1 5 100 100 540

14 7 5 5 300 100 523

13 8 1 5 300 100 548

3 9 1 20 100 50 595

2 10 5 5 100 50 554

24 11 3 12.5 200 100 569

19 12 3 5 200 75 599

30 13 3 12.5 200 75 602

26 14 3 12.5 200 75 603

23 15 3 12.5 200 25 598

11 16 1 20 100 100 592

29 17 3 12.5 200 75 602

22 18 3 12.5 300 75 503

28 19 3 12.5 200 75 601

7 20 1 20 300 50 589

20 21 3 20 200 75 630

27 22 3 12.5 200 75 603

8 23 5 20 300 50 546

15 24 1 20 300 100 579

21 25 3 12.5 100 75 567

25 26 3 12.5 200 75 601

10 27 5 5 100 100 602

4 28 5 20 100 50 567

5 29 1 5 300 50 563

6 30 5 5 300 50 528
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Where, xi and xj are coded independent factors, y is a response of
the steam energy production, while βi, βjj and βij are the coefficients
for linear, quadratic, and interaction effects respectively and k
represents the number of operating factors, lastly, εi represents
the random error in the experiment.

Thirty (30) experimental runs were generated from the Design
Expert version 13.0 software statistical software and validated using
Eq. 2.

N � 2k + 2k + nc � 24 + 2 4( ) + 5 � 30 (2)
Where N is the actual experimental runs, k is the number of
operating factors and nc = 5 is the repeated number of identical
runs at the centre points of the centre composite design.

2.2 Data collection

The steam energy production was generated from Boilers 1 to
4 as shown in Figure 1, while a digitized electronic flow meter with
HTML5 and C# was utilized to record the quantity of steam energy
production from the beverages industry, Nigeria was utilized due to
its ease of configuration and sustainable system maintenance.

3 Results and discussion

Table 1 shows the experimental design matrix and the
corresponding steam energy production obtained at different
operational factors such as time, pressure, temperature, and mass
flow rate. These factors were utilized each at three levels of

experimental runs. The maximum steam energy production of
625 was achieved with specific operating conditions: a time (T)
of 5 h, a pressure level (P) of 20 MPa, a temperature (θ) of 300°C, and
a mass flow rate (M) of 50 kg/s.

3.1 Statistical analysis model for steam
energy production

The coded mathematical model that was utilized to predict the
steam production in a Nigerian beverage industry is shown in Eq. 3,
while Table 2, depicts the summary of the outcome obtained from
the Analysis of Variance (ANOVA) which assesses the influence of
individual and interactive factors on steam energy production was
conducted to validate the mathematical model’s accuracy in
predicting steam energy production.

SEP � 596.22 − 10.50A + 7.83B − 13.00C − 4.83D + 8.58A2

+ 20.588.58B2 − 58.928.58C2 − 3.50AB + 10.00AD

+ 8.75BC + 8.75CD (3)

Where, SEP denotes steam energy production, while A, B, C, D, and
E represent the coded values for time (h), pressure level (MPa),
temperature (°C), and mass flow rate (kg/s), respectively. In the
mathematical model, a positive (+) sign signifies a synergistic effect,
while a negative (−) sign indicates antagonistic effects on steam
energy production.

The Fischer test (F-value) and probability value (p-value)
emerged as acceptable parameters for scrutinizing regression
models, as highlighted in studies by Bensouici et al. (2023) and
Okokpujie et al. (2023). The F-value compares the mean square
value of the residuals and the mean square value of the developed
regression model. A higher F-value signifies a more accurate,
reliable, responsive, and reproductive regression model.

FIGURE 1
Steam flow meter mapping.
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Additionally, for a model to carry higher significance, the p-value
should be low, as emphasized by Kumar et al. (2019) and Laouge
et al. (2020). The ANOVA analysis showed a high F-value of
24.48 and a low p-value of 0.0001 (p < 0.05), signifying the high
significance and precision of the developed regression model. The
likelihood of a model F-value of this magnitude occurring solely due
to noise is highly implausible, with a minimal chance (0.01%), as
emphasized by Onokwai et al. (2022).

Results indicated that time (A), pressure (B), temperature
(C), mass flow rate (D), quadratic of A (A2), the interaction
between time (A) and pressure (B), the interaction between time
(A) and temperature (C), the interaction of pressure (B) and
temperature (C), the combination of temperature (C) and mass
flow rate (D), are significance terms. Consequently, enhancing
steam energy production is positively influenced by these
significant terms, while insignificant terms do not contribute
meaningfully to the improvement of steam energy production.
The lack of fit of 0.1463 indicates the suitability of the developed
mathematical model, as suggested by Tripathi et al. (2020), as
capable of accurately predicting and reproducing the
experimental data.

The metric for measuring the dispersion of values in the dataset
relative is referred to as the coefficient of variation (%). A small CV
value (CV < 10%) is indicative of the high reliability, consistency,
reproducibility, and accuracy of the models. In the current study, the
calculated CV% value of 0.9843 is relatively low. This low CV%
suggests a high level of reproducibility and reliability in the
conducted experiments and the investigated model (Kumar
et al., 2019).

The R2 value quantifies the proportion of the variation in the
dependent variable explained by all the independent factors
incorporated into the model. This metric operates under the
assumption that each independent variable in the model
contributes to explaining variations in the dependent variable. It
acts as the coefficient of determination for the regression model and
is expected to be close to 1, aligning with the standards for a robust
model (Akhtar et al., 2023). Specifically, the R2 value of 0.982 is
approaching 1. This value affirms the goodness of the mathematical
model under scrutiny, signifying its ability to accurately replicate the
experimental data. The adjusted R2 value quantifies the fraction of
variation elucidated solely by those independent factors that
genuinely contribute to explaining the dependent variables

TABLE 2 Analysis of variance (ANOVA) for the production of steam energy.

Source Sum of
squares

df Mean square F-value p-value Remarks

Model 9058.68 13 696.82 24.48 < 0.0001 Significant

A-Time 760.50 1 760.50 26.71 < 0.0001 Significant

B-Pressure 1682.00 1 1682.00 59.08 < 0.0001 Significant

C-Temperature 1880.89 1 1880.89 66.07 < 0.0001 Significant

D-Mass Flowrate 1334.72 1 1334.72 46.88 < 0.0001 Significant

AB 172.25 1 172.25 6.08 0.0228 Significant

AC 202.25 1 202.25 8.43 0.0112 Significant

BC 202.25 1 202.25 8.43 0.0112 Significant

BD 30.25 1 30.25 1.06 0.3180 Not Significant

CD 240.25 1 240.25 9.3113 0.0091 Significant

A2 85.27 1 85.27 3.00 0.1027 Not significant

B2 175.78 1 175.78 6.17 0.0244 Significant

C2 71.05 1 71.05 2.50 0.1337 Not significant

D2 58.13 1 58.13 2.04 0.1722 Not significant

Residual 455.49 16 28.47

Lack of Fit 448.66 11 70.79 2.47 0.1463 Not significant

Pure Error 6.83 5 1.37

Cor Total 9514.17 29

Std Dev = 5.34 R2 = 0.9821

Mean = 565.83 Adjusted R2 = 0.9132

C.V% = 0.9430 Predicted R2 = 0.7968

Adeq Precision = 19.2050
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(responses) in the regression model. On the other hand, the
predicted R2 value gauges the extent to which the model explains
variation in new data. Generally, a reasonable agreement between
the adjusted and predicted R2 values is indicated when the difference
is approximately within 0.2 (Onokwai et al., 2023a). The predicted
R2 (0.7968) is in reasonable consonance (difference of 0.1164) with
the adjusted R2 of 0.9132. Thus, the mathematical model closely
aligns with the predicted values, indicating that the model can
replicate the data obtained from the beverage industry.

3.2 Influence of individual factors on the
steam energy production

Figures 2A–D depicts the influence of individual factors on
steam energy production. The combination of higher pressure,
simultaneous temperature elevation, and increased mass flow rate
(ranging from 50 to 75 kg/s) enhances steam energy production as
time increases. However, a reduction in steam energy was observed
due to entropy inherent in the steam exchanger, resulting from
losses related to initial thermal effects, minimized empty space, and
overheating (Nadir et al., 2016).

3.3 Influence of two most significant factors
on operating factors on the steam energy
production

The 3D response surface and 2D contour plots (Figures 3–6)
demonstrate how two key factors significantly influence steam
energy production, based on the experimental conditions from
Design expert version 13.0 software. Figure 4 depicts the
combined effect of pressure level and time on steam energy
production, shown through 3D response surface and 2D contour
plots. The maximum steam energy production (574 Cal) was
attained at a constant temperature (200°C) and mass flow rate
(75 kg/s). Increasing pressure coupled with time (h) increased
steam energy production, attributed to the increase in energy
content of the mass of water under initial conditions, which
decreased circulation of mass of water required for energy
generation (Figures 3A, B), thereby improving steam energy
production efficiency. However, increasing temperature (from
100°C to 200°C) and extending operational time enhanced
economizer efficiency, leading to higher heat recovery at the
steam generation outlet and consequently reducing steam energy
generation (Hasananto et al., 2021).

FIGURE 2
Influence of individual factors on steam energy production.
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Similarly, steam energy generation rose with increasing
temperature and time (Figures 4A, B) due to increased
pressure on boiling water, requiring more energy to convert

water into steam. Optimal steam energy (572 Cal) was
observed at a pressure of 12.5 MPa and 3-h operation. Figures
5A, B depicts the pressure-temperature relationship on steam

FIGURE 3
(A) 3D response surface plot showing the effect of pressure level and time on steam energy production at a constant 200°C of temperature and
75 kg/s ofmass flow rate. (B) 2D contour plot showing the effect of pressure level and time on steam energy production at constant 200°C of temperature
and 75 kg/s of mass flow rate.

Frontiers in Energy Research frontiersin.org08

Olusanya et al. 10.3389/fenrg.2024.1417031

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1417031


energy production. Simultaneous increases in temperature and
pressure elevated energy transfer (enthalpy) in heat exchangers at
higher levels, enhancing energy generation efficiency. Optimal

steam energy (572 Cal) occurred at 12.5 Mpa pressure and 300°C
temperature, with constant time and mass flow rate. Regarding
temperature and mass flow rate interaction (Figures 6A, B), it was

FIGURE 4
(A) 3D response surface plot showing the effect of time and temperature on steam energy production at a constant 12.5 MPa of pressure and 75 kg/s
of mass flow rate. (B) 2D contour plot showing the effect of time and temperature on steam energy production at a constant 12.5 MPa of pressure and
75 kg/s of mass flow rate.
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found that simultaneous increases enhanced steam velocities
entering heat exchangers and water boiling point pressure,
augmenting heat energy transfer to fluids and overall

efficiency (Vargas et al., 2000). Maximum steam energy
(569 Cal) was recorded at 3-h operation and 12.5 Mpa
pressure, with constant temperature.

FIGURE 5
(A) 3D response surface plot showing the effect of temperature and pressure level on steam energy production at constant 3 h of time and 75 kg/s of
mass flow rate. (B) 2D contour plot showing the effect of temperature and pressure level on steam energy production at constant 3 h of time and 75 kg/s
of mass flow rate.
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3.4 Optimum conditions of operating
parameters

The optimal values of operating factors that enhance steam
energy generation are shown in Figure 7. An optimum yield of

steam energy (620 Cal) was attained at a time, pressure,
temperature, and mass flow rate of 1 h, 16.97 MPa, 249.5°C, and
59.85 kg/s, respectively (Figure 8). Any value of the operating
factors above or below these optimal values would lead to a
reduction in steam energy generation. The ANOVA result

FIGURE 6
(A) 3D response surface plot showing the effect of temperature andmass flow rate on steam energy production at constant 3 h of time and 12.5 MPa
of pressure level. (B) 2D contour plot showing the effect of temperature and mass flow rate on steam energy production at constant 3 h of time and
12.5 MPa of pressure level.
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(Table 3) obtained showed that the p-value is (> 0.05),
Consequently, the established mathematical model stands as a
reliable and practical tool for forecasting the steam energy
production.

3.5 Validations of results

Tables 3, 4 revealed good agreement between the predicted and
actual data. The variances were similar, suggesting comparable

FIGURE 7
Optimization plot.

FIGURE 8
Model validation.
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variability patterns (Table 3). Additionally, a strong positive linear
association between the two variables was evident from the high
correlation coefficient near 1. Furthermore, the very low t-statistic
(0.000216) indicated a minimal difference between the predicted
and actual values. The p-values, exceeding 0.05 for both one-tailed
(0.4999) and two-tailed (0.9998) tests (Table 4), suggested a lack of
statistically significant difference between the predicted and actual
values. In other words, we failed to reject the null hypothesis,
implying no meaningful difference in means exists. Similarly, the

t-statistic being significantly lower than critical values reinforces
the conclusion that the observed difference is likely due to random
chance rather than a true discrepancy between the actual and
predicted data. The t-test results and p-values thus support the
interpretation that any observed variations are attributable to
random fluctuations rather than reflecting a substantial
difference between the predicted and actual values.
Furthermore, the predicted values are in close proximity with
the actual values as their values align along the regression line

TABLE 3 Validation of experimental and predicted steam energy production.

Run
order

Actual
value

Predicted
value

Residual Leverage Internally
studentized
residuals

Externally
studentized
residuals

Cook’s
distance

Influence
on fitted
value
dffits

Standard
order

1 544.00 550.70 −6.70 0.485 −1.751 −1.886 0.207 −1.831 17

2 605.00 604.54 0.4627 0.596 0.136 0.132 0.002 0.161 16

3 535.00 534.54 0.4627 0.596 0.136 0.132 0.002 0.161 1

4 567.00 563.70 3.30 0.485 0.862 0.854 0.050 0.830 18

5 585.00 589.84 −4.84 0.596 −1.428 −1.480 0.215 −1.799 12

6 559.00 556.76 2.24 0.596 0.661 0.649 0.046 0.788 9

7 587.00 592.95 −5.95 0.596 −1.756 −1.892 0.325 −2.299⁽1⁾ 14

8 581.00 578.45 2.55 0.596 0.751 0.740 0.059 0.899 13

9 564.00 561.62 2.38 0.596 0.702 0.690 0.052 0.838 3

10 555.00 552.54 2.46 0.596 0.726 0.715 0.056 0.869 2

11 569.00 564.81 4.19 0.485 1.094 1.101 0.081 1.069 24

12 542.00 550.04 −8.04 0.485 −2.099 −2.388 0.297 −2.319⁽1⁾ 19

13 554.00 551.46 2.54 0.096 0.500 0.488 0.002 0.159 30

14 551.00 551.46 −0.4649 0.096 −0.092 −0.089 0.000 −0.029 26

15 540.00 547.59 −7.59 0.485 −1.983 −2.211 0.265 −2.147⁽1⁾ 23

16 580.00 578.34 1.66 0.596 0.489 0.477 0.025 0.579 11

17 553.00 551.46 1.54 0.096 0.303 0.294 0.001 0.096 29

18 572.00 566.92 5.08 0.485 1.326 1.361 0.118 1.322 22

19 554.00 551.46 2.54 0.096 0.500 0.488 0.002 0.159 28

20 583.00 584.32 −1.32 0.596 −0.388 −0.377 0.016 −0.458 7

21 574.00 569.37 4.63 0.485 1.210 1.229 0.099 1.194 20

22 553.00 551.46 1.54 0.096 0.303 0.294 0.001 0.096 27

23 590.00 592.32 −2.32 0.596 −0.683 −0.671 0.049 −0.815 8

24 594.00 596.54 −2.54 0.596 −0.748 −0.738 0.059 −0.896 15

25 538.00 546.48 −8.48 0.485 −2.215 −2.576 0.331 −2.502⁽1⁾ 21

26 554.00 551.46 2.54 0.096 0.500 0.488 0.002 0.159 25

27 577.00 574.76 2.24 0.596 0.661 0.649 0.046 0.788 10

28 575.00 573.12 1.88 0.596 0.554 0.542 0.032 0.658 4

29 562.00 560.73 1.27 0.596 0.374 0.364 0.015 0.442 5

30 578.00 575.23 2.77 0.596 0.816 0.807 0.070 0.981 6
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(Figure 8), thereby confirming the model’s efficacy. Hence, the
mathematical model can replicate the experimental data
accurately.

4 Conclusion

Steam energy plays a vital role in the food and beverage industry’s
production, processing, handling, and packaging, such as cooking,
sterilization, drying, humidification, etc,. The study utilized response
surface methodology (RSM) based on centre composite design (CCD) to
develop an experimental design matrix using four operating factors
names time ranging from 1 to 5 h, pressure level (5–20Mpa),
temperature (100°C–300°C), and mass flow rate ranged between
50–100 kg/s, each varies at three levels of experimental runs. The
response (steam energy production) and the operational factors were
input into the Design-Expert version 13.0 software to generate a
mathematical model, which was utilized for predicting and optimizing
steam energy production. Increasing pressure and time significantly
boosted steam energy production by elevating the water’s energy
content, thereby reducing the required water mass circulation and
enhancing steam energy production efficiency. Conversely, elevated
temperature and extended operational time improved economizer
efficiency, leading to higher heat recovery at the steam generation
outlet, resulting in reduced steam energy generation. Similarly, steam
energy generation increased with rising temperature and time due to the
heightened pressure on boiling water, necessitating more energy for
water-to-steam conversion. An optimal steam energy yield of 620 calories
was achieved at specific conditions: 1 h time, 16.97MPa pressure, 249.5°C
temperature, and a mass flow rate of 59.85 kg/s. The ANOVA analysis
showed that the mathematical model was significant, reliable, and
responsive due to the high F-value (24.48), low CV (0.943) and low
p-value (< 0.005). The predicted values correlate very well with the
experimental values, confirming the model’s capability to reproduce the
experimental data. It was observed that the R2 value (0.9821) is close to
1 and the difference between the adjusted (0.9132) and predicted R2 value

(0.7968) falls within the recommended range of 0.1164. Hence, the
mathematicalmodel accurately predicts the experimental data. This study
contributes to predicting future steam energy production for industrial
usage and reduces the bottle in performing rigorous experimental runs.
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TABLE 4 t-test: two-sample assuming equal variances.

Variable 1 Variable 2

Mean 565.8333 565.8323

Variance 328.0747 312.396

Observations 30 30

Pooled Variance 320.2353

Hypothesized Mean Difference 0

df 58

t Stat 0.000216

P (T ≤ t) one-tail 0.499914

t Critical one-tail 1.671553

P (T ≤ t) two-tail 0.999828

t Critical two-tail 2.001717
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