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With the increasing penetration level of electric vehicles (EVs) in distribution
networks, the limited capacity of distribution networks has become a bottleneck
for EV integration. Considering the difficulties of capacity expansion in
distribution networks, especially in large cities, integrating EVs with
photovoltaic (PV) generation systems and battery energy storage systems has
become a possible technical solution for distribution networks. However,
uncertainties in the PV generation systems and EV loads make planning and
operating methods difficult for such systems. This paper presents an evaluation
model that simulates the uncertainties of EV and PV power generation systems
using a large number of stochastic scenarios generated by the Monte Carlo
method to assess the revenue of various operators under multiple possible
scenarios. Multiple operation constraints were considered in the proposed
method, including voltage deviations, capacity limitation of the transformer,
EV owner satisfaction, and other physical constraints. In order to accelerate
the evaluation process of the EVs, the Distflow equations for distribution
networks were applied in the proposed evaluation model. The results of case
studies indicate that themaximum capacity of EVs with different scenarios can be
calculated by the proposed model.
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1 Introduction

Electric vehicles (EVs) have been regarded as an effective technology for reducing
carbon emissions (Hu et al., 2024). Compared with conventional fossil-powered
vehicles, EVs could reduce carbon emissions to 50% of the original level (Wang
et al., 2023). Compared with their internal combustion engine counterparts, EVs
are often characterized by their rapid acceleration performance, the provision of a
more refined and comfortable driving experience, and a significantly reduced level of
noise emissions. While the initial acquisition cost of EVs is potentially higher, their
operational expenses are significantly reduced, particularly when the vehicles are
charged during off-peak hours when electricity rates are more favorable. However,
several technical factors limit EVs from replacing conventional fossil-powered vehicles.
First, compared with the number of petrol stations for fossil-powered vehicles, the
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number of charging stations is still relatively small. More
charging stations are under construction to meet the charging
needs of EVs in the near future, requiring higher-capacity
distribution networks. This additional capacity of the
distribution network is a great technical challenge for the
current distribution network, especially for the distribution
network in large cities (Dyke et al., 2010; Jokinen and
Lehtonen, 2023). The lands in the large cities for expanding
the existing distribution network are very limited and valuable.
These factors create great difficulties for capacity expansion in
distribution networks in large cities. Another factor to limit the
increasing speed of the number of EVs is charging time.
Comparing the charging time of petrol with fossil-powered
vehicles, the charging time for EVs is still more than 1 hour
for most charging stations. Although rapid charging technologies
have been developing fast in recent years, and the charging speed
can be reduced to several minutes in the laboratory, the limited
power capacity is still an important limitation for building fast
charging EV stations (Yao et al., 2014; Tu et al., 2019; Arya and
Das, 2023).

As mentioned above, the limited power capacity of the
distribution network is a bottleneck for accelerating EVs to
replace conventional fossil-powered vehicles. As a possible
solution, building a PV–Storage–EV hybrid fast EV charging
station (EVCS) could reduce the required power capacity of the
distribution network by increasing the self-generation capability.
The development of PV technology can further enhance the
environmental friendliness of energy on the basis of the
development of EVs (Kim et al., 2019; Bhang et al., 2023). The
characteristics of the energy storage system (ESS) can effectively
address the challenges posed by the uncertainty of EV loads and
PV power generation (Ribeiro et al., 2001; Bhattacharya et al.,
2018; Zhang et al., 2022). In Manoj et al. (2023), the Monte Carlo
simulation technique models authentic charging and battery
exchange scenarios for EVs, capturing the inherent
uncertainties and variability in real-life operations. For
planning the hybrid EV fast charging stations, balancing the
uncertainties, construction costs, and the risk of limiting
charging capacity is one of the most important issues. Many
researchers have carried out related research to develop and
improve the planning method for hybrid charging stations.
Leadbetter and Swan (2012) studied the energy storage
capacity required for peak shaving and valley filling of civilian
charging piles. Das et al. (2023) discussed the collaborative
operation strategy of PV, charging stations, and energy storage
in a joint system and verified the feasibility of the system. Van
Roy et al. (2014) studied the EV charging strategy in areas with
distributed thermoelectric and photovoltaic industries. Wi et al.
(2013) proposed an EMS-based intelligent charging method for
household EVs connected to photovoltaics. Xuewei et al. (2020)
analyzed short-time power generation characteristics of
photovoltaic and wind power and discussed the compensation
effect of energy storage systems on the power generation
instability.

The above literature does not provide an economic analysis and
evaluation model in collaborative systems. This paper proposed an
economic evaluation model for EVCS power supply based on PV,
ESS, and distribution networks. The adaptability of different types of

EV charging loads to ESS and PV is discussed. Furthermore, the
application of the Monte Carlo method, as discussed in Manoj et al.
(2023), has been extended from EVs to photovoltaic power
generation in this study.

This study contributes to the field by developing a model that
enables a swift evaluation of the economic benefits for operators
of energy storage facilities, PV generation systems, and EVCS
within the power grid. The paper also presents a set of strategic
recommendations for operators concerning optimal site selection
and strategies for expanding their operational scale.

2 Mathematical model

Figure 1shows the collaborative system diagram. The system
comprises PV generation, ESS, and EVCS, which are connected to
the distribution network. A static var generation (SVG) is connected
to the electric charging station to compensate for reactive charging
power, and a linear voltage regulator (LVR) is connected at the
distribution network. The LVR can flexibly adjust bus #1 voltage to
improve the power quality of bus #3 (Geth et al., 2012). In the
proposed model, time of use (TOU) electricity prices are used to
represent the electricity sale price, which can guide users to
participate in demand response, improve user satisfaction, and
enhance the economic efficiency of the power grid (Zhao et al.,
2014; Yi et al., 2019; Liu et al., 2021).

In this model, PV generates electricity, and the priority for
selling electricity is EVCS, distribution network, and ESS, which
is determined based on the price sold to them, which are noted as
CPV−EV, CPV−Grid, and CPV−ESS. The EVCS sells the purchased
electricity at TOU price CEV,sell

T to the EVCS. Its electricity is first
purchased from PV. If PV cannot meet the charging demands, it
will purchase electricity from the network at TOU price CGrid−EV

T .
If the demand still cannot be met, it will purchase electricity from
ESS at a high price CESS−EV. If the capacity of the EVCS is too
large, resulting in a large charging demand, and the system
cannot meet the charging demand, the EVCS will receive a
fine at a price CEV,fine based on the amount of electricity that
cannot be met. We also assume that the ESS only purchases PV
electricity. Based on the electricity sale and purchase rules, all
possible power flows in this model are shown in Figure 2. PV
provides active power to the distribution network, EVCS, and
ESS, respectively, noted as PPV−EV

T , PPV−Grid
T , and PPV−ESS

T . The
EVCS not only purchases electricity from PV but also purchases
electricity from the distribution network and ESS, respectively, as
noted in PGrid−EV

T and PESS−EV
T .

Considering the unit cost of building PV, EVCS, and ESS,
the profit of the three units can be calculated separately as
Eqs 1–3:

CPV
profit � ∑T

end

T�Tstart

(PPV−EV
T · CPV−EV + PPV−Grid

T · CPV−Grid.

+ PPV−ESS
T · CPV−ESS) − SPV · CPV

cost (1)

CEV
profit � ∑T

end

T�Tstart

PEV,sell
T · CEV,sell

T − PPV−EV
T · CPV−EV − PGrid−EV

T · CGrid−EV

− PESS−EV
T · CESS−EV) − SEV · CEV

cost (2)
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CESS
profit � ∑T

end

T�Tstart

PESS−EV
T · CESS−EV − PPV−ESS

T · CPV−ESS( ) − SESS · CESS.
cost

(3)
where SPV, SEV, and SESS, respectively, represent the installation
capacity of the three components, and CPV

cost, CEV
cost, and CESS

cost,
respectively, represent their cost per unit capacity. Tstart and Tend

represent the starting and ending of the time interval for calculating
profits, respectively.

Based on the SOC level of ESS SOCESS
T , PV power generation

PPV
T , EV charging demand PEV

T , the maximum power support
P Grid, sup

max , and the maximum power purchase P Grid,pur
max of the

distribution network, there are three possible power flow states,
as shown in Figure 3.

In the situation shown in Figure 3A, PV power generation
PPV
T , EVCS charging demand PEV

T satisfy PEV
T ≤PPV

T . In this
situation, PV prioritizes meeting EV charging demand and
then sells additional electricity to distribution networks. If
there remains additional electricity after reaching the upper

limit of the distribution network, electricity purchasing
P Grid,pur

max , the excess electricity will be sold to an ESS at a lower
price. If there still remains additional electricity after reaching the
upper limit of ESS purchasing (SOC ESS

max − SOCESS
T ), these

portions of the energy will be wasted. The direction of power
flow is from PV to the EVCS, the distribution network, and ESS.
The power through line 1 P1,T is −PPV−Grid

T , and the power flowing
through line 2 P2,T is PPV−EV

T (setting the positive direction of line
1 is from bus #1 to bus #2, the positive direction of line 2 is from
bus #2 to bus #3).

In the situation shown in Figure 3B, PV power generation
PPV
T , EVCS charging demand PEV

T , and the maximum power
support P Grid, sup

max satisfy PPV
T ≤PEV

T ≤PPV
T + P Grid, sup

max . In this
situation, the EVCS purchases electricity from PV and
distribution networks. The ESS neither purchases electricity
from the grid nor sells electricity to the EVCS. The power
flowing through line 1 is PGrid−EV,

T and the power flowing
through line 2 is (PPV−EV

T + PGrid−EV
T ).

In the situation shown in Figure 3C, PV power generation PPV
T ,

EV charging demand PEV
T , the maximum power support P Grid, sup

max ,
and the SOC level of ESS SOCESS

T satisfy PPV
T + P Grid, sup

max ≤PEV
T . In

this situation, the EVCS must purchase electricity from the ESS.
When satisfied PEV

T ≤PPV
T + P Grid, sup

max + SOCESS
T , the EVCS sells

electricity; otherwise, it will incur fines. The power flowing
through line 1 is PGrid−EV,

T and the power flowing through line
2 is (PPV−EV

T + PGrid−EV
T + PESS−EV

T ).
In this model, the reactive power required by the EVCS

can be compensated by on SVG. If the EVCS needs more reactive
power, the distribution network and ESS can provide it. Reactive
power transmitted on line 1 and line 2 can be calculated as Eqs
4, 5:

Q1,T � QGrid−EV
T , (4)

Q2,T � QGrid−EV
T + QESS−EV,

T (5)
where Q1,T and Q1,T represent reactive power transmitted on
line 1 and line 2, respectively, while QGrid−EV

T and QESS−EV
T

represent the reactive power compensated by the distribution
net and ESS.

After determining the active and reactive power transmitted
on line 1, bus #2 voltage can be calculated by the DistFlow model.

FIGURE 1
System diagram.

FIGURE 2
Power flows in this model.
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Assuming a section of the transmission line, its line parameters
and voltage and power parameters are shown in Figure 4. The
voltage drop on line 1 can be calculated by Equation 6 based on
the DistFlow model. Farivar and Low (2013) and Borland and
Singh (2018) have validated the adaptability of the DistFlow
model, demonstrating its potential for scalability to encompass
all radial distribution networks. Hence, the model introduced in
this study is designed with the flexibility to be applicable across a
wide range of radial distribution network configurations.

U2
1 � U1 − P1,Tr1 + Q1,Tx1

U1
( )

2

+ P1,Tx1 − Q1,Tr1
U1

( )
2

� U2
1 − 2 · r1P1,T + x1Q1,T( ) + 2 · r1

2 + x1
2( ) · P1,T( )2 + Q1,T( )2,

U2
1

(6)
Because r1 · P1,T ≥ r1 · ΔP1,T and x1 · Q1,T ≥ x1 · ΔQ1,T, the

third term of Eq. 6 can be considered negligible in the power
flow equation to some extent, as the actual power transmitted
through the lines is significantly greater than the network losses.
However, when dealing with long transmission lines or high
transmitted power, resulting in substantial network losses, the
neglect of this component can lead to significant computational
errors. In such cases, the actual quality of electrical energy may be
considerably lower than the estimated quality. The equation is
simplified to Eq. 7:

U2
2 � U2

1 − 2 · r1P1,T + x1Q1,T( ). (7)

Similarly, bus #3 voltage can be calculated by Eq. 8.

U2
3 � U2

1 − 2 · r1P1,T + x1Q1,T( ) − 2 · r2P2,T + x2Q2,T( ). (8)

It is possible to compute the voltage values across different
scenarios using the linear calculation formula (8) for nodal voltages
derived from the analysis. Change the state of LVR to adjust U1

(0.95U; 0.975U; 1.025U; 1.05U) to make U3 closer to the nominal
value, improving the quality of electricity.

3 Scenario generation

In this paper, normal distribution models of PV generation and
different types of EV charging load are built to reflect the uncertainty
of EV and PV generation systems, as is shown in Figure 5. The mean
or expectation of the distribution μ represents the average value of
PV or EV curves, while the standard deviation σ represents the
uncertainties.

In Borland and Singh (2018), the typical PV power generation
curve is discussed, which indicates that PV power generation is only
possible during daylight hours and peaks around 12:00–13:00. The
distribution network and the ESS must meet the charging demand
for EVs at night. In Hasan et al. (2019), the differences between fast
and slow charging loads of EVs are identified based on actual
measured load curves. This paper simulates three types of loads
based on the characteristics summarized therein: the first two types
represent fast and slow charging loads, respectively, and the third
type is a hybrid load composed of a combination of fast charging
load and slow charging load, with each contributing 50% to the
composite load.

Using the Monte Carlo method, many curves can be
generated randomly by each normal distribution model.
Because of the randomness inherent in the normal
distribution, there are scenarios that include negative power,
which are unreasonable and must be eliminated. We employ the
k-means clustering algorithm among the remaining data to
reduce the number of curve samples. The k-means clustering
algorithm compares the distance between each data in the
samples and the centroids of all k clusters, assigning the data
to the closest cluster. We randomly generate 10,000 scenarios and
set the original curves as the initial centroids. The k-means
algorithm then reduces the sample size to 365 daily data
points over a year. The daily load data collected throughout
this year will serve as the dataset to demonstrate the effectiveness
of the method introduced in this paper. The PV daily output
power of 1 year is shown in Figure 6. The output power reaches its

FIGURE 4
Transmission line.

FIGURE 3
Three possible power flow scenarios. (A) Power flow scenario #1. (B) Power flow scenario #2. (C) Power flow scenario #3.
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peak value at noon with high uncertainty while performing more
stably at the beginning and end of the day.

The slow EVCS daily load curves in 1 year are in Figure 7. This
kind of load is often distributed in residential areas of EVCSs. Its
characteristics are that most users are more likely to charge at

midnight for cheaper electricity price and some users choose to
charge temporarily at noon time. Consequently, the mean value μ
tends to be lower in the daytime hours; in contrast, it exhibits a
higher average in the evening, particularly during the periods
characterized by reduced electricity costs. As most individuals

FIGURE 5
Daily load curves of three types of EV charging loads and PV daily generation curve.

FIGURE 6
PV daily generation curves in 1 year.

FIGURE 7
Slow EVCS daily load curves in 1 year.
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may establish personalized charging plans, the standard deviation σ

in the charging load is consequently reduced.
The fast EVCS daily load curves in 1 year are shown in

Figure 8. This kind of load is often distributed in EVCSs in
commercial areas. Its characteristics are that there will be a
charging demand at any time, and demand and uncertainty at
daytime are significant. The mean value μ is elevated as a result of
the increased instantaneous power output from fast charging
stations, and the deviation σ is further amplified by the
substantial mobility of the user population.

The hybrid EVCS daily load curves in 1 year are shown in
Figure 9. This kind of load is a hybrid distribution of commercial
and residential areas. Its characteristics include the nighttime rise
characteristics of slow charging loads and the daytime high
uncertainty of fast charging loads. Some consumers prefer to
arrange slow charging schedules, whereas others opt for
impromptu fast charging sessions at different periods. Therefore,
the mean μ and deviation σ of the hybrid charging demand are
situated between those of the categories mentioned above, arising
from the linear combination of two distinct normal distributions
that individually symbolize the load profiles for slow and fast
charging scenarios.

The three delineated charging load profiles, slow charging load,
fast charging load, and hybrid charging load, exhibit both
correlations and complementarity in their operational
characteristics and user preferences. Slow charging loads are
typically more stable and peak during nighttime hours. In
contrast, the high randomness of fast charging loads, if not
strategically managed, may impose stress on the power grid.
Hybrid charging loads, a combination of slow and fast charging
loads, reflect a more diversified and flexible user behavior and may
offer strategic advantages in load management. This combination
can leverage the characteristics of both slow and fast charging,
smoothing out the overall demand curve and enhancing the
resilience of the charging infrastructure to meet varying user
demands across different periods of the day.

4 Case studies

Based on a 10-year depreciation rate, the installation costs for
photovoltaic power stations, EVCS, and energy storage systems
are estimated to be 30 W RMB/WM, 40 W RMB/MW, and
300 RMB/kWh, respectively. The PV cost is sourced from the

FIGURE 8
Fast EVCS daily load curves in 1 year.

FIGURE 9
Hybrid EVCS daily load curves in 1 year.
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statistical data provided by the US Energy Information
Administration, which is 21.2 W RMB/WM. The cost
reference value for the EVCS provided in Ortenzi et al.
(2017) is 23.1 RMB/MW. Meanwhile, the cost reference value
for the ESS provided in Fu et al. (2018) is 250 RMB/kWh. It is
important to note that all costs we used have been conservatively
estimated based on the previous data, suggesting that actual

costs may be lower. The typical price and TOU price settings
mentioned above are shown in Tables 1–3.

This paper applies the proposed evaluation method to a fragile
power grid where the grid’s support capacity is significantly lower
than the power supply capabilities of energy storage and
photovoltaic systems. Scenarios in different capacity ratios of
EVCS, PV, ESS, and distribution network support and purchase
capacity are set to research the economic status of different
facilities and compare the impact of different types of EVCS
loads on the expansion of power facilities, as shown in Table 4.
The capacity of the EVCS is a constant 6 MW, while the capacities
of PV and ESS have three levels: high (8 MW), medium (6 MW),
and low (4 MW). Nine scenarios are combined. In the first nine
scenarios, it is assumed that there are multiple additional subnets
connected at the bus where the system interfaces with the
distribution network. Constrained by the internal power flow of
the distribution network, their capacity to purchase electrical
energy is only half of the grid’s support capacity. In the 10th
scenario, it is presumed that the capacity to purchase electrical
energy is equivalent to the support capacity, and the power
transmitted in this scenario is influenced only by the
transformer capacity and line parameters.

In the slow charging scenario, the annual revenues of the PV,
EVCS, and ESS are shown in Figure 10. Because of the characteristics
of slow charging loads, much of the PV output power is directed
toward the distribution network and ESS during the day. However,
the demand for nighttime charging is difficult to meet, leading to
substantial fines and negative revenue for the EVCS. Moreover, the
revenue from PV is mainly composed of cheap electricity sold to the
distribution network and ESS, as the peak generation period does
not align with the peak charging demand period. Meanwhile, the
ESS effectively matches the characteristics of slow charging loads. It
stores more low-cost electricity during the day and can sell more at
higher prices at night. The increase in ESS capacity allows for
purchasing more affordable electricity from PV during the day
and its sale to the EVCS at night for higher profits. Compared
with the ESS, the limited variation of the purchase capacity of the
distribution network has a more significant impact on PV. The low-
priced electricity sold to ESS in Scenario 1 is sold to the distribution
network at a higher price in Scenario 10. This change further
highlights the important role of energy storage systems in
balancing supply and demand and optimizing the operation of
the electricity market. By properly configuring and utilizing
energy storage systems effectively enhances the operational
efficiency and economic profits of the entire ESS.

Annual revenues of PV, EVCS, and ESS in fast charging
scenarios are shown in Figure 11. The fast charging load has a
relatively large amplitude during the day, with a curve resembling
the PV output power curve. As a result, a significant portion of the
electricity generated by PV is sold to the EVCS. The fast charging
demand of the EVCS can be met in all scenarios, which allows PV
and EVCS to reap high profits. For ESS, the situation is somewhat
different. Because of the peak alignment between PV and EVCS, ESS
cannot obtain much electricity during the day.

Furthermore, the low charging demand from EVs at night is
mostly satisfied through the distribution network, leading to a lower
utilization rate and reduced storage profits for the ESS. The
conditions presented in Scenario 10 should further decrease the

TABLE 1 Typical price between PV, EVCS, ESS, and Grid in China.

Price type Price, RMB/kWh

CPV−EV 0.5

CPV−Grid 0.3

CPV−ESS 0.15

CESS−EV 1

CEV,fine 2

TABLE 2 Typical TOU EV charging price in China.

Time Price, RMB/kWh

5:00–8:00 1

1:00–4:00, 23:00–0:00 1.2

9:00–10:00, 21:00–22:00 1.5

11:00–20:00 1.8

TABLE 3 Typical TOU Grid electricity price in China.

Time Price, RMB/kWh

7:00–20:00 0.6

21:00–6:00 0.9

TABLE 4 Different capacity ratios of units in system (MW).

PV EVCS ESS Grid
purchase

Grid
support

Scenario 1 6 6 6 0.5 1

Scenario 2 4 6 6 0.5 1

Scenario 3 8 6 6 0.5 1

Scenario 4 6 6 4 0.5 1

Scenario 5 6 6 8 0.5 1

Scenario 6 4 6 4 0.5 1

Scenario 7 4 6 8 0.5 1

Scenario 8 8 6 4 0.5 1

Scenario 9 8 6 8 0.5 1

Scenario
10

6 6 6 1 1
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revenue of ESS. With the fast charging load, the synergistic
relationship between PV and EVCS is beneficial for their
respective revenues, as the high daytime demand for electricity
aligns well with the peak generation period of PV. This
alignment ensures that the electricity produced by PV is
efficiently utilized, minimizing losses and maximizing profitability
for both sectors. However, the ESS faces challenges in this scenario.
The high daytime demand is already being met by the direct sale of
PV electricity to EVs, leaving less opportunity for ESS to store excess
energy at favorable rates. The reduced nighttime demand, a potential
period for ESS to discharge stored energy at a higher profit, is also
less pronounced because of the ability of the distribution network to
meet the lower demand requirements. This situation, combined with
the specific conditions of Scenario 10, places additional financial
pressure on ESS, necessitating strategic adjustments and innovative
solutions to optimize its operation and revenue generation within
the fast charging framework.

In the hybrid charging scenario, as depicted in Figure 12, the
revenues of PV, EVCS, and ESS exhibit distinct characteristics
compared with scenarios with the above two kinds of charging
loads. The reduction in revenue for both PV and EVs is attributed to
the variability in the daytime charging load characteristics, which
does not align well with the output power of PV. Consequently, in

many scenarios, ESS can purchase enough electricity. Additionally,
the increased nighttime charging load demand provides a market for
ESS to sell its stored electricity, which significantly enhances its
revenue potential. The operation of ESS in this scenario is crucial as
it acts as a buffer to store excess electricity during periods of high PV
generation and supply it during periods of high demand, thus
optimizing the overall energy flow and increasing profitability.

The hybrid charging scenario presents challenges and
opportunities for PV, EVCS, and ESS. While the variability in
charging loads brings uncertainty, it also provides a dynamic
environment where the ESS can play a pivotal role in balancing
supply and demand and enhancing the overall efficiency of the
energy system. It is essential for stakeholders to closely monitor
market conditions and adapt their strategies accordingly to
maximize profits.

The average voltages of bus #3 in different scenarios under three
different types of EV charging loads are shown in Table 5. Although
different capacities can cause voltage fluctuations, the operating
strategy of LVR can adjust the voltage of bus #3 within a range of
good power quality. It can be clearly observed that for the most
heavily loaded scenarios 2, 6, and 7, the power quality remains
relatively good because of errors in the power quality calculated by
the DistFlow model. The load power in these three scenarios is

FIGURE 10
Annual revenue in slow charging scenarios.

FIGURE 11
Annual revenue in fast charging scenarios.
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difficult for PV systems to meet, necessitating a higher transmission
power demand and greater network losses. These network losses are
not accounted for in Equation 7, leading to discrepancies in the
calculations.

5 Discussions

For the PV generation system, comparing Figures 10–12 it can
be observed that under fast charging load conditions, the revenue
increase in PV with increasing capacity is greater than that under
slow charging load conditions. The increase in income from hybrid
loads falls between the two, as the uncertainty in charging loads is
reduced by the proportion of slow charging loads. When the
expansion of PV does not exceed the acceptable range of the
EVCS, the expansion profits of PV are very good. When the PV
power generation exceeds the acceptable range of the EVCS, the
additional capacity will be sold at a low price to the distribution
network and ESS, significantly reducing profits and even causing
waste. Comparing the profits of PV in Scenarios 1–3 shows that the
cost-effectiveness of expanding PV is higher under the last two load
conditions.

For EV charging stations, comparing the profits with three types
of EV charging loads, it is obvious that fast charging loads are more
suitable for connecting to buses with PV generation systems because
of their load characteristics, while slow charging loads may have to
bear greater risks if they want to connect to buses with PV power
generation. Even if a slow charging load has more stability and
predictability, it will only increase the pressure of the EVCS in most
scenarios. Comparing the profits of Scenarios 3–5 in the three figures
shows that the larger the proportion of fast charging load, the more

profits PV expansion brings to the EVCS, and the larger the
proportion of slow charging load, the more profits ESS expansion
brings to EVCS. The economic revenue of the EVCS with a hybrid
load is more stable. Whether it is the expansion of PV or ESS, as long
as it can meet most charging demands, the negative influence on
EVCS profits is negligible.

For energy storage systems, two key factors affecting its
profitability are the purchase of additional electricity during PV
supply periods and the market for selling electricity during
nighttime. As shown in Figure 10, ESS can have higher benefits
than other components in the network, while as shown in Figure 11,
the opposite is true. Comparing the benefits of ESS in Scenarios
1 and 2 in the three figures shows that under slow charging load
conditions, the benefits of ESS are not affected by changes in PV
capacity because, under slow charging load, ESS can reach the
maximum level of SOC easily, while under fast charging load
and hybrid charging load conditions, the reduction of PV
capacity will affect the daytime SOC level of ESS. Furthermore,
ESS has a higher saturation capacity under slow charging conditions,
meaning the upper limit of capacity expansion that can yield positive
profits is higher. As seen in Scenario 10 of the three figures, the
ability of ESS to purchase electricity is constrained by the
distribution network. A decrease in the distribution network’s
purchasing capacity can result in more purchasable electrical
energy being available for energy storage systems.

Consequently, in scenarios where there is a marked surplus of
electricity generation from PV systems, the purchasing capacity of
the distribution network can significantly affect the profitability of
ESS. This situation occurs because one of the critical factors
influencing their profitability is the ability to acquire sufficient
electrical energy during daylight hours, partly determined by the

FIGURE 12
Annual revenue in hybrid charging scenarios.

TABLE 5 Average voltage of 1 year on bus #3 (kV).

Scenarios 1 2 3 4 5 6 7 8 9 10

Slow 9.97 9.98 9.98 9.98 9.98 9.98 9.98 9.98 9.98 9.99

Fast 9.95 9.95 9.95 9.95 9.95 9.94 9.95 9.95 9.95 9.95

Hybrid 9.97 9.96 9.98 9.97 9.97 9.96 9.96 9.97 9.97 9.98
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distribution network’s purchasing capacity. If the purchasing
capacity of the distribution network is enhanced, even when the
PV-generated electricity exceeds the demand for EV charging, the
distribution network could absorb excess energy. This would, in
turn, make it more challenging for ESS to capitalize on its
competitive edge.

In summary, the interplay between PV, EVCS, and ESS under
various charging load conditions is complex and influenced by
multiple factors. Strategic planning and the intelligent operation
of these systems are crucial for optimizing their profitability.

6 Conclusion

This study introduced a comprehensive evaluation model for
calculating the integration capacity for EVCSs with PV and ESS in
the distribution networks. The proposed model was designed to
evaluate the economic revenue of these interconnected systems
under various operational scenarios while considering the integration
capability. The Monte Carlo method is employed with a Gaussian
model to generate operation scenarios in an extremely weak grid that
considers the inherent uncertainties in EV charging loads and PV
power generation outputs. Clustering algorithms are then developed to
categorize these scenarios effectively. From the outcomes of the case
study examination, the subsequent conclusions have been derived:

1. Fast charging loads are more suitable for connecting PV
generation systems in a fragile grid, achieving a win–win
situation and earning high profits.

2. Energy storage systems are more suitable for compensating the
slow charging stations connected with PV in a fragile grid,
while the risk for the profits of the EVCS will be higher.

3. The real-time regulation characteristics and different voltage
regulation characteristics of LVRs can greatly improve the
voltage quality of different scenarios with uncertainties.

In future research, we suggest that real-time floating electricity
prices should be considered in the model. This consideration can
improve the accuracy and complexity of the proposed model while
considering the dynamic nature of electricity markets. Additionally,
developing an energy storage operation strategy that considers the
purchase of electricity from the grid with the constraints of charging
and discharging times could further optimize the revenue and
efficiency of the ESS. Overall, this research provides a robust
framework for assessing the revenue potential and operational
strategies of distribution networks that incorporate PV, EVCS,
and ESS. By considering the uncertainties and modeling the
operation characteristics of different components, the model

offers a technical framework to evaluate distribution networks’
economic and power quality with EVs and various
compensation devices.

Data availability statement

The original contributions presented in the study are included in
the article/Supplementary Material. Further inquiries can be
directed to the corresponding author.

Author contributions

YL: Writing–review and editing, writing–original draft,
supervision, and conceptualization. CL: Writing–review and
editing, project administration, and conceptualization. YL:
Writing–review and editing and software. MD: Writing–review
and editing and methodology. YC: Writing–review and editing,
visualization, and investigation. RD: Writing–review and editing
and resources.

Funding

The author(s) declare that financial support was received for the
research, authorship, and/or publication of this article. This research
was funded by science and technology program of State Grid
Shanghai Municipal Electric Power Company (grant number
520933230002). The funder was not involved in the study design,
collection, analysis, interpretation of data, the writing of this article,
or the decision to submit it for publication.

Conflict of interest

Authors YL, CL, YL, MD, YC, and RD were employed by State
Grid Shanghai Municipal Electric Power Company.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations or those of the publisher, the editors, and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

Arya, H., and Das, M. (2023). Fast charging station for electric vehicles based on DC
microgrid. IEEE J. Emerg. Sel. Top. Industrial Electron. 4 (4), 1204–1212. doi:10.1109/
jestie.2023.3285535

Bhang, B. G., Hyun, J. H., Ahn, S.-H., Choi, J. H., Kim, G.-G., and Ahn, H.-K.
(2023). Optimal design of bifacial floating photovoltaic system with different
installation azimuths. IEEE Access 11, 1456–1466. doi:10.1109/access.2022.
3233100

Bhattacharya, A., Kharoufeh, J. P., and Zeng, B. (2018). Managing energy storage in
microgrids: a multistage stochastic programming approach. IEEE Trans. Smart Grid 9
(1), 483–496. doi:10.1109/tsg.2016.2618621

Borland, J., and Singh, A. (2018). “Reducing morning & late afternoon grid-buy
demand by engineering box-like rooftop solar-PV generation profiles without the
high cost of trackers or bifacial panels,” in 2018 IEEE 7th World Conference on
Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE

Frontiers in Energy Research frontiersin.org10

Yu et al. 10.3389/fenrg.2024.1416334

https://doi.org/10.1109/jestie.2023.3285535
https://doi.org/10.1109/jestie.2023.3285535
https://doi.org/10.1109/access.2022.3233100
https://doi.org/10.1109/access.2022.3233100
https://doi.org/10.1109/tsg.2016.2618621
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1416334


PVSC, 28th PVSEC & 34th EU PVSEC), Waikoloa, HI, USA, 10-15 June 2018,
1169–1172.

Das, N., Haque, A., Zaman, H., Morsalin, S., and Islam, S. (2023). Domestic load
management with coordinated photovoltaics, battery storage and electric vehicle
operation. IEEE Access 11, 12075–12087. doi:10.1109/access.2023.3241244

Dyke, K. J., Schofield, N., and Barnes, M. (2010). The impact of transport
electrification on electrical networks. IEEE Trans. Industrial Electron. 57 (12),
3917–3926. doi:10.1109/tie.2010.2040563

Farivar, M., and Low, S. H. (2013). Branch flow model: relaxations and
convexification—Part II. IEEE Trans. Power Syst. 28 (3), 2565–2572. doi:10.1109/
tpwrs.2013.2255318

Fu, R., Remo, T., and Margolis, R. (2018). “Evaluating the cost benefits of U.S. Utility-
scale photovoltaics Plus energy storage systems,” in 2018 IEEE 7th World Conference
on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC,
28th PVSEC & 34th EU PVSEC), Waikoloa, HI, USA, 10-15 June 2018, 1–4.

Geth, F., Leemput, N., Van Roy, J., Büscher, J., Ponnette, R., and Driesen, J. (2012).
“Voltage droop charging of electric vehicles in a residential distribution feeder,” in 2012
3rd IEEE PES Innovative Smart Grid Technologies Europe (ISGT Europe), Berlin,
Germany, 14-17 October 2012, 1–8.

Hasan, K. N., Muttaqi, K. M., Borboa, P., Scira, J., Zhang, Z., and Leishman, M. (2019).
“Measurement-based electric vehicle load profile and its impact on power system
operation,” in 2019 9th International Conference on Power and Energy Systems
(ICPES), Perth, WA, Australia, 10-12 December 2019, 1–6.

Hu, Z., Mehrjardi, R. T., and Ehsani, M. (2024). On the lifetime emissions of
conventional, hybrid, plug-in hybrid and electric vehicles. IEEE Trans. Industry
Appl. 60 (2), 3502–3511. doi:10.1109/tia.2023.3330950

Jokinen, I., and Lehtonen, M. (2023). Modeling of electric vehicle charging demand
and coincidence of large-scale charging loads in different charging locations. IEEE
Access 11, 114291–114315. doi:10.1109/access.2023.3322278

Kim, G. G., Choi, J. H., Park, S. Y., Bhang, B. G., Nam, W. J., Cha, H. L., et al. (2019).
Prediction model for PV performance with correlation analysis of environmental
variables. IEEE J. Photovoltaics 9 (3), 832–841. doi:10.1109/jphotov.2019.2898521

Leadbetter, J., and Swan, L. (2012). Battery storage system for residential electricity
peak demand shaving. Energy Build. 55, 685–692. doi:10.1016/j.enbuild.2012.09.035

Liu, D., Wang, W., Wang, L., Jia, H., and Shi, M. (2021). Dynamic pricing strategy of
electric vehicle aggregators based on DDPG reinforcement learning algorithm. IEEE
Access 9, 21556–21566. doi:10.1109/access.2021.3055517

Manoj, N., Vigneshkumar, B., Kumar, A. G., and Sindhu,M. R. (2023). “Optimal sizing and
operation of PV based battery swapping station considering EV uncertainties for an Indian

residential community,” in 2023 7th International Conference on Computer Applications in
Electrical Engineering-Recent Advances (CERA), Roorkee, India, 1–6.

Ortenzi, F., Orchi, S., and Pede, G. (2017). “Technical and economical evalutation of
hybrid flash-charging stations for electric public transport,” in 2017 IEEE International
Conference on Industrial Technology (ICIT), Toronto, ON, Canada, 22-25March 2017,
549–554.

Ribeiro, P. F., Johnson, B. K., Crow, M. L., Arsoy, A., and Liu, Y. (2001). Energy
storage systems for advanced power applications. Proc. IEEE 89 (12), 1744–1756. doi:10.
1109/5.975900

Tu, H., Feng, H., Srdic, S., and Lukic, S. (2019). Extreme fast charging of electric
vehicles: a technology overview. IEEE Trans. Transp. Electrification 5 (4), 861–878.
doi:10.1109/tte.2019.2958709

Van Roy, J., Leemput, N., Geth, F., Büscher, J., Salenbien, R., and Driesen, J. (2014).
Electric vehicle charging in an office building microgrid with distributed energy
Resources. IEEE Trans. Sustain. Energy 5 (4), 1389–1396. doi:10.1109/tste.2014.2314754

Wang, F., Zhang, S., Zhao, Y., Ma, Y., Zhang, Y., Hove, A., et al. (2023). Multisectoral
drivers of decarbonizing battery electric vehicles in China. PNAS Nexus 2 (5), pgad123.
doi:10.1093/pnasnexus/pgad123

Wi, Y.-M., Lee, J.-U., and Joo, S.-K. (2013). Electric vehicle charging method for smart
homes/buildings with a photovoltaic system. IEEE Trans. Consumer Electron. 59 (2),
323–328. doi:10.1109/tce.2013.6531113

Xuewei, S., et al. (2020). “Research on energy storage configuration method based on
wind and solar volatility,” in 2020 10th International Conference on Power and Energy
Systems (ICPES), Chengdu, China, 25-27 December 2020, 464–468.

Yao, W., Zhao, J., Wen, F., Dong, Z., Xue, Y., Xu, Y., et al. (2014). A multi-objective
collaborative planning strategy for integrated power distribution and electric vehicle
charging systems. IEEE Trans. Power Syst. 29 (4), 1811–1821. doi:10.1109/tpwrs.2013.
2296615

Yi, H., Lin, Q., and Chen, M. (2019). “Balancing cost and dissatisfaction in online
EV charging under real-time pricing,” in IEEE INFOCOM 2019 - IEEE Conference
on Computer Communications, Paris, France, 29 April 2019 - 02 May 2019,
1801–1809.

Zhang, Y., He, C., Zhang, M., and Wang, T. (2022). “Coordinated operation of power
system and energy storage in the presence of high penetration of solar generation,” in
2022 4th Asia Energy and Electrical Engineering Symposium (AEEES), Chengdu,
China, 25-28 March 2022, 334–339.

Zhao, Z., Wu, L., and Song, G. (2014). Convergence of volatile power markets with
price-based demand response. IEEE Trans. Power Syst. 29 (5), 2107–2118. doi:10.1109/
tpwrs.2014.2307872

Frontiers in Energy Research frontiersin.org11

Yu et al. 10.3389/fenrg.2024.1416334

https://doi.org/10.1109/access.2023.3241244
https://doi.org/10.1109/tie.2010.2040563
https://doi.org/10.1109/tpwrs.2013.2255318
https://doi.org/10.1109/tpwrs.2013.2255318
https://doi.org/10.1109/tia.2023.3330950
https://doi.org/10.1109/access.2023.3322278
https://doi.org/10.1109/jphotov.2019.2898521
https://doi.org/10.1016/j.enbuild.2012.09.035
https://doi.org/10.1109/access.2021.3055517
https://doi.org/10.1109/5.975900
https://doi.org/10.1109/5.975900
https://doi.org/10.1109/tte.2019.2958709
https://doi.org/10.1109/tste.2014.2314754
https://doi.org/10.1093/pnasnexus/pgad123
https://doi.org/10.1109/tce.2013.6531113
https://doi.org/10.1109/tpwrs.2013.2296615
https://doi.org/10.1109/tpwrs.2013.2296615
https://doi.org/10.1109/tpwrs.2014.2307872
https://doi.org/10.1109/tpwrs.2014.2307872
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1416334

	An economic evaluation model for charging stations of EVs in distribution networks with compensation devices and constraints
	1 Introduction
	2 Mathematical model
	3 Scenario generation
	4 Case studies
	5 Discussions
	6 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References


