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Global power grid management depends on accurate solar energy estimation,
yet present prediction techniques frequently suffer from unreliability as a result
of abnormalities in solar energy data. Solar radiation projections are affected by
variables such as anticipated horizon length, meteorological classification, and
power measuring techniques. Therefore, a Solar Wind Energy Prediction System
(SWEPS) is proposed as a solution to these problems. It improves renewable
energy projections by taking sun trajectories and atmospheric characteristics
into account. In addition to using a variety of optimization methods and pre-
processing techniques, such as Principal Component Analysis (PCA), Recursive
Feature Elimination (RFE), Least Absolute Shrinkage Selection Operator (LASSO),
and recursive feature addition processes (RFA), complemented by a genetic
algorithm for feature selection (GAFS). The SWEPS also makes use of
sophisticated machine learning algorithms and Statistical Correlation Analysis
(SCA) to find important connections. Neural Network Algorithms (NNA) and
other metaheuristic techniques like Cuckoo Search Optimization (CSO), Social
Spider Optimization (SSO), and Particle Swarm Optimization (PSO) are adopted
in this work to increase the predictability and accuracy of models. Utilizing the
strengths of machine learning and deep learning techniques (Artificial Neural
Networks (ANN), Decision Trees, Support Vector Machine (SVM), Recurrent
Neural Networks (RNN), and Long Short Term Memory (LSTM)) for robust
forecasting, as well as meta-heuristic optimization techniques to fine-tune
hyper-parameters and achieve near-optimal values and significantly improve
model performance, are some of this work contributions to the development
of a comprehensive prediction system.

KEYWORDS

smart metering, solar energy, wind energy, meta heuristic optimization, deep learning,
machine learning, Saudi Arabia

1 Introduction

A major oil-producing country extracts about 10 million barrels of oil per day, Saudi
Arabia is presently involved in deliberate efforts to dramatically increase the share of
renewable energy in its overall energy mix. By 2030, the country aims to deploy 58.7
gigawatts (GW) of renewable energy capacity, demonstrating its ambitious commitment to
sustainable energy sources. The government’s all-encompassing strategy to meet this lofty
goal mainly depends on utilizing the nation’s plentiful solar resources and taking advantage
of the quick cost reductions seen in the solar industry. The primary objectives include
achieving energy self-sufficiency, bolstering energy security, fostering stable and long-term
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economic advancement, all while mitigating carbon dioxide
emissions through efficient utilization of the region’s considerable
solar potential Al Garni et al. (2016).

Furthermore, as part of its efforts to transition towards a
sustainable energy future, Saudi Arabia is also implementing smart
city initiatives. These smart cities leverage advanced technologies,
data analytics, and interconnected systems to optimize energy
consumption, enhance resource efficiency, and improve overall
quality of life. By integrating renewable energy generation, energy-
efficient buildings, smart grid infrastructure, and intelligent
transportation systems, these smart cities play a vital role in
achieving the country’s renewable energy targets while creating
sustainable and livable urban environments. Saudi Arabia is actively
implementing various smart city initiatives to transform urban areas
into sustainable and technologically advanced environments. Here
are some examples of smart city initiatives in Saudi Arabia: NEOM,
King Abdullah Economic City (KAEC), Riyadh Smart City, Jeddah
Economic City, and Smart Metering.

Major solar energy technologies in the country include (i)
Photovoltaic (PV) systems, which use sunlight to generate electricity
directly Jäger et al. (2016), and (ii) Concentrated Solar Power (CSP)
systems, of which the Parabolic Trough Solar Collector (PTC) is
the most common type and accounts for 79% of the global market.
Concentrated Solar Power (CSP) systems use thermal energy from
the sun to produce electricity indirectly Gherboudj et al. (2021).
Because solar Photovoltaic (PV) requires less money for installation
and maintenance and produces electricity without making noise,
it is more economically advantageous than CSP Zeng et al. (2016).
However, new developments in CSP technology are changing
the worldwide environment. This development in CSP systems
holds great promise for nations with abundant solar radiation,
abundant fossil fuel supplies, and severe water scarcity issues. The
incorporation of heat storage capabilities into CSP systems, which
permits dispatchable power production in line with energy demand
profiles, is one noteworthy achievement. Furthermore, there is an
increasing possibility to utilize the high-temperature heat produced
for other purposes such as industrial process heat, space heating,
and heat-driven water desalination operations, as demonstrated by
the Kuraymat power plant in Egypt. Furthermore, the invention
includes the use of concentrating solar collectors in hybrid plants
that operate alongside currently in-use conventional power cycles.
Under this scenario, fossil fuel-fired boilers provide continuous
power supply by acting as backup power sources when the sun is
not shining Salah (1997).

Because conventional energy sources are unsustainable and
detrimental to the environment, there has been a recent upsurge in
the study of alternative energy sources. Furthermore, the growing
global energy crisis presents a formidable obstacle, given that
technical and economic advancements strongly depend on the
accessibility of energy, which is necessary for global industrialization
and urbanization. On the other hand, the continued increase in
the world’s population exacerbates the severity of energy shortages
everywhere. An increase of up to 70% is predicted in the power
demand. Fossil fuels were declarable as the leading sources of
electrical energy production throughout the 20th century, and they
still play this role todayDuffy et al. (2015). However, extended usage
of fossil fuel supplies, which are already few, puts the world’s health
at risk Campbell-Lendrum and Prüss-Ustün (2019) and has negative

consequences on global climate change, including the greenhouse
essence or global warming Das et al. (2018).

One of the most popular uses of solar energy in recent years
has been PV power generation. By 2030, it is anticipated that the
world’s PV power capacity will exceed 1700 GW Hoeven (2015).
As a result, photovoltaic power generation is seen as a viable
renewable energy option that can help power system operators meet
peak load demand and reduce dependency on fossil fuels, among
other benefits Zhang et al. (2015). However, unpredictable weather
circumstances such as bright, overcast, and rainy days, sudden
changes in the weather, snowy days, and other meteorological
factors make it difficult to anticipate solar PV output and present
a problem for system administrators. As a result, accurate PV power
generation dependability is essential for achieving the best grid
performance Yang et al. (2014).

Electric power systems require accurate predicting models for
operational planning, which poses a challenge for commercial
electric power firms that aim to provide their customers with
dependable and secure electricity. The issue is further complicated
by patterns of electricity demand, which are impacted by time,
the economy, and social and environmental factors Keyno et al.
(2009). Predicting solar irradiance is essential for scheduling energy
storage devices, integrating solar PV facilities into the electrical
grid, and maximizing energy transmission to reduce energy loss
Doorga et al. (2019). Furthermore, it lowers generation costs and
reserve capacity, preventing interruptions in electrical energy
systems Zhang et al. (2018), allowing for more precise predictions
of PV power generation. Because solar energy is abundant and
endless, it has attracted a lot of interest from academic and business
circles over time, making it possible to provide sustainable power
on a worldwide scale. The Earth intercepts solar energy at a rate
of approximately 1.74× 1017 W, based on the solar constant of
1,367 W/m2 and the cross-sectional area of the Earth. This value
highlights the vast amount of solar energy available, underscoring
the potential for solar power technologies to harness this energy
effectively.The figure is calculated as follows: 1,367 W/m2multiplied
by the cross-sectional area of the Earth (π × (6.371× 106 m)2). The
potential distribution of solar energy over the globe is shown in
Figure 1, highlighting the infinite supply of solar energy available
on Earth. As a result, solar energy is the best option available
for guaranteeing energy supply in the commercial, residential, and
industrial domains Kumari and Toshniwal (2021).

Three categories of power predicting models are commonly
used in the design of electricity power distribution and supply
systems: 1) short-term techniques, which provide predicts up to
1 day/week in advance; 2) medium-term models, which extend
predictions up to 1 year ahead of time; and 3) long-term models,
which have predicted exceeding 1 year Pedregal and Trapero (2010).
Ramp events-rapid variations in solar irradiance-are important
for very short- and very short-term prediction timeframes. The
dependability and quality of PV electricity may decline with sudden
and intense fluctuations in solar irradiation. As a result, the best PV
power ramp rates can be determined using the results of short-term
predictions Lappalainen et al. (2020).Moreover, the enhancement of
operational efficiency and market involvement is contingent upon
the use of long- and medium-term predicting Husein and Chung
(2019). Predictions of day-ahead solar irradiance have proven
effective in maximizing annual energy consumption for business

Frontiers in Energy Research 02 frontiersin.org

https://doi.org/10.3389/fenrg.2024.1416201
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles


Alharbi and Iqbal 10.3389/fenrg.2024.1416201

FIGURE 1
Geographical dispersion of solar resources on a global map Duvenhage (2019).

operations in microgrids. Consequently, it becomes necessary to
modify solar energy projections using a suitable predicting approach
and to customize them according to particular applications.

The literature has been overflowingwith studies of SaudiArabia’s
wind energy sector in recent years. As Baseer et al. (2017) points out,
these studies primarily analyze statistical factors related to various
wind farm sites, frequently derivingWeibull distribution parameters
for each site. Nevertheless, a significant drawback of this research
is their dependence on general evaluations of the available wind
speed data for specific locations. As a result, their site productivity
results can bespeak that a site is not ideal for a wind project at
this time, even though it might be suitable in the future. These
studies frequently rely on the presumption that a universal strategy
that uses the Weibull distribution works well at every location.
This assumption lacks validity and accuracy due to the intrinsic
diversity among sites, which could result in over-approximations
Ouarda et al. (2015). Interestingly, none of these studies-to the best
of our knowledge-have taken into account the addition of wind
speed data gathered from other, geographically dispersed places.
The lack of such an approach misses the chance to handle these
disparate data sets as a single, cohesive package while maintaining
the location-based relationships. This comprehensive viewpoint,
which is mainly lacking in current research efforts, has the potential
to engage in more correct and thorough standard assessments
of wind speed productivity at different sites. This paper’s main
contribution is to address this specific aspect.The study that is being
presented makes use of cutting-edge Artificial Intelligence (AI)
approaches that have been widely used in a variety of disciplines.
AI is widely used because of its natural benefits in decision-making
and model-building Almutairi et al. (2016).

AI techniques have been applied to the research of renewable
systems inmany studies.The author Almonacid et al. (2010) utilized

artificial neural networks to describe solar modules. Other research
makes use of data mining methods like fuzzy logic and Support
Vector Machines (SVM). Adaptive fuzzy inference systems and
Gaussian-kernel SVMare combined in a novel way inAbukhait et al.
(2018) to derive fuzzy rules straight from training data for use
in testing phases later on. The authors Mansour et al. (2019);
Mansour (2018) use of SVM, Artificial Neural Network (ANN),
Naïve Bayes, and Decision Tree (DT) is investigated for the analysis
of electroencephalography signals in the diagnosis of epilepsy.
Furthermore, to detect bad medication reactions, Mansour (2018)
use the decision tree technique. A Genetic Algorithm (GA) is then
used to optimize the system.

One of the most important steps in attaining a high degree
of grid integration of renewable energy is the construction of a
comprehensive and centralized Solar and Wind Energy Prediction
System (SWEPS). Several essential elements must be included in the
improvement of such a method: (i) the capacity to predict loads and
predict power output at different time scales (intra-day, day-ahead,
and week-ahead); (ii) realistic following and geospatial visualization
of renewable generation; and (iii) smooth coordination between grid
operators and producers of renewable energy to ensure efficient grid
control.With its foundation in accurate power output predictions, the
SWEPS is essential in establishing the guaranteed dispatch level for
every Renewable Energy Sources (RES) that is accessible.This process
is essential for optimal use of energy storage and reducing fluctuations
in energy production. Accurate predicting of solar energy requires
an extensive apprehension of various components, including the path
of the sun, atmospheric conditions, dissipation processes, and the
circumstantial properties of the system itself. SWEPS proves effective
in finding this complexity and enables the coherent integration of
inexhaustible energy into our existing grid system promoting a more
authentic and cost-effective energy atmosphere.
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The important frameworks embedded into the SWEPS consider
(i) a model for Meteorological Numerical Forecasting (MNF),
which provides projections of hourly weather data plus solar
radiance components Jimenez et al. (2016); (ii) differentiated
methodologies for predicting electrical power devoted to different
renewable technologies like solar PVandParabolic TroughCollector
(PTC) Zeng et al. (2016); Tang et al. (2015). The determinative
information embraced in this methodology involves climate trends,
atmospheric compositions, anticipated production from electric
power generators as well as traits specific to sustainable energy
facilities.

This study lays the foundation for a comprehensive Solar and
Wind Energy Predicting System by carefully examining the existing
functional frameworks of renewable energy. Using advanced web
interface solutions, sustainable energy models, climate predicting
modules, and daily updates on solar and weather predictions;
SWEPS is designed to effectively monitor the efficiency of various
green energy situations. Regular use of this technology will
enable grid operators and key players in the Saudi energy sector
to provide forward-looking power supply estimates daily. Key
objectives include maximizing the current operational locations
of RES by facilitating their integration into the unified grid
interface while understanding the challenges of connecting or
maintaining solar energy systems within the same systematic
framework. Additionally, through collaboration with companies
such as Elia Grid International, Khalifa University of Science and
Technology, and King Abdullah City for Atomic and Renewable
Energy (KACARE); Our system advances research by supporting
green energy platforms across the region.

In this study, the SWEPS is developed for predicting wind and
solar energy. The various data collected across multiple channels
is refined and standardized using various pre-processing methods,
including deep learning andmachine learning algorithms, to predict
results. After the initial processing phase, a series of techniques
related to Statistical Correlation Analysis (SCA) are used to identify
relationships and links between aspects. Least Absolute Shrinkage
and Selection Operator (LASSO), Recursive Feature Elimination
(RFE), Principal Component Analysis (PCA), Recursive Feature
Addition (RFA), and Genetic Algorithm for Feature Selection
(GAFS) are some of the techniques used in feature selection.
In addition, Cuckoo Search Optimization (CSO), Social Spider
Optimization (SSO), Particle Swarm Optimization (PSO), and
Neural Network Algorithm (NNA) are GA used to optimize the
prediction model to improve its robustness.

The SWEPS represents a significant advancement and
contributions in the following.

• For effective solar PV and PTC power predicting, the
crucial building blocks are a comprehensive MNF model and
specialized predicting methods.
• To ensure high-quality analysis, the data undergoes rigorous
refinement and standardization using a diverse toolbox of pre-
processing techniques, including machine learning and deep
learning algorithms.
• By implementing a combination of feature selection methods
such as LASSO, RFE, PCA, RFA, and GAFS, the model’s ability
has been improved to identify the most relevant and impactful
variables.

• A multi-pronged feature engineering strategy is utilized,
combining the Intersection over Union (IoU) technique with
various customized methods to enhance model precision and
resilience.
• By integrating machine learning models (ANN, Decision
Trees, SVM) with deep learning methods (Recurrent Neural
Network (RNN), Long-Short Term Memory (LSTM)),
a comprehensive and reliable prediction system has
been proposed.
• Meta-heuristic optimization techniques (SSO, PSO, CSO,
NNA) were employed to fine-tune hyperparameters, achieving
near-optimal values for improved convergence and accuracy in
models such as SVM, DT, ANN, RNN, and LSTM.
• By applying this holistic approach, asignificant progress have
been made in the accuracy and reliability of renewable energy
predictions.

Section 1 delves into the latest advancements in Solar andWind
Energy Networks and preprocessing methodologies for Renewable
Energy Systems, providing a comprehensive review of cutting-edge
works. A summary of the SWEPS is given in Section 3, followed
by an examination of the methodological analysis in Section 3.6,
methodology development and outcomes in Section 4, and research
conclusion and future initiatives in Section 6.

2 Motivation and aims

Predicting solar energy production remains a major hurdle
due to the inherent inaccuracies of existing predicting methods,
especially when it comes to anomalies in the solar and wind data.
Factors such as inconsistencies in energy measurements, inaccurate
climate categorization, and variable predicted horizons contribute
to unreliable solar intensity predictions. The urgent need for a
robust and reliable predicting system that directly addresses these
challenges is clear when considering the critical role that solar
predictions play in the planning, management, and operation of the
global power grid.

In this work, an SWEPS is introduced and presented, an
innovative and comprehensive approach to revolutionizing the
accuracy and reliability of solar energy prediction. Current
predicting techniques often miss the mark due to their limited
scope of application. The SWEPS addresses this problem head-on
by carefully considering every detail, from the path of the sun to
atmospheric fluctuations. This manuscript addresses the complex
architecture of SWEPS and shows its dependence on optimization
strategies and state-of-the-art preprocessing techniques such as
PCA, RFE, LASSO, and RFA-GA. It also highlights how the SWEPS
SCA seamlessly integrates with advanced deep learning algorithms.
Additionally, it highlights how genetic algorithms such as CSO,
SSO, PSO, and NNA are used to refine search criteria and improve
model predictability, ultimately paving the way for more accurate
and reliable solar energy predictions.

Our dataset’s intricacy and time-series format necessitated
a multipronged feature engineering strategy. To make sure the
most important features were included, the Intersection over
Union (IoU) technique is used in conjunction with a range
of customized feature engineering techniques. This strategy
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made it easier to combine comparable information from several
approaches, which improved the overall precision and resilience
of our models. In an ensemble framework, also certain machine
learning approaches are adopted such as ANN, DTs, and SVM to
capitalize on their distinct advantages. Furthermore, deep learning
methods are adopted and used that are especially well-suited for
time-series forecasting, such as RNN and LSTM networks. By
combining these techniques, we were able to develop a thorough
prediction system that would function dependably under different
circumstances.

Lastly, we highlight the significance of using meta-heuristic
optimization approaches to fine-tune our machine learning models’
hyperparameters. To efficiently explore solution spaces, methods
like SSO, PSO, CSO, and NNA imitate natural processes. Models
like as SVM, DTs, ANN, RNN, and LSTM perform better with
this method because it achieves near-optimal hyperparameter
values, which guarantee strong convergence and increased
accuracy. SWEPS is a vital component for efficient planning
and control of the worldwide power grid because it integrates
these cutting-edge methodologies to considerably increase the
prediction accuracy and dependability of solar and wind energy
projections.

3 Proposed design and methodology

This article introduces SWEPS, a novel system for
predicting solar and wind energy production. SWEPS addresses
data heterogeneity from different sources using a multi-
stage process. Algorithm 1 describes the complete process of the
proposed methodology. First, it refines and standardizes the data
using a powerful combination of deep learning and traditional
machine learning algorithms. This pre-processing ensures a clean
and consistent basis for subsequent analysis. After the cleaning
phase, SWEPS deals with the selection of functions and uses a
diverse arsenal of techniques. RFE, PCA, RFA, LASSO, and GAFS.
They work together to identify the most impactful features. To
illuminate important connections and eliminate redundancies.
The optimization of the prediction model takes a central place
in the final phase. By using evolutionary algorithms such as GA,
SWEPS explores innovativeNNA, PSO, SSO, andCSO.This rigorous
optimization process improves the robustness of the model and
enables it to provide accurate and reliable predictions, ultimately
improving grid stability and renewable energy integration.

The SWEPS system, depicted in Figure 2, uses deep learning
and machine learning methodology to predict energy usage and
production. In the initial step, the dataset from various sources
is collected, and remove errors and noise. For normalization,
different methodologies are used such as replacing missing values,
min-max operation, and standardization on the numerical data.
To calculate the correlation, between features, and the selection
of optimal features for analysis, we use SCA, RFE, RFA, LASSO,
and GAFS to find the optimal correlations. After feature selection,
different traditional machine learning algorithms are applied such
as SVM, DT, and Neural Networks. Further, we apply the deep
learning technique RNN, and LSTMand ensemble these algorithms.
To robust our system, optimization algorithms is applied such as

NNA, PSO, SSO, and CSO to get the optimal results from the
algorithms.

3.1 Dataset

We used large datasets of hourly high-resolution solar radiation
observations from several years ago, with a combined raw data
size of several terabytes. For us to train and validate our deep
learning models, such as LSTM and RNN, this massive dataset
was essential. It made it possible for us to accurately estimate
solar activity and to record temporal dynamics efficiently. The size
of the dataset also made it easier to use ensemble methods and
meta-heuristic optimization algorithms (PSO, CSO, SSO), which
improved our predictions even more. A statistical statement of the
data composed at each site is shown in Table 1, which includes
indices that provide important information about the location and
variability of the data. To help with interpretation, brief descriptions
for a few of these statistics are Mean, Standard Error, Median,
Mode, Standard Deviation, Sample Variance, Kurtosis, Skewness,
and Minimum and Maximum values. The most popular measure
of central tendency for a random variable is the mean, which is the
average number of data points. Except for the east area, where the
recorded mean is 1.9 m/s, the means across the chosen sites range
from roughly 3 m/s to 4 m/s. All sites show standard errors below
5%, indicating adequate sample representation. Central tendency
measures include median and mode. Standard deviation, variance,
kurtosis, and skewness assess data distribution characteristics.
Minimum and maximum values denote dataset extremes. Sum
and count reveal the total wind speeds and the number of
data points. Due to variances in local weather and distances,
the data shown in Table 1 show considerable statistical value
fluctuations among sites.

The information is a component of the KACARE’s Renewable
Resource Monitoring and Mapping program. At many locations
around the Kingdom of Saudi Arabia, KACARE methodically
observed and recorded wind speed data at a height of 3 m. A sample
dataset from the different sites is shown in Table 2. The accuracy
and degree of confidence in the wind speed estimate are largely
dependent on the sample size. Estimates ofwind speed are inherently
imprecise, and this uncertainty is impacted by the unpredictability
of the data as well as sample size; larger samples decrease the
uncertainty, while smaller samples increase it. A sample dataset from
Qassim University (QU), in Qassin Region in Saudid Arabia as
depcited shown in Figure 3, is shown in Table 1, with sample sizes
varying from 19,000 to 25,000 data points. To reduce the degree of
uncertainty in wind speed estimates, larger samples are purposefully
obtained. To tackle outliers, preprocessing involves k-means
clustering. It should be noted that the data mining uncertainty is
addressed via decision tree methodology, notably Gini impurity and
entropy metrics.

In Table 2, the number of missing records for each dataset
column is displayed in the table.There are large gaps in variables like
Wind Direction at 3 m, Wind Speed at 3 m, and related uncertainty.
The number of missing values varies depending on the parameter.
The information provided makes clear the data gaps that must be
taken into account and handled appropriately while analyzing and
interpreting the dataset.
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FIGURE 2
The solar and wind energy prediction system (SWEPS) framework.

TABLE 1 Samples of meteorological data of qassim university.

Site Latitude Longitude Date AT ATU WD WDU WDσ WS WSU WSσ

QU 26.34668 43.76645 03/06/2013–04:00 25.2 0.5 313 4 6.9 - 2.7 0

QU 26.34668 43.76645 03/06/2013–05:00 25 0.5 315 4 5.5 - 2.7 0

QU 26.34668 43.76645 03/06/2013–13:00 37.6 0.5 14 4 8.7 - 2.9 0
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TABLE 2 Data features.

Variable columns with abbreviation Missing records

Site (S) 0

Latitude (Lat) 0

Longitude (Lon) 0

Air Temperature (Cdeg) (AT) 517

Air Temperature Uncertainty (Cdeg) (ATU) 517

Wind Direction at 3 m (degN) (WD) 24,171

Wind Direction at 3 m Uncertainty (degN) (WD-U) 24,171

Wind Direction at 3 m (std dev) (degN) (WD-SD) 24,171

Wind Direction at 3 m (std dev) Uncertainty (degN)
(WD-SD-U)

74,473

Wind Speed at 3 m (m/s) (WS) 24,171

Wind Speed at 3 m Uncertainty (m/s) (WS-U) 24,171

Wind Speed at 3 m (std dev) (m/s) (WS-SD) 24,171

Wind Speed at 3 m (std dev) Uncertainty (m/s)
(WS-SD-U)

74,473

Azimuth Angle (deg) (AA) 33,835

DHI (Wh/m2) (DHI) 1,309

DHI Uncertainty (Wh/m2) (DHI-U) 1,309

DNI (Wh/m2) (DNI-Wh) 1,304

DNI Uncertainty (Wh/m2) (DNI-U-Wh) 1,304

Global Horizontal Irradiance (GHI) (Wh/m2)
(GHI-Wh)

523

GHI Uncertainty (Wh/m2) (GHI-U-Wh) 523

Peak Wind Speed at 3 m (m/s) (PWS) 24,171

Peak Wind Speed at 3 m Uncertainty (m/s) (PWS-U) 24,171

Relative Humidity (%) (RH) 517

Relative Humidity Uncertainty (%) (RH-U) 517

Barometric Pressure (mB (hPa equiv)) (BP) 517

Barometric Pressure Uncertainty (mB (hPa equiv))
(BP-U)

517

Zenith Angle (deg) (ZA) 33,835

3.2 Preprocessing

After a comprehensive examination of the dataset assembled
from multiple locations, our data analysis revealed the presence
of missing values. To address this issue described in Table 2, we

applied certain techniques to numerical and categorical features
in our data cleaning strategy. We decided to use imputation for
numerical features where data were missing and replace the missing
values with the mean of the corresponding features. This helps
configure the overall statistical properties of the data set. Instead, we
chose to use the mode representing the collection with the highest
frequency to fill in missing values for categorical features. This
methodology ensures that classification information is presented
meaningfully.

After removing missing values, we then standardized all data.
When data is normalized, it is transformed so that its mean is zero
and its standard deviation is one. Especially when working with
algorithms that are sensitive to the scaling of the input variables,
this step is essential to ensure that all features contribute equally
to the analysis. We have aggregated data from multiple sources
into a consistent format to enable in-depth examination across
multiple locations.This integration enablesmeaningful comparisons
and analyzes and enables a consistent and consistent presentation.
Additionally, we used data normalization techniques to guarantee
that numerical values from respective features and locations are
immediately comparable. By measuring the mathematical values to
a similar range, usually between 0 and 1, normalization removes any
potential biases brought about by assorted scales. By taking this step,
comparisons are more reliable and the total dataset is interpreted
more accurately.

In our careful data analysis, we paid particular attention to
dealing with skewness and missing values in columns related
to key weather variables. The air temperature (Cdeg), the wind
direction in 3 m (degN), the wind speed in 3 m (m/s), the relative
humidity (%), and the air pressure (mB (equivalent to hPa)) are
just some of those examined Data characteristics. To understand the
distribution properties of these features and to detect and correct
any asymmetries, an asymmetry assessment is performed. To ensure
the completeness and representativeness of the data, missing values
in the air temperature and wind direction columns are imputed by
replacing the mean and mode, respectively. Similarly, mean, mean,
and median-based imputation is used to fill missing values in the
wind speed, relative humidity, and barometric pressure columns,
respectively. This comprehensive method not only ensures a robust
data set but also reduces skewness, providing a basis for deeper
analysis and modeling with advisable data quality. The dataset
features are Site, Latitude, Longitude, Date, Air Temperature (Cdeg)
– (AT), Air TemperatureUncertainty (Cdeg) –ATU,WindDirection
at 3 m (degN) – WD, Wind Direction at 3 m Uncertainty (degN) –
WDUWindDirection at 3 m (std dev) (degN)WDσWindDirection
at 3 m (std dev) Uncertainty (degN) – WDUσ, Wind Speed at 3 m
(m/s) – WS, Wind Speed at 3 m Uncertainty (m/s) – WSU, Wind
Speed at 3 m (std dev) (m/s) – WSσ, Wind Speed at 3 m (std
dev) Uncertainty (m/s) – WSUσ, Azimuth Angle (deg) – AA, DHI
(Wh/m2), DHI Uncertainty (Wh/m2) DHIU, DNI (Wh/m2), DNI
Uncertainty (Wh/m2) – DNIU, GHI (Wh/m2), GHI Uncertainty
(Wh/m2) –GHIU, PeakWind Speed at 3 m (m/s) – PWS, PeakWind
Speed at 3 m Uncertainty (m/s) – PWSU, Relative Humidity (%) –
RH,RelativeHumidityUncertainty (%) –RHU,Barometric Pressure
(mB (hPa equiv)) – BP Barometric Pressure Uncertainty (mB (hPa
equiv)) – BPU, Zenith Angle (deg) – ZA.
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FIGURE 3
Geographical Saudi Arabia map: Regions.

1: SWEPS←initialize_SWEPS()

2: data←collect_data_from_channels ()

3: refined_data←preprocess_data (data, methods =

[missing_values])

4: processed_data←initial_processing

(refined_data,methods = [normalization,

standardization])

5: for alloptimized_results ≥threshold do

6:   selected_features←feature_selection

(processed_data, techniques = [LASSO, RFE,

PCA, RFA, GAFS])

7:   training_models←learning (selected_features,

techniques = [DT, SVM, ANN, RNN, LSTM])

8:   optimized_model←optimize_model

(selected_features, algorithms = [CSO,

SSO, PSO, NNA])

9: end for

10: output←class_value (optimized_model,

algorithms = [MAE, MSE, RMSE, NRMSE, MAPE])

Algorithm 1. Solar and wind energy prediction system (SWEPS).

3.3 Statistical correlation analysis

The linear relationship between two continuous variables
is measured by the PCC. We may be curious to know the

correlation between variables like Air Temperature, Wind Speed
at 3m, and Relative Humidity in the context of our dataset. For
instance, a positive Pearson Correlation Coefficient (PCC) between
temperature and solar radiation would suggest that there is a
tendency for solar radiation to rise with temperature. In a similar
vein, a negative PCC between temperature and wind speed may
indicate an inverse link. The positive association between solar
radiation and air temperature follows that solar radiation tends to
rise along with air temperature. This is because warmer weather
usually means more sunshine and, thus, more solar radiation. A
positive PCC value for the association between the variables air
temperature and solar radiation that is close to 1 would support
the hypothesis that they are positively connected. A negative
correlation between temperature and wind speed suggests an
adverse relationship. To put it another way, there may be a drop in
air temperature and a spike in wind speed. One possible explanation
for this connection might be that higher wind speeds provide the
illusion of a lower temperature. A negative PCCvaluewould indicate
a potential inverse relationship between Wind Speed at 3 m and Air
Temperature. When the value of PCC gets closer to −1, the negative
link becomes stronger.

In Figure 4, the PCC and Spearman Rank Correlation
Coefficient (SRCC) were applied to visualize the relationship
between different meteorological features such as air temperature,
relative humidity, wind direction, and speed. The values
present strong and weak correlations. Positive values indicate
a strong correlation and negative values show negative
correlations.
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FIGURE 4
Application of PCC and SRCC to visualize the relationship between different meteorological features.

The monotonic relationship between two variables is evaluated
using the SRCC. When working with non-linear relationships, it
is quite helpful. Even in cases when the connection between the
variables in the dataset is not strictly linear, SRCC can assist in
determining whether the variables collectively show a consistent rise
or fall in value. Compared to PCC, the rank-based correlationmetric
SRCC is less susceptible to outliers. The SRCC takes into account
the ranks of these values rather than the variables’ actual values. It
can withstand extreme values or non-linear relationships because
of this. Although the SRCC results may have different numerical
values, they should be interpreted similarly to the PCC results. The
monotonic relationship between the variables and the correlation
direction (positive or negative) should coincide.The SRCCmeasures
the monotonic relationship which should continuously increase
and decrease and it does not necessarily have to be linear. It will
find the trends between variables which one is falling and rising
in proportion to the other. The SRCC values which are near −1
or 1 indicated strong monotonic relationships. When one variable
rises, the other tends to rise as well, according to positive SRCC,
and when one variable rises, the other tends to fall, according to
negative SRCC.

The degree of link between categorical variables is measured
using Cramer’s V. We used to analyze the relationship between
categorical variables in your dataset, like Wind Direction at 3 m
and Wind Speed at 3 m. Between 0 and 1, Cramer’s V denotes
the absence of any correlation between the category variables.
The Cramer’s V value in the context of wind direction and wind
speed should be around zero if there is no regular link between
the direction and speed. The Cramer’s V value should be around
zero if the wind’s direction and speed are unrelated. A high
degree of correlation between categorical variables is indicated
by a Cramer’s V value near 1. This would suggest that there
is a distinct and well-established link between wind direction
and wind speed. The Cramer’s V value should be very near

to 1 if wind direction and wind speed are strongly correlated.
The consistency or dependability of measurements is evaluated
using the Intraclass Correlation Coefficient (ICC). You can use
the ICC function in your dataset to determine the degree of
consistency in readings for variables such as Air Temperature
and Wind Speed at 3 m across several sites. In 2× 2 contingency
tables, the association is measured by the ϕ Coefficient. You
might utilize the ϕ Coefficient in your dataset to determine the
relationship between categorical variables such as Peak Wind Speed
at 3m and Wind Direction at 3m. Particularly in the uncertainty
metrics across all records, Table 2 has considerable missing data in
several of its columns. To maintain the accuracy and dependability
of the dataset, it has been adopted to exclude some columns
from the study.

3.4 Feature engineering

The main objective of this research is to use data from an
Solar and Wind Energy (SWE) located at Qassim University in
Saudi Arabia to anticipate SWE power generation. Three different
kinds of factors that are pertinent to the study location are used
to train different models to get the most accurate SWE power
production prediction. The literature has shown that temporal
parameters, meteorological circumstances, and historical SWE
power-generating data have a significant impact on SWEoutput.The
input variables used in this study are listed in Table 2. As an example,
the air temperature (degC) is represented by variable (d4m), wherem
is the temperature value for each hour, yielding 24 values per day.The
dataset (D) is then divided into three subsets, namely the validation,
the test dataset, and the training dataset. In this study, 15% and 10%
of the data is set aside for validation and testing, respectively and the
remaining 75% is used for training. To optimize hyperparameters
for conventional machine learning algorithms and set up the
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FIGURE 5
PCA 2D.

neural network architecture the K-fold validation technique
is utilized.

The target column is removed from the dataset before it
is imported into a unique format to create the feature matrix,
represented by the letter X. After that, PCA is performed to X,
converting the data into a space with fewer dimensions. To help
with the decision of how many components to keep, it includes a
plot depicted in Figures 5, 6, that shows the cumulative explained
variance ratio against the number of principal components. To
further visualize the data in the condensed space, optional 2D
and 3D scatter plots are generated. A deeper comprehension
of the dataset’s underlying structure is made possible by these
visualizations, which provide insights into the patterns and
relationships found within it.

In Figures 5, 6, the additive elaborate variance ratios for all
important elements obtained from PCA are presented in this figure.
The number of primary components is plotted on the x-axis,
while the cumulative explained variance ratio is plotted on the y-
axis. The plot aids in figuring out the ideal number of primary
components required to preserve a sizable portion of the original
dataset’s content.

The determined computer and a planned amount of selectable
features are used to format RFE. After fitting the RFE model to
the data, a horizontal bar chart is used to illustrate the ranking of
features and help determine which features are most important in
predicting the” Diffuse Horizontal Irradiance (DHI) (Wh/m2)”.This
method preserves the most relevant features, simplifies the dataset,
improves model interpretation, and can even increase prediction
performance. This is useful for feature selection, as Figure 7 shows.

Feature Rankings via RFE for Predicting Solar and Wind
Energy. The significance of each attribute in predicting DHI with
the Random Forest Regressor as the estimator is displayed as a

FIGURE 6
PCA 3D.

horizontal bar plot. Features are rated according to how well they
predict the model performs, which helps identify the important
factors affecting solar radiation. RFE is a useful approach for
feature selection since it keeps the most important variables in
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FIGURE 7
Feature rankings via RFE for predicting solar and wind energy.

the model, improving interpretability and possibly optimizing
prediction accuracy.

Initially, the selected and objective feature is removed from
the source dataset and the remaining features are there in the
dataset for analyzing and predicting the objective features. Using
α variable of 1.0 is used in the LASSO regression model to
regularize the degree of parameters. The dataset fits and is trained
on the model and develops the coefficients for each attribute
presented in Section 3.4. Two visualizations are created: a two-
dimensional plot in Section 3.4 showing the LASSO coefficients
versus the feature indices. With these interactive visualizations, you
can readily explore how each factor shapes the target variable,
ultimately leading to the identification of crucial features for further
research or model construction. The “alpha” parameter serves as
a customizable lever, empowering you to fine-tune the feature
selection method based on the specific needs of your data and
modeling ambitions.

The complicated dynamics and time-series character of our data
in our studymade it difficult for us to use a single strategy for feature
engineering. A variety of feature engineering strategies is used that
were adapted for our particular dataset to solve this. Every unique
method extracted pertinent characteristics that are essential to our
prediction model. The Intersection over Union (IoU)approach is
used to make sure the most relevant and appropriate characteristics
were included. By locating and combining similar features from
different engineering methodologies, IoU made it easier to
integrate features. By using this strategy, we made sure that our
prediction system had access to a wide range of information
that improved our models’ overall accuracy and resilience and

increased our capacity to accurately forecast the dynamics of solar
and wind energy.

As in Section 3.4 the effect of each feature on the target variable
“DHI (Wh/m2)” is illustrated in this bar chart, which shows the
coefficients derived from the LASSO regressionmodel (Figures 8, 9).
The magnitude of the coefficients is represented by the x-axis, with
positive and negative values representing the direction and strength
of the connection, respectively. Features with non-zero coefficients
significantly increase the predictive ability of the model and help
identify important factors in predicting solar radiation.

3.5 Machine learning algorithms

Gaining knowledge about these linear correlations will help you
better understand how solar irradiance behaves and the elements
that influence it. For instance, clear skies, lower relative humidity,
and higher air temperatures are often linked to high solar irradiance
(GHI and DNI), but overcast days with greater humidity might
result in higher diffuse irradiance DHI. The zenith angle, wind
direction and speed, and barometric pressure all have a major
impact on how weather patterns shape solar energy availability.
Improved models for forecasting solar irradiance and optimizing
renewable energy systems may be created by examining these
correlations.

The key to determining how changes in one variable might
affect another is to comprehend the linear relationships between
the columns depicted in Figure 10, ‘Air Temperature (C°)’, ‘Wind
Direction at 3 m (N°)’, ‘Wind Speed at 3 m (m/s)’,’ Direct Normal
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FIGURE 8
2D Features Coefficients using LASSO Coefficients for Features Selection.

FIGURE 9
Features Coefficients using LASSO regression model.

Irradiance (DNI) (Wh/m2)’, ‘GHI (Wh/m2)’, ‘DHI (Wh/m2)’,
‘Relative Humidity (%)’, ‘Barometric Pressure (mB (hPa equiv))’,
and ‘Zenith Angle (◦)’. Since clear, sunny days tend to be warmer,
higher air temperatures are typically correlated with enhanced GHI.
Similarly, because of the brighter sky, DNI and DHI may increase
with temperature. While wind direction may affect humidity levels
depending on the source of the air masses, the link between wind

direction and speed might indicate regional weather trends. The
dispersion of clouds and the mixing of air masses caused by wind
speed can both influence solar irradiance levels and humidity.
Given that GHI is made up of both DNI and DHI, a strong
linear connection between the two is anticipated. Due to greater
solar radiation, higher DNI values are frequently correlated with
higher temperatures. DNI is also influenced by the sun’s zenith
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FIGURE 10
Solar irradiance correlates with meteorological variables like temperature, wind, humidity, and atmospheric pressure. Higher irradiance GHI aligns with
increased temperatures and clearer skies, boosting both diffuse DHI and direct DNI irradiance. Wind affects humidity and cloud dispersion, influencing
irradiance. Solar angle impacts intensity, while humidity scatters light, enhancing DHI. Barometric pressure links to humidity: low pressure increases
cloudiness, while high pressure clears skies. These relationships refine solar energy prediction models.

angle, with lower zenith angles generally translating into higher
DNI values.

The zenith angle also affects GHI because irradiance is often
increased at lower angles. Relative humidity and DHI have a
noteworthy relationship because high humidity can scatter sunlight,
boostingDHI even in the presence of cloud cover, which lowers GHI
and DNI. Weather systems influenced by barometric pressure have
an impact on humidity levels; high-pressure systems are often linked

to clear skies and reduced humidity, while low-pressure systems
are linked to higher humidity and cloudiness. Additionally, through
cloud cover and irradiance levels, there is an indirect link between
relative humidity and the zenith angle. Since low-pressure systems
can be warmer, high-pressure systems are often associated with
cooler temperatures because of radiative cooling and clear sky. A
surface’s exposure to solar radiation is directly influenced by its
zenith angle; a lower zenith angle (the sun is higher in the sky)means
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a higher irradiance.These linear correlations shed important light on
how solar irradiance behaves and what influences it. For example,
DHI might be higher on overcast days with increased humidity,
whereas high solar irradiance (GHI and DNI) is often linked with
clear sky, reduced relative humidity, and higher air temperatures.
The zenith angle, wind direction and speed, and barometric pressure
all have a major impact on how weather patterns shape solar energy
availability. Improved models for forecasting solar irradiance and
optimizing renewable energy systems may be created by examining
these correlations.

A decision tree effectively divides the input space of a data
set into different, non-overlapping parts and gives each region
a different name. The decision tree starts from the root node
and reaches the last leaf nodes Perez et al. (2013), with multiple
branches connecting these locations.The algorithmmakes decisions
by iteratively dividing the data into multiple parts and then
dividing each region into even smaller partitions. The elimination
operations are recursively executed until we reach the last node.The
contaminationmetric is the default-based partition. In our study, the
main measurement metric is entropy and it finds the homogeneity
between separated nodes. The finding of entropy is a recursive step-
wise procedure in decision tree algorithm and it is controlled byGini
Index and entropy as the primary scale of impurity. The depicted
Equations 1, 2 is a group of mathematical equations that depicts the
requirements of separating nodes from the root and constructing
a decision tree. To find the measures of impurity via entropy (H)
and the Gini Index (GI), the depicted Equations 1, 2 completely
rely on it. The Gini index for a given tree node can be found
as follows:

GI = 1−
C

∑
i=1

p2i (1)

where pi is the probability that class i will occur in the node,
and C is the number of classes. H stands for entropy, which is
computed as follows:

H = −
C

∑
i=1

pi ⋅ log2 (pi) (2)

where pi presents the likelihood that class i will present in the node
and C depicts the number of classes. One of the powerful predictive
algorithms is a decision tree that indicates the relationship in the
provided dataset, such as “WHI(Wh/m2)” is the root/based node,
it suggests the features are important when finding the outcomes of
the decision tree. The decision tree probably used the main feature
of “GHI” to split the dataset into different branches. The outcomes
of each subtree heavily rely on the particular features that are used
in that subtree and these outcomes are presented by leaf nodes and
expecting the results. Anothermain feature of solar radiation is GHI
and its locationmay be a base node indicating that it has a significant
influence on the prediction of other parameters. Analyzing the
decision tree’s composition is crucial since it presents the hierarchy
of features according to how they are predictive. Decision trees
also offer interpretability, which enables involved parties to embrace
the parameters affecting the systems’s outcomes. Insights into the
dynamics of solar radiation and climatic parameters affecting the
dataset can be gained if particular GHI thresholds or circumstances
are located in the decision tree.

For regression and classification problems, one of the widely
applied algorithms is SVM. In our system, we apply to predict the
solar and wind energy, and to robust our proposed system.Themain
agenda of SVM is to search for the optimal hyperplane in a high-
dimensional space to partition data points. For binary classification
problems, Equation 3 for predicting solar and wind parameters is
written as follows:

Y = sign(
n

∑
i=1

αiyiK(xi,x) + b) (3)

Here, Y is the predicted output. αi are the Lagrange multipliers.
yi is the target output for the i-th data point. xi represents the
feature vector for the i-th data point. x is the input feature
vector for prediction. K(xi,x) is the kernel function, mapping data
points to a higher-dimensional space. SVM attempts to penalize
misclassifications while maximizing the difference between classes.
Regression or multiclass situations may require changes to the SVM
equation. SVM predicts solar or wind power for a power graph
based on provided factors such as air temperature, wind speed,
latitude, longitude, etc. SVM efficiently process high-dimensional
feature spaces for accurate predictions and are robust to missing
data. The choice of kernel function, such as a polynomial or radial
basis function (RBF), is noteworthy and depends on the properties
of the data. The available datasets are used to learn the SVM model
and the generated hyperplane is used to predict new data points.

Even in the absence of data, ANN, computer models designed
on the structure of the human brain, can successfully predict
solar and wind hidden patterns. The general ANN equation
depicted in Equation 4 X and the target output as Y looks like this:

Y = f (Winput_hidden ⋅X+ bhidden) (4)

Here,Winputhidden is the weight matrix. bhidden is the bias vector.
f is the activation function. To predict solar or wind parameters,
this equation is adjusted using data such as latitude and longitude,
date, air temperature, and wind speed. ANN deals with missing
data sets by extracting insights from available data to make accurate
predictions. A well-generalizing model that can make accurate
predictions under a range of circumstances is the aim.

One kind of artificial neural network that works particularly
well for training sequential or time-series data is the RNN,
which is capable of handling time-series data, which includes
important temporal information, in contrast to Simple Neural
Networks Hüsken and Stagge (2003). To represent input at various
time intervals, RNN deconstructs sequences into their parts and
keeps a state Hochreiter and Schmidhuber (1997). The RNN
structure, comprises inputs, hidden neurons, and an activation
function. Equation 5 defines the preceding hidden layer (ht):

ht = tanh(U ⋅ xt +W ⋅ ht−1) (5)

In this case, the input is denoted by xt, the hidden neuron
is represented by ht, the weight of the hidden layer at time t
is represented by U, and the transition weights of the hidden
layer are denoted by W. The tanh function functions as a
Neural Network Memory to store information from previous
iterations by combining current and past inputs to build a new
hidden state.
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An improved version of the RNN, the LSTM network
addresses problems with long-term data dependencies and
time-series predicting, which are frequently hampered by
gradient explosion and vanishing gradient problems. The
LSTM architecture in Figure 6 comprises inputs, memory
cells, outputs, and forget gates that act collectively to control
information flow. The forget gate splits what should be retained
and discarded. The output gate ascertains the subsequent
hidden state, whereas the input gate updates the cells.
By producing values between 0 and 1, sigmoid functions
trigger the gates, allowing information to get through only
in certain cases. Equation 6 describes this mathematical
structure in detail:

ft = σ(w f ⋅ ht−1 +w f ⋅ xt + b f) (6)

The sigmoid activation function is represented by σ in this case,
the weight matrix is w f , the previous state is ht−1, the input vector’s
memory cell at time tt is xt, and the bias vector is indicated by b f .

C∼t = tanh(wc ⋅ ht−1 +wc ⋅ xt + bc) (7)

it = σ(wi ⋅ ht−1 +wi ⋅ xt + bi) (8)

Ct = it ⋅C∼t + ft ⋅Ct−1 (9)
Ot = σ(wo ⋅ ht−1 +wo ⋅ xt + bo) (10)

ht = tanh(Ct) ⋅Ot (11)

Using the sigmoid activation to identify values to compose and the
tanh activation function to update the gate with new cell values,
the input gate it decides the data stored in the new cell state C∼t .
Equations 7–11 updates the most recent cell state Ct by combining
the candidate cell state C∼t and the previous cell state Ct−1. To
compute the final output ht, the output gate Ot regulates cell output
by combining it with a cell state activated through the tanh function.

A feature ensembling algorithm that concatenates features from
DT, SVM, ANN, and RNN with features from other deep learning
models. By combining the advantages of severalmodels, this strategy
seeks to produce a more reliable and accurate prediction system for
solar andwindparameters.The specific features that are highlighted-
DHI, DHI Uncertainty, DNI, DNI Uncertainty, GHI, and GHI
Uncertainty-are the main emphasis of the assembling process. RNN
and LSTM are good at identifying temporal and sequential patterns
in time-series data, which makes them appropriate for features such
as air temperature, wind direction, and wind speed (Figures 11, 12).
Ensembling is the process of combining the pertinent features that
are taken out of RNN and LSTM models, probably including some
that have to do with the intrinsically temporal nature of wind and
solar data. Non-linear correlations and interactions between features
can be handled via decision trees. SVM performs effectively in
high-dimensional areas and has good data handling capabilities.
An ANN is a flexible model that can extract intricate patterns
from data. These models probably make use of latitude, longitude,
and atmospheric parameters (such as pressure, temperature, and
humidity). Concatenation of relevant features from the standard
models (DT, SVM, ANN) and deep learning models (RNN, LSTM)
is performed. With this combination of features, deep learning,

and conventional machine learning techniques are used to capture
an extensive set of data. Combining the predictions of separate
models-possibly using methods like weighted voting, stacking, or
averaging-is the ensembling process. Important solar irradiance
metrics that indicate various portions of sunlight that reach the
Earth’s surface are DHI, DNI, and GHI. The uncertainty values
offer valuable information regarding the dependability of the
relevant measurements of irradiance. Incorporating these elements
guarantees that the assembling procedure takes into account the
minute nuances of solar radiation, which is necessary for precise
solar and wind predicting. To provide a more authentic and precise
solar and wind predicting system, the assembly process involves
balancing the different capabilities of traditional deep learning
and machine learning models. The prediction model is generally
more reliable because taking individual characteristics into account
ensures that the peculiarities of solar radiation intensity are carefully
taken into account.

We used specific machine learning methods such as Decision
Trees, Support Vector Machines (SVM), and Artificial Neural
Networks (ANN) in addition to an ensemble approach to combine
their advantages. This ensemble approach uses the unique strengths
of each model to capture various aspects of the dataset, hence
increasing the prediction potential. To bemore precise, SVM is good
at establishing intricate decision boundaries in high-dimensional
spaces, whereas Decision Trees are good at exposing nonlinear
connections and interactions among features. By extracting deeper
insights fromdata, ANN enhances thesemodels with its adaptability
in learning complex patterns. Our goal in assembling these
conventional machine learning algorithms was to obtain a thorough
comprehension of solar and wind energy forecasts.

Furthermore, we expanded this strategy to incorporate deep
learning techniques including Long Short-Term Memory (LSTM)
networks and RNN. Because RNNs are designed to handle
sequential data, they are appropriate for time-series forecasting,
which is a necessary component of solar andwind energy prediction.
Long short-termmemory networks (LSTMs), which arewell-known
for managing long-term dependencies, significantly improve the
model’s capacity to accurately represent temporal dynamics. We
combined the complimentary characteristics of these deep learning
architectures with the conventional models to create a single
prediction system. Our predictionmodels for solar and wind energy
are more reliable because to this combination of deep learning and
machine learning techniques, which guarantees stable performance
across a range of circumstances.

Accurate tuning of hyperparameters is crucial to the
performance of machine learning models, including DT, SVM, and
LSTM. For SVM, the regularization value C is normally between 0.1
and 1000 to account for training and testing errors.The kernel factor
γ, which sets the decision boundary, and choosing an appropriate
kernel impact type are other crucial elements to consider. Suggested
ranges, on the other hand, for DT features such as maximum depth,
minimum sampling distribution, and minimum sample sizes are
normally from 1 to 32, from 2 to 20, and from 1 to 10. When you
delve into the field of LSTM networks, variables such as batch size,
number of epochs, learning rate, dropout rate, and number of LSTM
units become critical.The fraction of input units lost during training,
or the dropout rate, typically ranges between 0.2 and 0.5, while the
learning rate typically ranges between 0.1 and 0.0001.
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FIGURE 11
Comparative Analysis of training and validation accuracy of various learning models: Assessing the performance of traditional machine learning
algorithms (DT, SVM, ANN), deep learning algorithms (RNN, LSTM), and EM models. Results showcase model accuracy without the application of
optimization algorithms.

FIGURE 12
Training and Validation Accuracy of learning models: We use different traditional machine learning algorithms (DT, SVM, ANN) and deep learning
algorithms (RNN, LSTM) and EM models. The results are obtained without optimization algorithms.

3.6 Optimization methodology

Machine learning models like SVM, DT, ANN, RNN, and LSTM
performbetterwhenmeta-heuristicoptimizationalgorithms likeSSO,

PSO, CSO, and NNA are used. By rapidly exploring and exploiting
solution spaces, these optimization algorithms are made to resemble
the behaviors of natural systems, which enables them to identify near-
optimal solutions in high-dimensional, difficult situations.
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SSO uses a traditional hunting style Social Spdier’s to train
the model. During learning, it animates the sub-spider to analyze
together and boost the performance of a model using feature
engineering.Throughmore efficient solution space exploration, SSO
aids in the discovery of ideal hyperparameters for SVM, DT, ANN,
RNN, and LSTM. The SSO equation is depicted in Equation 12 for
spider (i) exploration:

xi (t+ 1) = xi (t) + α ⋅ rand () ⋅ dist(xi,xbest) (12)

where xi(t) is the location of spider i at time t, α is a constant,
rand () generates a random number between 0 and 1, and dist (xi,
xbest) is the Euclidean distance between the location of spider i and
the best locations in the population.

In searching for the best possible outcomes, the PSO depicted
in Equations 13–15 simulates how a particle swarm might work. It
applies to adjusting the hyperparameter weights in getting optimal
results for RNN, DT, SVM, ANN, and LSTM models. It provides
the ability to balance the exploration and production for optimal
convergence and learning performance. For updating the position
of the particle i and velocity are given by.

vi (t+ 1) = w ⋅ vi (t) + c1 ⋅ rand1 () ⋅ (pbest − xi (t)) (13)

α = c2 ⋅ rand2 () ⋅ (gbest − xi (t)) (14)

xi (t+ 1) = xi (t) + vi (t+ 1) + α (15)

Where w is the inertial mass, c1 and c2 are the acceleration
coefficients, rand1() and rand2() generates random numbers, pbest is
the best position of the particle and gbest is the best position among
all particles.

The reproductive parasitism of some cuckoo species was used
as a model for the CSO presented in Equation 16. It is used to
replace worse solutions with better solutions to optimize the model
parameters. CSO helps you efficiently navigate the search space,
avoid local optima, and build more accurate models in SVM, DT,
ANN, RNN, and LSTM.The equation for updating the position i of
the cuckoo is given by:

xi (t+ 1) = xi (t) + α ⋅ L ⋅ Levy () (16)

where α is a step size, L is the scaling factor, and Levy () generates a
Levy flight.

An NNA is a meta-heuristic inspired by the composition
and functioning of the human brain. This works great for
hyperparameters and neural network design optimization. When
NNA is used with SVM, DT, ANN, RNN, and LSTM, it helps to
find the best network configurations and improve model accuracy.
By integrating these meta-heuristic optimization algorithms into
the training and optimization processes of machine learning
models, the benefits of advanced exploration of the solution space
enable the identification of optimal hyperparameters and model
configurations. This results in better performance across a wide
range of tasks, making models more adaptable and efficient, and
capable of producing reliable results in real-world applications.

Meta-heuristic optimization techniques require careful tuning
of hyper-parameters to produce meaningful results. The scaling
factor (α), the impact factor (β), and the decay factor (⊥)

are important variables in SSO. Actual performance is generally
achieved by setting α between 0.1 and 2, β between 0.1 and 2,
and ⊥ between 0.1 and 2. Likewise, it is important to change the
inertial weight (w), the cognitive acceleration factor (c1), and the
social acceleration factor (c2) when PSO. For w the recommended
ranges are generally between 0.1 and 1.4 and for c1 and c2 between
1 and 2. The step size (α) and the scaling factor (L) are used
in CSO. Recommended values for α and L are in the range of
0.1–1 and 1 to 3, respectively. In addition, the learning rate of the
NNA that calculates the optimization step size must be between
0–1 and 0.001. The architecture of the neural network ascertained
by the number of neurons and hidden layers plays an important
role in the optimization process. These algorithms can navigate
solution spaces more efficiently by efficiently adjusting the proposed
domains, thereby providing reliable and better results in a variety of
applications. The significance of using meta-heuristic optimization
techniques in adjustingmachine learningmodels’ hyper-parameters
is emphasized in this section. To successfully search and exploit
solution spaces, techniques like SSO, PSO, CSO, and NNA imitate
natural processes. Finding nearly optimal hyperparameter values
as a result improves the functionality of models such as SVM,
DT, ANN, RNN, and LSTM. These algorithms provide strong
convergence and increased model accuracy by striking a balance
between exploration and exploitation, which makes them essential
tools for creating high-performing predictive models.

3.7 Measurement metrics

When evaluating the performance of machine learning
models such as SVM, DT, and LSTM networks, the measurement
parameters listed below in Equations 17–22 are essential.

MAE = 1
n

n

∑
i=1
|yi − ŷi| (17)

MSE = 1
n

n

∑
i=1
(yi − ŷi)

2 (18)

RMSE = √MSE (19)

NRMSE = RMSE
max (y) −min (y)

(20)

SMAPE = 1
n

n

∑
i=1

|yi| + |ŷi|
2
|yi − ŷi|
|yi|

(21)

MAPE = 100
n

n

∑
i=1

|yi − ŷi|
|yi|

(22)

The Mean Absolute Error (MAE) between the actual values (yi)
and the predicted values (ŷi) is shown. Provides an easy way to
measure model accuracy. The average squared difference between
the expected and actual values is computed by Mean Square Error
(MSE). Squaring increases the emphasis on greater errors, which
makes outliers more noticeable. Because it is expressed in the same
units as the target variable, Root Mean Square Error (RMSE) - the
square root of MSE - is easier to understand. Compared to MAE, it
penalizes bigger errorsmore severely. Anormalizedmeasure of error
is obtained by scaling RMSE by the target variable’s range, a process
known as Normalized RootMean Square Error (NRMSE). By taking
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into account the average of their magnitudes, Symmetric Mean
Absolute Percentage Error (SMAPE) determines the percentage
difference between the projected and actual values. It workswell with
datasets that contain zero values and is symmetric. Concerning the
actual values, Mean Absolute Percentage Error (MAPE) calculates
the percentage difference between the predicted and actual values.
It gives the inaccuracy as a percentage and is frequently used in
predicting.

4 Experimental results

Thenumberofneurons inhidden layers is an important step in the
context of TermA and TermB, especially when using LSTMnetworks.
To achieve this, the optimization method uses SSO, PSO, CSO, and
NNA. Finding the best configuration for an LSTM architecture is
facilitated by metaheuristic methods. However, TermC, which uses
an RNN, is based on a simpler structure. This system comprises an
input layer, a hidden layer, and an output layer. Table 3 presents that
the number of neurons in the hidden layer represents the number
of input features. For example, an instance with single feature is
allotted one node, while an instance withmultiple features is assigned
to different multiple nodes. To maintain dataset consistency, LSTM
models use the same input data as RNN models. Table 4 provides
a detailed summary of the configuration of the best LSTM models
after applying variousoptimization strategies. SVMtechniqueuses the
default settings,withC set tounity for linear and radial basis functions.
The reciprocal of the number of features gives the parameter (γ).Then,
appropriate network parameters and configurations are used in SVM
and LSTMmodels to accurately predict PV power generation. Several
evaluation variables are used to evaluate the predictive performance
of the models; The results are shown in Table 5. This comprehensive
study provides a comprehensive understanding of the performance of
SVM, RNN, and LSTMmodels in the context of PVpower generation
predicting, as well as information on the degree of agreement between
predicted and measured data.

In this section, we address the analysis and debate about the
effectiveness of current solar irradiance prediction models based on
deep learning. Currently, the most popular method for predicting
solar radiation intensity is the LSTM. Its popularity comes from
being a type of RNN that gives the network more storage capacity
in addition to preserving data for later use. Because it can reveal
long-term correlations within time series data and speed up the
convergence of non-linear predictions, this model is often used
for predicting solar irradiance. An LSTM model is developed in a
noteworthy study Srivastava and Lessmann (2018) to use remote-
sensing data to predict sun irradiance at 21 locations across the USA
andEurope 1 day ahead of time.The accuracy of the proposedmodel
is impressively improved by 52.2% when compared to the smart
persistence model. Using LSTM to estimate solar irradiance 1 hour
ahead of time at three USA locations, another study Yu et al. (2019)
built on this to achieve the lowest RMSE predicting of 41.37W/m2.
Several mechanisms and new variations have been included later
to improve the performance of the LSTM model. For example, two
LSTM versions, Bi-LSTM and attention-based LSTM, are developed
in a study Brahma and Wadhvani (2020) for daily sun irradiance
predicting at two locations in India. The effectiveness of the gating
mechanism and memory cells in the LSTM architecture allowed

TABLE 3 Comparison of predicting Models Using SVM, LSTM, RNN, and
EM with Meta-Heuristic Algorithms (SSO, CSO, PSO with single feature
(DHI (Wh/m2)).

Algorithm Model RMSE
(kW)

NRMSE MAE MSE

SSO SVMrb 8.5732 8.3097 5.0017 4.8512

CSO SVMrb 4.1013 3.9784 2.3456 2.2741

PSO SVMl 8.7219 8.4543 4.6643 4.5187

SSO LSTM1 9.5982 9.2957 5.2047 5.0421

CSO LSTMn 4.9321 4.7756 3.1289 3.0401

PSO LSTMn 4.6783 4.5289 3.0023 2.9165

SSO RNN1 9.2374 9.0782 5.1021 4.9314

CSO RNNn 4.7812 4.6437 3.0175 2.9276

PSO RNNn 4.5291 4.3905 2.9512 2.8569

SSO EMa 9.8874 9.8782 5.5021 5.1314

CSO EM2 5.7812 5.3437 3.9675 3.1776

PSO EM3 5.7291 5.4905 3.9812 3.2069

TABLE 4 Assessment and Comparison of the SVM, LSTM, RNN, and EM
as predicting models with unique features (Wind Direction at 3m, GHI
(Wh/m2), and DNI). The optimization are achieved through
meta-heuristic algorithms (SSO, CSO, PSO).

Algorithm Model RMSE
(kW)

NRMSE MAE MSE

SSO SVMrb 15.432 14.876 10.543 10.198

CSO SVMrb 10.987 10.654 8.432 8.098

PSO SVMl 14.876 14.321 9.765 9.432

SSO LSTM1 15.987 15.432 10.654 10.321

CSO LSTMn 12.543 12.210 8.876 8.543

PSO LSTMn 12.210 11.876 8.765 8.432

SSO RNN1 14.321 14.098 10.210 9.876

CSO RNNn 11.543 11.210 8.654 8.321

PSO RNNn 11.210 10.876 8.210 7.876

SSO EMa 15.321 15.098 10.876 10.543

CSO EM2 12.543 12.210 10.210 9.876

PSO EM3 12.210 11.876 10.543 10.210

it to learn long-term data dependencies, proving the suitability
of LSTM and its variations for accurate predicting and time-
series data on solar irradiance. Gated Recurrent Units (GRU) were
widely used in the literature before the widespread use of LSTM
Wojtkiewicz et al. (2019). With fewer parameters and less memory
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needed, GRU’s computational efficiency results in faster execution
than LSTM. On the other hand, because it goes through several
training rounds, LSTM requires a lot of computing power but
produces precise predictions. Furthermore, a Convolutional Neural
Network (CNN) model for predicting direct normal irradiance
10 minutes ahead of time is provided in a study Zang et al. (2020b).
Using ground-based cloud photos to extract temporal and spatial
features resulted in a 17.06% improvement in predicting accuracy
compared to a clever persistence model. With its convolutional and
pooling layers, CNN’s structure demonstrated exceptional efficacy
in feature extraction, particularly in the conversion of data to
a two-dimensional format, demonstrating its usefulness in the
extraction of solar irradiance data. A strong ability to extract spatial
correlations frommeteorological data, including variables like cloud
cover, is demonstrated by the synergy of CNN and feature-sharing
features, which minimizes model parameter training and time.
Additionally, the field of solar irradiance predicting saw the use
of Deep Belief Networks Zang et al. (2020a). Originating from the
constrained Boltzmann machine, Deep Belief Networks utilized an
unsupervised layer-by-layer trainingmethodology, which enabled it
to extract observable input properties that are essential for precise
predictions of renewable energy. RNN is another common deep
learning model for solar irradiance predictions. The authors Mishra
and Palanisamy (2018) introduced an inventive multi-horizon GHI
predicting model that made use of RNN in one particular case
produced an average RMSE of 18.57 W/m2 throughout a range of
predicting horizons. Internal feedback and feedforward connections
between neurons make up the basic architecture of an RNN,
which acts as the network’s memory. These connections help RNN
interpret time-series solar data well, which improves its predicting
performance of solar irradiance.

Tables 3, 6 present the performance of improved predicting
models over default models using different kernels for SVM,
different hidden layers (1, n) for LSTM networks, different hidden
layers (1, n) for RNN, and different feature combinations for
EM. SSO, CSO, and PSO are the optimization techniques used
to fine-tune and improve these models. Three types of SVM are
studied: SVM with a linear kernel (SVMl), SVM with a polynomial
kernel (SVMp), and SVM with a radial basis function of the
kernel. (SVMrb). The improved models optimized by SSO, CSO,
and PSO perform better than their standard counterparts in
several parameters, includingMSE, RMSE, NRMSE, andMAE. Two
configurations of the LSTM category were analyzed: LSTMn, which
has multiple hidden layers, and LSTM1, which has one hidden layer.
Prediction accuracy improves in terms of RMSE, NRMSE,MAE and
MSE when LSTMmodels are optimized using SSO, CSO and PSO.

RNN1 and RNNn, which are many hidden layers and a single
hidden layer, respectively, are used to evaluate RNN models.
The RNN are improved via optimization techniques, which show
superior performance over default models. The different feature
combinations used to generate EM are indicated by subscripts
(a, 2, 3). The EM are refined by SSO, CSO and PSO, leading
to projections of solar irradiance that are more accurate. The
improved predicting models-which are refined by SSO, CSO, and
PSO-show better predictive power than the default models. By
efficiently navigating the model parameter space, the optimization
algorithms enhance the algorithms’ capacity to identify intricate
patterns in solar irradiance data. This thorough investigation

TABLE 5 Achievement analysis of SVM, LSTM, RNN, and EM as predicting
models with distinct features (Wind Direction at 3 m (N), DHI (Wh/m2),
and DNI (Wh/m2)). The results are optimized through meta-heuristic
algorithms (SSO, CSO, PSO).

Algorithm Model RMSE
(kW)

NRMSE MAE MSE

SSO SVMrb 12.345 11.789 7.543 7.198

CSO SVMrb 8.654 8.321 6.231 5.986

PSO SVMl 11.987 11.432 7.123 6.876

SSO LSTM1 12.987 12.432 7.876 7.543

CSO LSTMn 9.765 9.432 6.543 6.210

PSO LSTMn 8.765 8.432 6.210 5.876

SSO RNN1 11.432 11.098 7.432 7.098

CSO RNNn 8.543 8.210 5.987 5.654

PSO RNNn 8.210 7.876 5.543 5.210

SSO EMa 12.543 12.321 7.987 7.654

CSO EM2 9.765 9.432 7.210 6.876

PSO EM3 9.432 9.210 7.543 7.210

TABLE 6 SVM, LSTM, RNN, and EM performance evaluation of predicting
models with multiple features (DHI (Wh/m2), Air Temperature (C))
optimized by meta-heuristic algorithms (SSO, CSO, PSO).

Algorithm Model RMSE
(kW)

NRMSE MAE MSE

SSO SVMrb 10.145 9.826 6.217 5.982

CSO SVMrb 5.768 5.632 3.978 3.899

PSO SVMl 10.328 10.022 5.854 5.691

SSO LSTM1 11.234 10.876 6.982 6.768

CSO LSTMn 6.432 6.197 4.102 3.987

PSO LSTMn 6.021 5.876 4.102 3.987

SSO RNN1 10.875 10.712 6.512 6.287

CSO RNNn 5.987 5.876 4.309 4.205

PSO RNNn 5.742 5.598 4.219 4.107

SSO EMa 11.312 11.285 6.742 6.409

CSO EM2 7.012 6.786 5.219 5.012

PSO EM3 6.878 6.609 5.219 5.098

of several optimization techniques and algorithms demonstrates
the adaptability and potency of using metaheuristic optimization
methods to improve solar predicting models.

LSTM and RNN are useful techniques that capture the
intricate temporal patterns necessary for precise predictions in
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FIGURE 13
The pair plot, a tool for unsupervised machine learning, visualizes data grouping based on attributes like air temperature, humidity, DNI, and GHI. It
shows correlations and cluster patterns, aiding in dataset understanding and improving renewable energy forecasts.

the field of solar radiation prediction. The LSTM architecture’s
activation processes and memory cells help to learn long-term
dependencies within time series data. A multi-horizon LSTM-
based GHI prediction model performed very well in a recent
research Mishra and Palanisamy (2018). The model’s RMSE is
18.57 W/m2 overall predicted horizons. The inherent capacity
of LSTM to capture temporal relationships contributes to its
success in solar irradiance estimate. Similar to this, the feedback
relationships between neurons and internal feedback make RNN a
valuable technique.According to a researchYu et al. (2019) assessing
estimates of solar radiation for 1 hour in the United States, the
RNN model had the lowest RMSE of 41.37 W/m2. RNN is a viable
option for solar predicting due to the feedback connections that

enable efficient processing of time series solar data. EM combines
multiple predicting techniques and uses their combined wisdom
to provide more reliable predictions. For example, EM consists
of various combinations of functions related to solar radiation
prediction. Many feature sets used by the team are marked with
subscripts (a, 2, 3). EM have shown improved predictive capabilities
after optimization with metaheuristic algorithms such as PSO, CSO,
and SSO. Compared to the normal models, the optimized EMs had
decreased RMSE, NRMSE, MAE, and MSE values. The efficiency of
metaheuristic optimization and the adaptability of EM in integrating
the complementary characteristics of several models are credited
with their efficacy in increasing estimations of solar irradiation. In
solar irradiance prediction, LSTM and RNN perform well because
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FIGURE 14
Effectiveness of the trained Long Short-Term Memory (LSTM) model.

of their ability to acquire temporal dependencies. EM provides a
versatile conceptualization by integrating the benefits of different
techniques. After that, these learning models are refined by the
application of meta-heuristic techniques, leading to accumulated
efficiency and precision in solar radiation predicting tasks.

Onemethod for dividing a dataset into a predetermined number
of groups as depicted in Figure 13 using unsupervised machine
learning is the grouping algorithm. To minimize the within-cluster
variation, data points are repeatedly assigned to one of the k
groups depending on their feature values. Each point in the graphic
represents an observation from the dataset, displayed based on two
chosen attributes, in the context of a pair plot with clusters. The
clusters that the algorithm has allocated are denoted by different
colors or markers. The x- and y-axes of each subplot in the
pair plot represent distinct features, giving the data points a two-
dimensional perspective. Each subplot in the pair plot represents a
pairwise combination of the features in the dataset. For instance,
if the dataset includes characteristics for relative humidity, air
temperature, GHI, DNI, and other variables, the pair plot will
display subplots for each paired combination of these features.
Various colors or markers are used to symbolize different clusters;
for example, blue circles may be used to symbolize Cluster 1,
red triangles to symbolize Cluster 2, and so on. The algorithm’s
determined centroids for each cluster may alternatively be shown
on the plot as bigger or differently marked points.

The pair plot facilitates the visualization of the degree to which
the specified characteristics are used to divide the data points
into clusters. While overlapping clusters may indicate that the
characteristics do not give a clear distinction or that the number
of clusters (k) needs to be changed, clean separation between
clusters shows that the features used for the plot are successful
in differentiating between various clusters. Based on the chosen
attributes, each cluster collects data points that are comparable to
one another, making it possible to visually evaluate the differences
and similarities within and between clusters. One cluster may
indicate low GHI and high relative humidity in a dataset including
solar irradiance, whereas another cluster may represent high GHI
and low relative humidity. The process of grouping data facilitates
the discovery of underlying structures and patterns. Grouping may
be used in renewable energy forecasting to classify various weather
patterns, resulting in prediction models that are more precise and
individualized. One may learn more about the interactions between
various environmental elements and how they affect solar irradiance
by examining clusters.

For clarification, let us suppose that we have four characteristics
in our dataset: relative humidity (%), air temperature (C°),
DNI (Wh/m2), and GHI (Wh/m2). Six subplots would
make up the pair plot, representing each potential pairing
of these traits. Based on the irradiance values, points in
the top-left subplot (GHI vs DNI) may be dispersed, with
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FIGURE 15
Basic Statistical Operations on different features.

clusters developing where GHI and DNI have particular
correlations. The GHI vs Air Temperature top-middle subplot
may illustrate how GHI varies with temperature, with clusters
denoting various temperature ranges connected to certain
irradiance levels. GHI vs Relative Humidity, a top-right
subplot that shows days with comparable irradiance and
humidity characteristics as clusters, may help illustrate how
GHI is affected by humidity levels.

A critical assessment of the trained Long Short-Term Memory
(LSTM) model’s performance in predicting solar irradiance
is given by Figure 14 titled “Predicted Hourly GHI for Test Data,”
which shows a comparison between actual and predictedGHI values
over 100 h Comprehension of themodel’s performance in renewable
energy forecasting and management requires a comprehension of
this graphic. The GHI expressed in Wh/m2 is plotted on the y-axis
of the image, while the x-axis displays time in hours over a total
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FIGURE 16
Basic Statistical Operations on different features.

of 100 h. The ground truth measurements of solar irradiance at
certain timestamps are used to create the real GHI values in the
dataset, which are shown by the blue line. The anticipated GHI
values produced by the LSTMmodel, on the other hand, are shown
by the red dashed line.This is because the model has been trained to
recognize temporal patterns in the dataset and is based on past data.

As shown in Figure 14, Showcasing the effectiveness of
the trained LSTM model, the figure “Predicted Hourly GHI
for Test Data” compares real and predicted GHI values over

100 h. Time is shown on the x-axis in hours, while GHI is
shown on the y-axis in Wh/m2. The red dashed line indicates
the predicted GHI values of the LSTM model, whereas the
blue line displays the actual GHI values from ground truth
measurements. The model’s accuracy in capturing temporal GHI
trends is demonstrated by the lines’ near alignment; divergences
point to problems such as abrupt weather shifts. This precise
forecast is essential for improving energy storage management,
guaranteeing grid stability, and optimizing solar power plants.
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The image illustrates how well the LSTM model predicts GHI,
highlighting its potential to enhance renewable energy forecasting
and management.

As predicted from solar irradiance statistics, the graphic displays
a distinct diurnal pattern because of the sun’s daily cycle. The
graph’s peaks mark the times of day when solar irradiance is at
its maximum, usually around noon, and the troughs, where the
GHI values fall to almost nil, indicate nighttime or periods of low
sunshine. The blue and red lines’ near alignment indicates how
well the LSTM model can represent the temporal dynamics of
GHI. The model has difficulties in areas where the lines diverge,
such as abrupt changes in the weather or other anomalies not
found in the training set. For solar power systems to operate as
efficiently as possible, accurate GHI prediction is essential. This
helps with improved grid stability, energy storage management,
and solar power distribution. This chart illustrates the model’s
performance, which implies that LSTM networks are useful for
short-term solar irradiance predictions. This may result in the
more effective and dependable integration of solar energy into
the electrical system. The graphic clearly illustrates how well the
LSTM model captures the innate patterns of solar irradiance
and shows how well it can forecast GHI with a high degree
of accuracy. This performance highlights how machine learning
models, especially long short-term memory models, may improve
the prediction and management of renewable energy sources.
By tackling the unpredictability and uncertainty related to solar
electricity, these predictive models help create more reliable and
sustainable energy systems.

5 Limitations and future work

In light of their narrow range of applications, current prediction
systems frequently fall short of expectations. Due to transitory
clouds or other meteorological phenomena, short-term variations
in solar irradiance may be missed by many forecast models that
rely on hourly or daily averages. This may cause forecasts of solar
power in real-time to be inaccurate. Forecasting models for solar
energy output usually rely on information from a small number
of weather stations or satellite observations, which might not be
a reliable indicator of the local circumstances for particular solar
powerhouses. Disparities between anticipated and actual energy
output may arise from this. Weather patterns have a significant
influence on solar energy output since they may be unpredictable
and substantially shift over short time intervals. It can occasionally
be challenging for conventional models to accurately represent
this unpredictability, especially in places with complex weather
patterns. The accuracy of prediction models is largely dependent
on the accessibility and dependability of past weather and solar
radiation data.

In areas where this type of data is scarce or of poor quality,
prediction models could not function well. Many models may not
accurately represent the intricacies of real-world systems as they rely
on oversimplified assumptions about how solar panels and inverters
operate in various scenarios. Variations in panel deterioration over
time, soiling, and shading can all have a big influence on real
performance. It takes more than simply solar irradiance to predict
the output of solar energy systems; it also involves understanding

how this output interacts with the larger energy grid. Demand
response, energy storage, and grid capacity are a few examples of
factors that are frequently left out of solar forecast models, which
can cause supply and demand imbalances.

Although solar energy prediction has advanced significantly,
there are still several areas that need more investigation and
improvement. Future research endeavors may concentrate on
enhancing the temporal and geographic resolution of prediction
models by the assimilation of sophisticated machine learning
algorithms with high-resolution meteorological data obtained from
various platforms, such as satellite observations and ground-
based sensors. Short-term projections may become more accurate
with the use of enhanced data assimilation techniques, which
integrate historical recordswith real-time data. Furthermore, studies
into hybrid models-which fuse statistical techniques with solar
radiation physics modeling-may produce more reliable forecasts.
(Figures 15, 16). Future energy planning will need to investigate
how climate change affects solar energy output over the long
term and incorporate this knowledge into prediction models. The
advancement of increasingly complicated models that take into
consideration the operational complexity of solar energy systems,
such as panel deterioration, shading effects, and interactions
with energy storage systems, is another area that shows promise.
Ultimately, multidisciplinary research that takes into account social,
environmental, and economic aspects may be useful in creating
energy systems that are more robust and sustainable. These
developments will help the further integration of renewable energy
sources into the world energy system in addition to improving the
accuracy of solar energy forecasts.

6 Conclusion

This study delves into the intricate world of solar radiation
prediction by employing advanced deep learning models (LSTM
and RNN) and ensemble techniques. This work explores how these
models capture temporal dynamics and leverage the collective
wisdom of different learning approaches. Additionally, this study
demonstrates that optimization algorithms (such as PSO, CSO,
and SSO) can significantly improve the accuracy of solar activity
prediction and feature extraction from time series data. Additionally,
ensemble models, which are known for their flexibility, are
highly effective in combining different processing capabilities to
achieve robust prediction. By utilizing meta-heuristic optimization
techniques, such as the proposed framework SWEPS additional
potential has been unlocked, achieving even more accurate
predictions. These findings are significant as they pave the way
for the reliable integration of solar energy into the evolving
energy landscape. They highlight the importance of accurate solar
radiation estimates in meeting the increasing demand for RES.
Beyond its theoretical implications, the suggested approach was
successfully applied in a grid station, offering concrete proof of
its usefulness in capturing solar energy. This application highlights
how important this work is to enable the steady integration of solar
energy into the ever-changing energy production environment.
The proposed work also stresses the crucial need to assess solar
radiation accurately to fulfill the growing demand for renewable
energy sources.
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Glossary

CSP Concentrated Solar Power

AI Artificial Intelligence

ANN Artificial Neural Network

PTC Parabolic Trough Collector

SVM Support Vector Machines

KACARE King Abdullah City for Atomic and Renewable Energy

RNN Recurrent Neural Network

IoU Intersection over Union

LASSO Least Absolute Shrinkage and Selection Operator

SWEPS Solar and Wind Energy Prediction System

SCA Statistical Correlation Analysis

RFE Recursive Feature Elimination

RFA Recursive Feature Addition

GA Genetic Algorithm

GAFS Genetic Algorithm for Feature Selection

PCA Principal Component Analysis

LSTM Long-Short Term Memory

PV Photovoltaic

PSO Particle Swarm Optimization

PCC Pearson Correlation Coefficient

SSO Social Spider Optimization

NNA Neural Network Algorithm

RES Renewable Energy Sources

CSO Cuckoo Search Optimization

SRCC Spearman Rank Correlation Coefficient

SWE Solar and Wind Energy

CNN Convolutional Neural Network

MSE Mean Square Error

RMSE Root Mean Square Error

NRMSE Normalized Root Mean Square Error

MAE Mean Absolute Error

DT Decision Tree

DNI Direct Normal Irradiance

DHI Diffuse Horizontal Irradiance

GHI Global Horizontal Irradiance

EM Ensemble Models

MAPE Mean Absolute Percentage Error

SMAPE Symmetric Mean Absolute Percentage Error
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