
Bayesian regressionmodeling and
inference of energy efficiency
data: the effect of collinearity and
sensitivity analysis

Laila A. Al-Essa1, Endris Assen Ebrahim  2* and
Yusuf Ali Mergiaw3

1Department of Mathematical Sciences, College of Science, Princess Nourah bint Abdulrahman
University, Riyadh, Saudi Arabia, 2Department of Statistics, College of Natural and Computational
Sciences, Debre Tabor University, Debre Tabor, Ethiopia, 3Department of Mechanical Engineering, Gafat
Institute of Technology, Debre Tabor University, Debre Tabor, Ethiopia

The majority of research predicted heating demand using linear regression
models, but they did not give current building features enough context.
Model problems such as Multicollinearity need to be checked and appropriate
features must be chosen based on their significance to produce accurate load
predictions and inferences. Numerous building energy efficiency features
correlate with each other and with heating load in the energy efficiency
dataset. The standard Ordinary Least Square regression has a problem when
the dataset shows Multicollinearity. Bayesian supervised machine learning is a
popular method for parameter estimation and inference when frequentist
statistical assumptions fail. The prediction of the heating load as the energy
efficiency output with Bayesian inference inmultiple regressionwith a collinearity
problem needs careful data analysis. The parameter estimates and hypothesis
tests were significantly impacted by the Multicollinearity problem that occurred
among the features in the building energy efficiency dataset. This study
demonstrated several shrinkage and informative priors on likelihood in the
Bayesian framework as alternative solutions or remedies to reduce the
collinearity problem in multiple regression analysis. This manuscript tried to
model the standard Ordinary Least Square regression and four distinct
Bayesian regression models with several prior distributions using the
Hamiltonian Monte Carlo algorithm in Bayesian Regression Modeling using
Stan and the package used to fit linear models. Several model comparison
and assessment methods were used to select the best-fit regression model
for the dataset. The Bayesian regression model with weakly informative prior is
the best-fitted model compared to the standard Ordinary Least Squares
regression and other Bayesian regression models with shrinkage priors for
collinear energy efficiency data. The numerical findings of collinearity were
checked using variance inflation factor, estimates of regression coefficient and
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standard errors, and sensitivity of priors and likelihoods. It is suggested that applied
research in science, engineering, agriculture, health, and other disciplines needs to
check the Multicollinearity effect for regression modeling for better estimation and
inference.
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1 Introduction

Several studies used regression models to predict the electric
energy consumption and efficiency of office or residence buildings
without checking Multicollinearity effects in a frequentist statistical
approach (Baranova et al., 2017; Reim et al., 2017; Taskin et al., 2022;
Neubauer et al., 2024). To make sure that investments in energy
conservation measures (ECMs) and the development of new energy-
efficient buildings provide the anticipated and promised
performance, reliable estimating techniques are required to assess
the effects of various features. The standard linear regression
approach has limitations in estimating and inferring energy
efficiency data having collinear features (Moletsane et al., 2018;
Mummolo and Peterson, 2018; Tahmasebinia et al., 2023; Ahmadi,
2024; Kaczmarczyk, 2024).

The conventional method for estimating energy efficiency
involves using a linear regression model. However, only partially
addressed the statistical issues described for the linear regression
approach and the potential Multicollinearity issue due to the high
correlation between building energy efficiency (Moletsane et al.,
2018; Tahmasebinia et al., 2023; Ahmadi, 2024; Kaczmarczyk, 2024).
Bayesian inference has various applications in science, engineering,
and social sciences. Model parameters are assumed to be constant in
traditional frequentist inference (Nithin, 2023). Using existing data
and prior knowledge of population parameters, Bayesian statistics is
a statistical tool that may generate estimates via the posterior
distribution. For both experimental and applied studies, one of
the most widely used statistical techniques is Bayesian Multiple
Regression (BMR) analysis. Nevertheless, associated predictor
variables and their collinearity effects are frequently a source of
worry in the statistical inference of regression estimates (Farrar and
Glauber, 1967). Strong correlation among independent variables in
multiple linear regression models leads to high Standard Errors (SE)
of the regression coefficients, known as the Multicollinearity
problem (Willis and Perlack, 1978). Bayesian inference in
multiple linear regression analysis considered estimators for
testing simple hypotheses concerning the regression coefficients
(Wu et al., 2023). Bayesian interval estimation (credible intervals)
can be formulated using prior information of various kinds
incorporated in the analysis (Assaf and Tsionas, 2021b). Due to
efficiency in computing, accuracy in the estimate, and variable
selection, Bayesian shrinkage and non-informative priors have
attracted much interest recently.

Many characteristics of building energy efficiency are correlated
with the heating load as well as with each other (Jammulamadaka
et al., 2022). Potential Multicollinearity issue due to the high
correlation between energy efficiency features provides biased
estimates and untruthful inferences. To achieve optimal energy
efficiency feature selection is required with appropriate methods

of analysis. To reduce the detrimental effects of Multicollinearity on
the estimations of energy efficiency, biased regression procedures
have been developed.

The main consequence of Multicollinearity in statistical
estimation and inference is to inflate the SE of some or all
regression coefficients of the fitted model (Kim, 2019); which
leads to failure to reject the null hypothesis on the significance of
the regression coefficient and wider confidence interval. The type II
error rate (lowering power) of the parameter hypothesis tests
increased due to exaggerated SE and confidence intervals of the
estimated model parameters. Multicollinearity has statistical
repercussions, such as exaggerated standard errors that make it
challenging to assess individual regression coefficients in hypothesis
testing (Assaf and Tsionas, 2021a).

The other consequence is that the posterior distribution would
seem to recommend that none of the variables is reliably related to
the outcome variable, even if all predictor variables are strongly
related to the outcome. In contrast to statistical inference on the
regression coefficients, Multicollinearity does not impact the
model’s overall fit to the observed response variable data and
prediction (Alin, 2010). The issues of autocorrelation,
Multicollinearity, and heteroscedasticity plague the majority of
econometric models. The assumptions of the standard regression
model are not always met in real-world situations (Youssef, 2022).

The effects of Multicollinearity can be either numerical or
statistical in such a way that the statistical consequences of
Multicollinearity include difficulties in testing the individual
parameters of regression coefficients due to inflated standard
errors. Due to large standard errors, a large confidence region
may arise. If the researcher(s) need to explain the effect of
individual regression coefficients on Y, the statistical consequence
of Multicollinearity will cause trouble, because this effect cannot be
separated. Therefore, we may be unable to declare the significance of
the predictor (X) even though it has a strong relationship with the
targeted outcome (dependent) variable (Y). Moreover, the Ordinary
Least Squares Estimates (OLSE) may be sensitive to small changes in
the values of explanatory variables. On the other hand, numerical
consequences of Multicollinearity include difficulties in computer
calculations due to numerical instability. In extreme cases, the
computer may try to divide by zero and thus fail to complete the
analysis. Or even worse, the computer may complete the analysis but
then report meaningless, widely incorrect numbers.

Multicollinearity can be identified using a correlation matrix or
Variance Inflation Factor (VIF) of features that can predict the
outcome variable with a high R-squared value demonstrating a
strong linear relationship (Alin, 2010). Regression coefficients in
multiple regression models with a VIF of more than 10 are not
robustly computed when Multicollinearity is present
(Shrestha, 2020).
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A study has used the prediction of heating and cooling loads
using partial least squares towards efficient residential building
design without checking assumptions of the classical approaches
(Kavaklioglu, 2018). Many researchers and statisticians are reluctant
to apply Bayesian statistical approaches since they find it difficult to
draw conclusions based on their prior opinions (Sinay and Hsu,
2014). Bayesian inference of the posterior is strongly influenced by
the prior information (Oluwadare, 2021). Utilizing prior knowledge
in addition to sample data is one of the primary benefits of Bayesian
techniques. Adding more prior information can be an alternate
strategy to lessen the uncertainty caused by collinearity. Among the
several methods to address the problem ofMulticollinearity were the
use of shrinkage priors and associated algorithms such as a ridge,
LASSO (Least Absolute Shrinkage and Selection Operator), or elastic
net regression. Imposing shrinkage priors mitigates the collinearity
problem by sifting the likelihood surface to create a posterior
distribution, which divides up the pertinent likelihood data
among the subset modes (Mahajan et al., 1977; Garg, 1984;
Ročková and George, 2014; Zhang et al., 2022).

Energy efficiency and power-related datasets are the most
correlated attributes to understand what to exclude from
regression to avoid Multicollinearity problems. To design
buildings that follow certain standards architects and engineers
need to identify which parameters will significantly influence
future energy demand (Sekhar Roy et al., 2018).

Multicollinearity decreases the statistical power of the regression
model by reducing the precision of the calculated regression
coefficients and making the model extremely sensitive to even
tiny changes in the observed values and model (Ročková and
George, 2014). A sensitivity analysis evaluates the analysis carried
out using Ordinary Least Squares (OLS) regression and Bayesian
regression analysis in which Bayesian shrinkage priors were changed
in the regression model (Piironen and Vehtari, 2017b; Ackermann,
2019; Kim et al., 2019). Sensitivity analysis is used to evaluate the
estimation and influence of regression results on changes in different
modeling approaches (Seltzer, 1993). Having strongly correlated
predictors can increase the uncertainty of the posterior distributions
of the regression coefficients (Van de Schoot and Depaoli, 2014). On
the contrary, using the earlier distribution in Bayesian analyses can
particularly come to the rescue because it makes it much less possible
for the posteriors to have an extraordinarily huge posterior mean
and standard deviation. To estimate the Heating Load (HL) and
Cooling Load (CL) of the energy-effectual housing structures, Bui
et al. (2019), employed Artificial Neural Networks (ANNs). To
achieve this, a suitable data set was supplied that comprises the
heating load and the cooling load with the relevant factors, relative
compactness, surface area, wall area, roof area, overall height,
orientation, glazing area, and distribution of the glazing area.

In practical Bayesian statistics, multiple regression, Bayesian
networks, and artificial neural networks were used for prediction
(Felipe et al., 2015). An artificial neural network with Bayesian
regularization modeling was used to assess the performance of
electronic components over their lifetimes in four different
scenarios. The findings showed that there was a direct
relationship between the reliability parameters examined in all
scenarios and an increase in the Mean Time Between Failures
value appeared for each scenario (Çolak et al., 2023); and ANNs
with Bayesian regularization are an effective and potent

mathematical technique for evaluating a lifetime model’s
dependability (Sindhu et al., 2023).

Several studies demonstrated the superiority of the Bayesian
approach over the frequentist approach of the multiple linear
regression model in identifying the predictors for the outcome
variable (Zianis et al., 2016; Gebrie, 2021; Tanoe et al., 2021;
Vijayaragunathan et al., 2023). But what distinguishes this study
from others is the way it takes into account the Multicollinearity
effect and applies multiple prior distributions or beliefs to evaluate
sensitivity in Bayesian regularization of regression parameters.

According to Pesaran and Smith (2019), in scenarios of exact
and highly collinear predictors, the asymptotic behavior of the
posterior estimate, and the accuracy of the parameters of a linear
regression model are investigated. In both scenarios, even when the
sample size is large enough, the estimates of the posterior
distribution are still sensitive to the selection of prior
distribution, and the precision increases more slowly than the
sample size.

Figuring out how sensitive the posterior is to changes in the prior
distribution and the likelihood is a crucial step in the Bayesian
workflow. Sensitivity can be distinguished using power-scaling the
prior or likelihood (Kallioinen et al., 2024). The Ordinary Least
Squares (OLS) method is distribution-free because it does not utilize
any distribution of the data. Without making certain assumptions
about the probability model that underlies the data, it is impossible
to draw any statistical inferences about the slope, intercept, or
prediction from the OLS estimates. Thus, all datasets must
mitigate Multicollinearity in Bayesian inference and select the
appropriate predictive model. This manuscript tried to model the
standard OLS regression and four distinct Bayesian regression
models, with several shrinkage or regularized prior distributions,
for the real dataset which showed collinearity.

The existing and recommended solutions to cover and reduce
the Multicollinearity in the presence of highly correlated
independent variables are increasing sample size to strengthen
the statistical power, omission of one or more of the affected
variables from the analysis, combining the strongly correlated
variables into a single composite score or switching to more
adequate modeling approaches able to handle correlated variables
such as principal component analysis (PCA) or partial least-squares
(PLS) regression and using regularization methods such as RIDGE
and LASSO or Bayesian regression (Voss, 2004; Jaya et al., 2019).
However, the omission of one variable or the creation of a composite
score can be done for bivariate correlation but leads to different
interpretations of the model. Moreover, switching to models that
can handle inter-related explanatory variables does not provide
the statistical hypothesis test and the hypothesis testing in the
regression model has been not solved yet. The method must be
able to obtain the parameter estimates with a high level of
precision and also facilitate the hypothesis test of regression
parameters simultaneously (Pesaran and Smith, 2019). We
proposed the Bayesian regression method with weakly
informative and shrinkage (regularized) priors as an
alternative solution. The Monte Carlo simulation revealed that
the Bayesian method solves hypothesis testing in regression
analysis with interpretability in the Multicollinearity problem
effectively. Therefore, the main purpose of this study is to fit
multiple linear regression models using OLS and the Bayesian
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approach with different shrinkage prior distributions for
sensitivity analysis of the priors and to find the best-fitted
model for the collinear data.

2 Materials and methods

2.1 Multiple linear regression (classical
versus bayesian)

In classical statistical theory, unlike random effect models, which
use a random sample from the population for group mean
calculations, fixed effect models use regression analysis where
group means are fixed (Mummolo and Peterson, 2018). Here, the
fixed effect model is used as a linear regression model with one
outcome or dependent variable (Y) and p input or independent
variables (X1, X2, X2, . . . , Xp), as multiple regression in Eqs 1, 2,
can be expressed as follows.

Y � β0 + β1X1 + β2X2 + β3X3 +. . .+ βpXp + ε (1)
Y � Xβ + ε (2)

where Y is a target or outcome variable with a dimension of (n × 1).
X is a design matrix of input variables with a constant column of

dimension (n × (p + 1)).
β is a vector of regression parameters or coefficients having

((p + 1) × 1) dimension.
ε is a vector of error terms with a dimension of (n × 1) (Mettle

et al., 2016).
In matrix notation, multiple linear regression can be rewritten as

Eq. 3.

Y �

y1

y2

y3

. . .
yn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦X �

1 x11 . . .
1 x21 /
1 x31 . . .

x1p

x2p

x3p

..

.
. . . 1

..

.

1 xn1 . . . xnp

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ β �

β0
β1
β2
β3
..
.

βp

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ε �

ε1
ε2
ε3
..
.

εn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (3)

From the general multiple linear regression model in Eq. 2 of p
input variables on n sample data, the solution derived from Eq. 4.

XTXβ̂ � XTy (4)
summarizes p normal equations in the k components of β̂. Two
parameters have to be estimated, β and σ2 and y ~ N(Xβ, σ2I).
Solving the normal equations by elimination, the vector of
regression coefficients shown in Eq. 5 can be computed as follows:

β̂ � XTX( )−1XTy (5)
with the vector of residuals shown in Eq. 6;

ê ≡ y − Xβ̂( ) (6)

However, if more parameters to be estimated are available than
observations (p> n), or if p≤ n, but some of the underlying
explanatory variables are perfectly correlated, there will be
Multicollinearity (|XTX| � 0) and an inverse of XTX will not
exist (Frost, 2019). In either case, there are an infinite number of
solutions to Eq. 4, and unless extraneous variables are eliminated by

deleting the corresponding rows and columns of XTX (and deleting
the corresponding elements of β), or prior information is brought to
bear on the problem in some form to eliminate the ambiguity. A
unique solution cannot be obtained (Ullah, 2021).

An alternative approach to estimating and deducing regression
model parameters is provided by Bayesian linear regression. The
Bayesian method has prior, likelihood, and posterior distributions.
The posterior is created by combining the sample data with the prior
according to Bayes’ theorem. The normally distributed error
assumption, denoted by ε ~ N(0, σ2), is present in the linear
regression model that uses the OLS estimation method. In the
linear regression model using the OLS estimation method, there
is a normally distributed error assumption that is ε ~ N(0, σ2). Since
the error term is normally distributed, the three variables Y/X, β, σ2

have a normal distribution as does the error (Miroshnikov et al.,
2015; Samira, 2023). β and σ2 are the vectors of regression coefficient
and residual parameters in the standard regression approach having
a normal distribution based on the error term. However, the
Bayesian concept thought of these parameters as random
variables having distinct distributions with hyper-parameters. In
the Bayesian context the distribution β of depend on the choice of
the prior distribution, so it will not necessarily be a normal
distribution. In Bayesian inference, parameters are considered
random variables because their values are uncertain; it means the
value is not a single value. The main difference between classical and
Bayesian statistics is that in frequentist approaches, parameters are
considered fixed and unknown constants that can be estimated from
the data. In contrast, Bayesian approaches treat parameters as
random variables with their distributions, reflecting uncertainty
about their values (Nithin, 2023). This allows for the
incorporation of prior knowledge or beliefs about parameters in
the Bayesian approach, which gets updated with new data through
Bayes’ theorem, leading to a posterior distribution that expresses
updated beliefs about the parameters’ values. Thus,
(Y/X, β, σ2) ~ N(Xβ, σ2) and the joint probability density
function (pdf) of these variables can be written as:

p Y/X, β, σ2( ) � 1����
2πσ2

√ exp − 1
2σ2

Y/X, β, σ2( )T Y/X, β, σ2( )[ ]
(7)

The likelihood function of these variables is derived from the
above probability density function (pdf) and can be expressed as Eqs
8, 9;

p Y/X, β, σ2( ) � ∏n
i�1

1����
2πσ2

√ exp − 1
2σ2

Y/X, β, σ2( )T Y/X, β, σ2( )[ ]
� σ2( )−n/2 exp − 1

2σ2
Y/X, β, σ2( )T Y/X, β, σ2( )[ ]

(8)
p Y/X, β, σ2( )∝ σ2( ) −] /

2 ]s2

2σ2
[ ] × σ2( )−n/2

exp − 1
2σ2

Y/X, β, σ2( )T Y/X, β, σ2( )[ ] (9)

Regression parameter estimates can be obtained using the
Bayesian technique by iterating in the marginal posterior. As
shown in Eq. 10, the posterior distribution can be obtained by
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multiplying the likelihood function by the prior information
(Gelman et al., 2013).

Posterior∝Prior × Likelihood

p β, σ2/Y ,X( )∝p Y/X, β, σ2( ) × p σ2( ) × p β/σ2( ) (10)

Markov Chain Monte Carlo (MCMC) is a technique that can
estimate regression model parameters using a Bayesian approach.
The most common MCMC algorithms used in Bayesian estimation
are Gibbs sampling, Metropolis-Hastings, and Hamiltonian Monet
Carlo approximations.

2.2 Estimation and inference in Bayesian
multiple regression

In the Bayesian framework, prior distributions to β and σ2 need
to be assigned (Miroshnikov et al., 2015). For convenience, Bayesian
models use precision (τ) rather than variance (σ2) as specified in
Eqs 7, 11. Considering this parameterization, a Bayesian Multiple
Regression model assumes,

Y/ β, τ( ) ~ Nn Xβ,
1
τ
I( ),

β

τ
~ Np+1 ϕ,

1
τ
V( ),

τ ~ D α, δ( )

(11)

where α and δ are hyper-parameters of the prior D.
A Bayesian point estimate of βi is its posterior mean ϕ*i

and a 100(1 − ω)% Bayesian credible interval for βi is
ϕ*i + tw /

2,n+2αw*ii, where ϕ*i is the ith element of
ϕ* � (V−1 + XTX)−1(V−1ϕ + XTy), w*ii is the ith diagonal
element of W* � ((y−Xϕ)T(I+XVXT )−1(y−Xϕ)+2δ

n+2α )(V−1 + XTX)−1.
To evaluate the null hypothesis test:H0: βi > βi0, the probability

can be calculated as P(t(n+2α) > βi0−ϕ*i
w*ii

). This expletory index of
features in Bayesian inference that is used as the numeric
equivalent of P-value in classical statistics was computed as
Probability of Direction (PD) using the BRMS package. A
hypothesis is considered more believable when the higher its
probability (Kruschke and Liddell, 2018).

Prior information can be introduced from the sampling theory
viewpoint by imposing side situations on the regression parameters
and using the formalism of the general inverse (Soofi, 1990). Prior
information enters the problem for a Bayesian when he assesses an
informative prior distribution for the regression parameters
(Leamer, 1973). However, using diffuse (non-informative) prior
will not extricate the analysis from the Multicollinearity problem
since such priors do not add enough information.

The parameters that need to be estimated have a probability
distribution known as the prior distribution (Consonni et al., 2018).
At the same time, the likelihood is a combined distribution of the
necessary data parameters, even though it is connected to the
probability distribution of the observational and posterior
distributions. The prior is decided earlier than the measurement
facts are held, so the likelihood function is frequently articulated as a
confirming feature of the prior knowledge. Inference on Bayesian
models and posterior distributions was done using the “Bayes test”
of the R package.

Model selection using the Bayes factor and Bayesian hypothesis
testing were carried out by Andraszewicz et al. (2015). An expanded
example of using hierarchical regression, which is based on
experiment study design in management, the usage of Bayes
factors is demonstrated. Reporting and characterizing of the
fitted models and posterior distributions can be done using the
Highest Density Interval (HDI), credible interval, and the Region of
Practical Equivalence (ROPE) percentage, or Equivalence Test
functions to check whether the Bayesian regression can be
considered non-negligible. The credible interval also known as
the Bayesian 95% confidence interval can be interpreted as given
the evidence presented by the observed data, the Bayesian Credible
Interval (BCrI) contains a 95% chance of holding the true
(unknown) value (Hespanhol et al., 2019).

In this study, the Hamiltonian Monte Carlo (HMC) algorithm of
Bayesian Regression Models in STAN (BRMS) of the R package has
been used to fit Bayesian Regression Models (BRM) and the package
“lm” for the classical regressionmodel. Stanmakes use of a variation of a
No-Uturn Sampler (NUTS) to discover the goal parameter area and
provide output. Afterward, until the burn-in requirements are satisfied,
the iteration procedure estimates the parameters. The classical multiple
linear regression with OLS estimation, Bayesian multiple regression
with ridge prior (Model 1), Bayesian multiple regression with
Horseshoe prior (Model 2), Bayesian multiple regression with
R-Square-Induced Dirichlet Decomposition (R2-D2) prior (Model
3), and Bayesian multiple linear regression with a weakly
informative prior (Model 4) from the BRMS package in Stanwere fitted.

The scale reduction factor (Rhat) is the root mean square of the
separate within-chain standard deviations divided by the standard
deviation of the individual relevant scalar measures of interest from
all the chains combined. We do not experience any MCMC
convergence issues when this number is around 1. For most
purposes, an Effective Sample Size (ESS) of more than 1,000 is
sufficient to generate stable estimates, even though the ESS should be
as large as feasible (Bürkner, 2017). In terms of estimate power, the
ESS (Bulk_ESS and Tail_ESS) represents the number of independent
samples having the same value as the N auto-correlated samples.
“How much independent information there is in auto-correlated
chains” is what it measures (Kruschke and Liddell, 2018).

2.3 Types of priors

A prior is a statistical distribution that can be employed to
represent the degree of (un)certainty in a population parameter. The
posterior, used to produce Bayesian inference, is obtained by
weighting the distribution after the prior and likelihood are
merged in the Bayesian estimating process (Van de Schoot and
Depaoli, 2014).

2.3.1 Non-informative prior
The dimensions of this kind of prior are not well understood.

Laplace, Bayes, Jeffreys, and Gauss invented the non-informative prior
(Grzenda, 2016). Although Jeffreys’s prior is frequently criticized in
multivariate contexts, it was universally accepted in univariate cases
(Lemoine, 2019). From a Bayesian point of view, using a (improper)
uniform prior yields matching results with standard OLS estimates in
the sense that posterior quantiles agree with one-sided confidence
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bounds. For this and several other reasons, the uniform prior is often
considered objective or non-informative.

2.3.2 Informative prior
The informative prior, also known as the prior where

information is available about the prior distribution and
summarizes the evidence about the parameters concerned from
many sources, is referred to as the prior where information is
available about the prior distribution (Nasional et al., 2019). Stan
considers a Student-t distribution with location 0, the user-specified
degrees of freedom, dt, and a reasonable st that can be written as
t ~ Student t(dt, 0, st). In this manuscript, weakly informative
priors such as student_t (3, 0, 2) and the ridge prior as Gaussian
(0, 1) were selected for fixed effect parameters β.

2.3.3 Shrinkage priors
Defining a joint distribution for the unobserved regression

coefficients is necessary for prior distributions for multidimensional
linear regression (Piironen and Vehtari, 2017a). Shrinkage priors such
as Bayesian lasso prior (Oluwadare, 2021), spike and slab prior (Wu et al.,
2023), the R-square induced Dirichlet Decomposition (R2-D2) prior
(Zhang et al., 2022), andHorseshoe prior, aim to shrink thefixed effects of
the regression model towards zero (Müller, 2012). Moreover, in Stan,
when the sample size is high, the ridge prior produces results that are
comparable to those of non-informative priors, but it performs better in
small samples. The ridge regression is a Bayesian regression with a
Gaussian prior, and using a weakly normal prior is practically the same.
The mathematical derivation of the previous ridge in BRMS can be
written as β ~ N(0, γ2I), where γ2 is the variance of the coefficient
terms, and I is the identitymatrix with the same dimension as β. Stronger
regularization of the model can be achieved by using a small value for γ2.

The derivation of the R-square-induced Dirichlet
Decomposition (R2-D2) prior considers a prior for β filling the
conditions E(β) � 0 and cov(β) � σ2Λ, whereΛ is a diagonal matrix
with diagonal elements λ1, λ2, . . . , λp. Then,

Var XTβ( ) � EX varβ XTβ/X( ){ } + VarX EX XTβ/X( ){ }
� EX σ2XTΛX( ) + VarX 0( ) � σ2EX tr XTΛX( ){ }
� σ2tr ΛEX XXT( ){ } � σ2tr ΛΣ( ) � σ2∑p

j�1
λj.

Thus, R2 is represented as

R2 � Var XTβ( )
Var XTβ( ) + σ2

�
σ2∑p

j�1
λj

σ2∑p
j�1
λj + σ2

�
σ2∑p

j�1
λj

σ2 ∑p
j�1
λj + 1⎛⎝ ⎞⎠

�
∑p
j�1
λj

∑p
j�1
λj + 1

� W

W + 1

whereW � ∑p
j�1

λj is the sum of the prior variances scaled by σ2 (Zhang
et al., 2022).

In general, the shrinkage priors, shown in Eq. 12, are essentially
written as a global-local scale mixture of the Gaussian family as
summarized in Polson and Scott (2010) and written as:

Yi � βγXi + εi, i � 1, 2, 3, . . . , n; εi ~ N 0, σ2( )
βj

∣∣∣∣∣λj, γ ~ N 0, γ2λ2j( ) (12)

λj ~ C+(0,1), where j = 1, 2, 3, . . ., p
λj ~ Bernoulli for Spike - and - slab prior
λj ~ Exponential for Dirichlet - Laplace prior.
λj ~ Half-Cauchy for Horseshoe prior.γ is the global shrinkage

parameter and
λj are the local shrinkage parameters
With normalized covariates, the posterior mean of each

regression coefficient is reduced from the maximum likelihood
solution by a shrinkage factor Kj.

�βj � 1 −Kj( )β̂j,ML Kj � 1

1 + nσ−2γ2λ2j

2.4 Model fit and comparison criteria

As suggested byMcElreath (2018), Bayesian regression results of
all fitted models were compared to obtain the best-fitted model using
Leave-One-Out Information Criteria (LOO-IC), Watanabe-Akaike
Information Criteria (WAIC), and K-fold cross-validation criteria.
Furthermore, the Root Mean Squared Error (RMSE) and the Mean
Absolute Error (MAE) were used to evaluate predictive precision. It
had adapted the original definition of all criteria so that small values
imply better models. The WAIC and the LOO-IC are more recently
developed measures of complexity penalized fit and are based on
averaging over the posterior distribution, rather than using posterior
means, �θ, of the parameters or other point estimates of θ. For any
application data set with no missing values, theWAIC is obtained as

WAIC � −2 LPPD y
∣∣∣∣θ( ) − de( )

where, de � −2Eθ[log p(y|θ){ } |y] + 2 log[p(y | θ̂)] is the estimated
effective model dimension (complexity), and LPPD(y|θ) �∑n
i�1
log ∫p(y|θ)p(θ|y)dθ is the Log Posterior Predictive Density

(LPPD) for y. The LLPD is an estimate, although biased, of the
Expected Log Posterior Predictive Density (ELPD) for (unobserved)
new data, ~y generated from the same density as the observed data y,
and the complexity measure is a measure of bias.

The resulting vector of likelihoods, for observation i and samples
k � 1, 2, . . . , K, can be denoted Li � (Li1, Li2, . . . , LiK). Then,
LPPD(yi | θ) � log(�Li), and the total of these over observations
is the estimate of the LPPD. The estimated complexity for theWAIC
is obtained by monitoring logarithmic probabilities during MCMC
sampling that can be denoted by LLik � log(Lik). The variance of
LLi gives the complexity for that observation as dei � Var(LLi) and
de � ∑ dei. Then, the estimated pointwise WAIC is computed as
−2(Log(�Li) − dei), and the total WAIC is the sum of the piecewise
WAIC (Vehtari et al., 2017).

The Pareto-smoothed importance sampling (PSIS) estimates of
the LOO-IC use an estimate of the leave-one-out predictive fit or
expected log pointwise predictive density (ELPD). The ELPD can be

estimated as ELPDLoo � ∑n
i�1
log p(yi|y−i){ }

where p(yi|y−i) � ∫p(yi | θ)p(θ |y−i)dθ. Then, LOO-IC is
estimated as −2 × ELPDLoo.
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On the other hand, according to Chicco et al. (2021), the root
mean squared error (RMSE) and the mean absolute error (MAE)
can be computed as

RMSE � ������������������
Mean Squared Error

√ �

����������∑n
i�1

yi − ŷi( )2
n

√√

MAE �
∑n
i�1

yi − ŷi

∣∣∣∣ ∣∣∣∣
n

2.5 Application data set

The secondary data sets from the UCI machine learning
repository have been utilized in this study. The application data

from twelve distinct building shapes were gathered. There are
8 distinct variables in 768 samples in the data. The dataset has
two responses (or outcomes, denoted by Y1 and Y2 ) and eight
qualities (or features, denoted by X1, X2, . . . , X8 based on energy
efficiency instances. The objective is to predict each of the two target
variables (response) using the eight attributes (Tsanas and Xifara,
2012). In this application dataset, the five features (X1, X2, . . . , X5)
that exhibit at least moderate correlations with the two dependent
variables (Y1 andY2) were used. Related studies on energy
prediction such as Bui et al. (2019); Guo et al. (2023);
Jitkongchuen and Pacharawongsakda (2019); Kim and Suh
(2021), and Abdou et al. (2022) did not care about the
collinearity problem. Thus, the chosen variables are relative
compactness (X1), surface area (X2), wall area (X3), roof area
(X4), and overall height (X5).Whereas, orientation (X6), glazing
area (X7), and glazing area distribution (X8) are excluded. The

TABLE 1 Multiple linear regression models using the OLS method for the heating load (Y1).

Variables Estimate SE t-value P-value 95% CI VIF

Intercept 84.177 26.0414 3.424 0.00064*** [38.055, 140.298]

X1 −64.773 14.081 −4.600 4.95e-06 *** [-92.416, −37.131] 105.524

X2 −0.087 0.023 −3.735 0.0002 *** [-0.133, −0.041] 201.531

X3 0.061 0.009 6.684 4.47e-11 *** [0.043, [3.262, 5.078] 31.205

X4 NA NA NA NA* NA* 215.25

X5 4.169 0.4625 9.015 <2e-16 *** [3.262, 5.078] 31.205

Multiple R-squared = 0.8424; Adjusted R-squared = 0.8416; F-statistic = 1,020 in 4 and 763 DF, p-value: <2.2e-16; Significance: “***”0.001.
*NA: Aliased coefficients in the model due to the exact collinearity of X4 with X5.

FIGURE 1
Pearson correlation coefficient matrix of variables.
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two response variables were heating load (Y1) and cooling load
(Y2). This manuscript used heating load (Y1) as an outcome
variable associated with the five (5) selected features. Various
multiple linear regression models were fitted with the Ordinary
Least Squares (OLS) method and the Bayesian approach to assess
the effect of Multicollinearity on estimates and parameter
inferences.

3 Results and discussion

3.1 Correlation analysis of selected variables

According to (Ullah, 2021), when the correlation
coefficient between the features is greater than 0.75 then the
two features are highly correlated, which leads to a collinearity
problem. Due to a weaker effect or very weak correlation
among X6, X7, and X8 with the target variable Y1, this
interdisciplinary study focused on the selected
characteristics with collinearity. Figure 1 shows that relative
compactness (X1) has almost perfect collinearity (r � −0.99)
with surface area (X2) and strong negative collinearity (r �
−0.87) with roof area (X4). Moreover, relative compactness
(X1) had strong positive collinearity (r � 0.83) with overall
height (X5). The second feature, surface area (X2) has strong
collinearity (r � 0.88) with roof area (X4), strong negative
collinearity (r � −0.86) with overall height (X5). Likewise,
roof area (X4) has a strong negative correlation (r � −0.97)
with overall height (X5). On the other hand, the three
excluded variables, orientation (X6), glazing area (X7), and
glazing area distribution (X8), had a too weak correlation with
the other predictors and dependent variable. Approximately, the
exact collinearity (r ≈ 1) between X1 and X2, and X4 and X5

might lead wider confidence interval and inflated Standard Errors
(SE) in regression. Moreover, inspection of the determinant of
the correlation matrix (D) gives an idea of the degree of
Multicollinearity. Therefore, with these strong or perfect
correlations between the input characteristics in a linear
regression analysis, in linear models, the accuracy of the
predicted regression coefficients decreases relative to the case
where the predictors were not correlated.

3.2 Results of classical linear regression
model using an application dataset

Here, a multiple linear regressionmodel was fitted with the ordinary
least squares (OLS)method for the outcome heating load (Y1) regressed
with five highly correlated features in the Energy Efficiency Dataset.

Based on the results of the standard OLS regression model, the P
value of each regressor is less than α � 5% in Table 1, all the four
independent variables or the features: relative compactness (X1),
surface area (X2), wall area (X3) and overall height (X5) had a
significant effect on heating load (Y1) except that of roof area (X4)
that cannot be determined its effect due to its high collinearity with
overall height (X5). However, the predictor roof area (X4) is
excluded, computationally hard excluded from the model
estimation due to high collinearity with overall height (X5) as

can be seen in Table 1. The 95% confidence intervals for all
feature variables in Table 1 did not overlap zero. Figure 2 shows
the significance of all variables and the decision on the null
hypothesis, H0: βXj

� 0 for j � 1, 2, . . . , p � 5, for each feature.
Thus, the hypothesis is rejected for relative compactness (X1)
and overall height (X5), whereas H0 is accepted for surface area
(X2) and wall area (X3). The estimates of the regression coefficients
showed the important negative effect of relative compactness (X1)
and surface area (X2) on heating load (Y1). However, the positive
effect of wall area (X3) and overall height (X5) on heating load (Y1).
In addition to the correlation matrix, the Variance Inflation Factor
(VIF) in Table 1 showed the occurrence of high collinearity or
Multicollinearity among the features in the dataset. Thus, the
standard multiple linear regression with the ordinary least
squares (OLS) method reveals biased estimates due to high
collinearity among the features. Due to the high Multicollinearity
effect in the data, the numerical instability problem in computation
occurred in non-deterministic estimates of roof area (X4) in the
OLS approach (Figure 1; Table 1). This finding is supported by the
findings of Ročková and George (2014) and Soofi (1990).

3.3 Results of Bayesian linear regression
models using application data

A Bayesian interpretation of the conventional confidence
interval can be understood as the probability (e.g., 95%) that
the population parameter lies between the specific upper and
lower boundaries ascertained by the posterior distribution in the
Bayesian credibility interval (Gelman et al., 2020). By using the
same model but different types of prior (weakly informative and
shrinkage priors), we test the sensitivity to the prior; and identify
the pattern of posterior probabilities and the best-performing
model. As per (Van Erp et al., 2018; Depaoli et al., 2020), it is
imperative to validate the sensitivity of the prior and likelihood
before scrutinizing the influence on the posterior distribution
and estimates.

3.4 Model comparison results in
applications dataset

Comparing the marginal posterior under various priors is
advised since the marginal posterior of regression parameters can
be immediately observed when using the Bayesian technique. The
Bayesian multiple linear regression with ridge prior (Model 1),
Bayesian multiple regression with horseshoe prior (Model 2),
Bayesian multiple linear regression with R-square-induced
Dirichlet decomposition (R2-D2) prior (Model 3), and
Bayesian multiple linear regression with weakly
informative prior (Model 4) from the BRMS package in Stan
were fitted. To compare the model fit, we compute the Leave-
One-Out Information Criteria (LOO-IC), Watanabe-Akaike
Information Criteria (WAIC), the Root Mean Squared Error
(RMSE), and the Mean Absolute Error (MAE), coefficient of
determination (R2), and the K-fold criteria of Bayesian-based
models fit evaluation criteria and identify the best model after
fitting the models.
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Based on Table 2, the highest percentage (R2 � 84.3%) of the total
variation in heating load (Y1) was explained by the five (5)
characteristics of the Bayesian multiple linear regression with weakly
informative prior (Bayesian model: 4). Furthermore, the smallest values
of LOO-IC,WAIC, K-fold, RMSE, andMAEwere observed for Bayesian
multiple linear regression with weakly informative prior (Bayesian
model: 4). Thus, the Bayesian multiple linear regression model with
weakly informative prior (Bayesian Model: 4) is the best-fit model
compared to the standard OLS regression, the BRM with ridge prior
(Bayesian Model 1), horseshoe prior (Bayesian Model 2) and R-Square-
Induced Dirichlet Decomposition (R2-D2) prior (Bayesian Model 3).
Sensitivity analysis and inference (estimation, hypothesis testing, and
feature selection with prediction) of regression estimates were applied
based on the best-fitted BRM (Bayesian Model: 4).

3.5 Sensitivity analysis in the
regression model

Collinearity increases the sensitivity of estimates to the model
misspecification. The sensitivity analysis of priors can be evaluated
through inference of regression estimates which measures the
quantity by which the posterior mean shrinks the OLS estimate
of a regression coefficient to zero (Lavine, 1991). Despite its frequent
value, sensitivity analysis lacks a technique for validating parameter
hypotheses or for calculating Standard Errors (SE) that account for
model uncertainty (Taraldsen et al., 2022). Horseshoe prior has been
shown to have good theoretical characteristics and performs well in

practice, producing outcomes that are quite comparable to those of
the spike-and-slab prior (Piironen and Vehtari, 2017b). Therefore,
by using sensitivity analysis, posterior inferences are compared
under several plausible prior distribution choices (Hamra
et al., 2013).

As shown in Table 3, describe the knowledge of the significance
of sensitivity analysis and the role of prior distributions when
applying Bayesian approaches with a power-scaling sensitivity
analysis (using the powerscale_sensitivity function in the R
package priorsense). The power-scaling sensitivity analysis
indicates prior and likelihood sensitivity for all input feature
regression coefficients. Moreover, most of the low likelihood
sensitivity was observed for b_X2, b X3, and b X4. This indicates
a weak likelihood. However, all show that there is both prior and
likelihood sensitivity for two of the fixed effect parameters, b_X1,
and b X5. Moreover, this indicates that there may be a priori data
conflict. Power scaling sensitivity analysis on the selected Bayesian
model fit shows that there was a longer prior sensitivity and there is
appropriate likelihood sensitivity (Table 3; Figure 3).

In contrast to a frequentist method, which tests effects against
“zero,” Bayesian inference is not predicated on statistical
significance. The Bayesian framework provides a probabilistic
perspective on the parameters, enabling the evaluation of the
associated uncertainty. Therefore, we would argue that the
probability of being outside a particular range that can be
defined as “practically no effect” (i.e., an insignificant magnitude)
is adequate rather than concluding that an effect is present when it
merely departs from zero. The Region of Practical Equivalence

TABLE 3 BRM Sensitivity Diagnosis with weakly informative prior for the heating load.

Parameter Prior sensitivity Likelihood sensitivity Diagnosis

Intercept 0.650 0.623 prior-data conflict

X1 0.682 0.647 prior-data conflict

X2 0.153 0.0300 weak likelihood

X3 0.161 0.0281 weak likelihood

X4 0.164 0.0294 weak likelihood

X5 0.492 0.493 prior-data conflict

sigma 0.190 0.259 prior-data conflict

Higher sensitivity values indicate greater sensitivity.

(bold): Prior sensitivity greater than 0.05 indicates informative prior.

(underlined in bold): Likelihood sensitivity below 0.05 indicates weak or non-informative likelihood.

TABLE 2 Model assessment and comparisons using energy efficiency data.

Fitted regression models R2 LOO-IC WAIC K-fold RMSE MAE

Bayesian Model: 1 0.836 4344.523 4344.511 4362.0 4.065 3.045

Bayesian Model: 2 0.837 4352.576 4345.125 4359.0 4.043 3.065

Bayesian Model: 3 0.839 4342.513 4342.504 4334.3 4.052 3.074

Bayesian Model: 4 0.843 4234.600 4234.593 4269.5 3.779 2.803

Classical OLS Model 0.841 — — — 4.089 3.997
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(ROPE) is the name given to this range. If there are non-
independent covariates or occurrences of Multicollinearity among
predictors that lead to strong correlations among parameters, the
joint parameter distributions may shift within or outside the ROPE.
Collinearity disproves ROPE and hypothesis testing based on
univariate marginal since the probabilities rely on independence.

Themost troubling parameters are those that just partially overlap
the ROPE region and the “undecided” parameters’ findings, which
could go more in the direction of “rejection” or away from it. For
many parameters of the application data set in this manuscript, the
undecided decision on the null hypothesis has occurred. Thus,
conclusions drawn solely on ROPE are incorrect in the situation of
collinearity, since the (joint) distributions of these parameters may

experience an increase or reduction in ROPE. (Kruschke, 2014).
Another approach for feature importance positions is to check
projection predictive variable selection (Piironen and Vehtari,
2015). To check the convergence of MCMC, we draw trace plots
and autocorrelation convergence plots with four chins for the best-
fitted model. Based on the Bayesian multiple linear regression best-fit
model in weakly informative prior for heating load, in Table 4, the
credible interval of the intercept and regression coefficients are
reported as the frequentist confidence intervals, but the
interpretation is from the Bayesian viewpoint. Possible
Multicollinearity between b_X5 and b_X1 (r = 0.83) results in
inconsistent estimation and biased decisions in the hypothesis tests
between frequentist and Bayesian thoughts (Soofi, 1990).

FIGURE 2
Hypothesis testing of OLS regression estimates and significance.
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According to Table 4, based on the data observed, it is believed
that there is a 95% probability that heating load (Y1) will increase by
35.1% up to 58.6% for each additional 10-cm increase in the overall
height (X5). Thus, about the data that have been noticed, there is a
95% possibility that the true (unknown) estimate of overall height
(X5) would be within the interval [3.51, 5.86]. This implies that for
every 1-cm increase in the overall height (X5), the predicted heating
load (Y1) increases by 4.64 units. Bayesian regression estimation
(Table 4) revealed that the effect of relative compactness (X1) on
heating load ( b X1 = −39.27, 95% BCrI [−80.68, 0.75]), such that for
each increase of one unit in relative compactness, predicted heating
load (Y1) decreases by 39.27 units. The effect of surface area (X2) on
heating load (b X2 = −0.04, 95% BCrI [−1.76, 1.66]), such that for
every one-unit increase in surface area (X2), the predicted heating
load (Y1) decreases by 0.04 units. The effect of wall area (X3) on
heating load (b X3 = 0.05, 95% BCrI [−1.65, 1.78]), such that for
each one-unit increase in wall area (X3), the predicted heating load

(Y1) increased by 0.05 units. The effect of roof area (X4) on heating
load (b X4 =−0.01, 95% BCrI [−3.41, 3.46]), such that for every one-
unit increase in roof area (X4), the predicted heating load (Y1)
decreased by 0.01 units. Finally, the intercept has an estimated
value of 43.02.

In the Bayesian Regression Model, there should be evidence of
checking non-convergence for the four chains before looking at the
model summary and valid inferences from the posterior draws. The
last three values in Table 4 (“ESS_bulk”, “ESS_tail”, and “Rhat”)
provide information on how well the algorithm could estimate the
posterior distribution of the parameter. The “Rhat” value is close to
or equal to 1, the posterior draws did not have a convergence
problem with the MCMC algorithm in Bayesian regression
modeling using Stan. In addition, in Figures 4, 5, the four chains
mix well for all of the parameters, and therefore there is no evidence
of non-convergence. Generally speaking, the posterior mean (called
“Estimate”), standard deviation (called “Est. Error”), and two-sided

TABLE 4 Bayesian linear regression best-fitted model in weakly informative prior for heating load (Y1).

Variables Estimate SE Rhat Bulk_ESS Tail_ESS 95% HDI PD (%)

Intercept 43.0213 24.7610 1.00 2,869 2,577 [−31.97, 118.32] 76.39*

X1 −39.2701 14.06 1.00 2,994 2,602 [−80.68, 0.75] 95.82*

X2 −0.0410 0.0086 1.00 1,666 1,805 [−1.76, 1.66] 51.68*

X3 0.0500 0.0084 1.00 1,660 1,779 [−1.65, 1.78] 52.07*

X4 −0.01 1.72 1.00 1,657 1,780 [−3.41, 3.46] 50.33*

X5 4.1640 0.0630 1.00 3,054 2,808 [3.51, 5.86] 100**

H0 is rejected ‘**’, H0 is accepted/undecided ‘*’ with a significance level of 0.05.

FIGURE 3
BRMS Sensitivity Analysis Plot of the Posterior Density.
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95% credible intervals (called “l-95% CI” and “u-95% CI”) as HDI
are used to summarize each parameter.

Interval estimation has a very natural interpretation in
Bayesian inference: the 95% CI. The key distinctions between a
frequentist CI and a Bayesian HDI or BCrI are assessed here. The
results of the classical regression model in Table 1 and Figure 2
showed the significant effect of all input features, the acceptance of
four null hypotheses, and the rejection of one hypothesis. The
intercept and regression coefficient estimates had huge variations.
The proportion of HDIs located within the Region of Practical
Equivalence (ROPE) is used as a decision criterion for null
hypothesis testing. The HDI plus ROPE decision rule (Test for
Practical Equivalence) was suggested by (Kruschke, 2018) to
determine if parameter values should be accepted or rejected in
light of a null hypothesis that has been expressly stated (Kruschke
and Liddell, 2018). As shown in Tables 4, 5; Figures 6–8, the HDI
for overall height (X5) is completely outside the ROPE [−1.01,
1.01]. The percentage of the posterior enclosed by ROPE [−1.01,
1.01] for overall height (X5) is 0%. Therefore, the null hypothesis,
H0, for b X5 is rejected. The Region of Practical Equivalence
(ROPE) did not completely cover the HDI for any of the
parameters, and none of the hypotheses is accepted. All null

hypotheses about the parameters b X1, b X2, b X3, and b X4

were undecided (Figure 8). It can be used to use the 89% or 95%
BCrIs instead of the 95% confidence interval (as in the frequentist
framework), as the 89% level provides results which had greater
stability (Kruschke, 2014) and reminds us about the uncertainty of
such agreements (McElreath, 2018).

Table 4 also showed that PD and the percentage in ROPE of the
linear association between overall height (X5) and heating load are
about 100% and 0%, respectively, according to certainty and the
significant effect of overall height (X5) on heating load.

Based on Appendix Table A1, there is only slight fluctuation in
the classical and Bayesian estimates of the regression coefficients;
however, a huge variation was observed on the intercept, β0, which
has a posterior mean of 43.02 and the classical OLS regression has an
intercept as an overall mean of 84.177. The highest posterior density
interval is one of the Bayesian Credible Intervals (BCrI) that had
threshold values of the posterior distribution that, around the
distribution center, represent an interval with the probability of
interest (e.g., 95% of the distribution mass). These values are
interpreted under the assumption that all values within the
interval have higher probabilities of representing the parameter
than all values outside them (Hespanhol et al., 2019).

FIGURE 4
BRMS convergence for the heating load (Y1) with weakly informative prior.
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The greatest substitute for the p-value in the frequentist
model is the Probability of Direction (PD), which measures
the likelihood that the input features’ effects will be positive
or negative. Among the independent variables taken as input
characteristics, overall height and wall area (X3) had a positive
effect; whereas other characteristics had negative
effects (Figure 9).

In addition to 89% (95%) HDI and ROPE, the Bayes factor is
used for decision-making in hypothesis testing. A Bayes factor
of more than one is seen as proof against the null hypothesis,
and a Bayes factor smaller than 0.33 is interpreted as a
considerable indication in favor of the null hypothesis.
However, according to (Andraszewicz et al., 2015), a Bayes
factor greater than 3 can be considered “substantial”
evidence against the null hypothesis.

As shown in Figure 10, the posterior predictive distribution
that compares the observed data (y) with the posterior predicted
values (yrep) had a slightly identical pattern and the estimate of
the kernel density for the data and the posterior predictive values
are comparable. Based on the variables in Figure 11 and the
selection of the posterior predicted variables projected posterior
predictive variable selection determined with the cv_varsel
function by computing a LOO-CV estimation of the most
accurate prediction performance for the best model with a
certain number of variables, the five input features or
independent variables are important for estimating the heating
load. Furthermore, the ranking of the significance of variables for
heating load is overall height (X5), wall area (X3), relative
compactness (X1), surface area (X2), and roof area (X4).
Cross -Validation (CV) ranking using the projection

TABLE 5 Bayes factor and ROPE of the best-fitted model in weakly informative prior.

Parameter BF ROPE for the 89 (%)HDI ROPE for the 95 (%)HDI 89% HDI

Intercept 0.081 0.61% 0.57% [−28.51, 107.76]

X1 10.22* 1.72% 4.77% [−74.56, −0.49]

X2 0.145 88.39% 82.81% [−1.37, 1.28]

X3 0.144 88.35% 82.77% [−1.28, 1.38]

X4 0.566 54.62% 51.17% [−2.67, 2.66]

X5 2.38e+08 0.00 0 [3.68, 5.68]

Bayes factor (Null interval) * Evidence against the Null [−1.009, 1.009].

FIGURE 5
Convergence trace plots of best-fitted Bayesian regression model coefficients.
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predictive variable selection technique in Stan was applied to
determine the position of each independent variable in sub-
model size from full data as shown in Figure 11. In the OLS

approach, the non-deterministic independent variable, roof area
X4, became the least important in the Bayesian methods
(Piironen and Vehtari, 2015).

FIGURE 7
HDI plot for the best-fitted model parameters.

FIGURE 6
ROPE plot for the best-fitted model parameters.
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FIGURE 8
Hypothesis testing in BRM Parameters.

FIGURE 9
Probability of effect direction for the best-fitted model parameters.
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4 Conclusion and recommendation

This manuscript demonstrates the effect of Multicollinearity
in estimation and hypothesis tests of linear regression models
with OLS and Bayesian approaches of several prior distributions
using collinear energy efficiency data. Preliminarily strongly
correlated independent variables or features with the outcome
or dependent variables were selected based on the correlation
analysis. The correlation analysis and the VIF results showed the
occurrence of high Multicollinearity among predictors in the
data. The excluded variable (roof area (X4)) in the OLS model
due to collinearity has been estimated using the Bayesian
approach. Four different Bayesian multiple regression models
were fitted with identical five input variables with four different
prior information. Among the classical OLS regression model,
the four fitted Bayesian models: Bayesian Multiple Regression
(BMR) with ridge prior (Model 1), BMR with horseshoe prior
(Model 2), BMR with R-square-induced Dirichlet
Decomposition (R2-D2) prior (Model 3), and BMR with
weakly informative prior (Model 4), the Bayesian Multiple
Regression (BMR) model with weakly informative prior was
best fitted. The classical regression result showed that all five
independent variables have a significant effect on the heating
load. However, the hypothesis indicates acceptance of the first
four null hypotheses. The posterior mean estimates and Standard
Error (SE) of every coefficient are different from the equivalent

frequentist OLS estimates and SE. There is an effect for regression
parameter inference (estimation, hypothesis testing, and
prediction) due to Multicollinearity among the input features.
The Bayesian hypothesis testing using HDI plus ROPE showed a
rejection of a null hypothesis for the overall height and an
undecided decision on the other parameters due to the non-
independence of predictors. However, the importance ranking of
input features was checked by the selection of projection
predictive variables showing overall height, wall area, relative
compactness, surface area, and roof area. It is necessary to check
the Multicollinearity effect for regression modeling with the
Bayesian and frequentist approaches for any applied research
in science, engineering, agriculture, health, and other discipline
datasets. In addition, by careful identification of the key drivers of
energy efficiency in buildings, this study provides a valuable
framework for researchers, policymakers, and industry
stakeholders to implement cleaner and more sustainable
energy estimation practices.

This study considered a full model with overall samples or
train subsets and assessed the difference in posterior estimates
under the OLS approach and four distinct priors. However,
fitting several sub-models with sub-samples as split subsets of
the overall dataset and using another test of posterior difference
such as the Kolmogorov–Smirnov test was not used. It is
suggested to use K-fold cross-validation, ensemble, data
augmentation, and data simplification techniques by split

FIGURE 10
BRMS posterior predictive check for heating load (Y1).
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subsets act as the testing set, and the remaining folds will train
the model.

Further research could concentrate on Bayes factors that
assess the significance of correlated covariates jointly are more
appropriate, and certain priors may be more negatively affected
in such a setting. This is in addition to the routine examination of
the correlation matrix and the posterior distribution in various
prior settings.
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Appendix

TABLE A1 Sensitivity analysis of fitted models estimates for Energy Efficiency data.

Parameters Standard OLS regression Model 1 Model 2 Model 3 Model 4

Model Y1 Ridge prior Horseshoe prior R2D2 prior Weakly informative prior

Intercept 84.177 −20.89 −26.90 5.83 43.0213

SE 26.0414 4.65 7.00 31.51 24.7610

CI (BCrI) [38.055, 140.298] [−29.83, −11.80] [−36.85, −17.20] [−34.32, 78.18] [−31.97, 118.32]

P-value (PD) 0.00065 100%** 99.35%* 51.98%* 76.39%*

X1 −64.8 −0.38 −0.33 −19.07 −39.2701

SE 14.08 1.02 2.86 17.20 14.06

CI (BCrI) [−92.416, −37.131] [−2.40, 1.63] [−2.20, 0.36] [−58.67, 1.36] [−80.68, 0.75]

P-value (PD) 4.95e-06 69.50%* 52.92%* 93.38%* 95.82%*

X2 −0.0873 −0.02 −0.02 −0.01 −0.0410

SE 0.0234 0.40 0.03 1.88 0.0086

CI (BCrI) [−0.133, −0.041] [−0.80, 0.79] [−0.02, 0.07] [−3.77, 3.89] [−1.76, 1.66]

P-value (PD) 0.0002 53.17%* 82.00%* 50.28%* 51.68%*

X3 0.0608 0.04 0.04 0.03 0.0500

SE 0.0091 0.40 0.03 1.88 0.0084

CI (BCrI) [0.043, 0.079] [−0.74, 0.85] [−0.02, 0.07] [−3.87, 3.79] [−1.65, 1.78]

P-value (PD) 4.47e-11 51.00%* 92.83%* 52.13%* 52.07%*

X4 Aliased: NA due to collinearity −0.01 −0.01 −0.03 −0.01

SE 0.80 0.05 3.76 1.72

CI (BCrI) [−1.59, 1.59] [−0.11, 0.07] [−7.84, 7.49] [−3.41, 3.46]

P-value (PD) 51.23%* 50.92%* 50.13%* 50.33%*

X5 4.1699 4.88 5.39 5.10 4.1640

SE 0.4625 0.34 0.38 0.50 0.0630

CI (BCrI) [3.262, 5.078] [4.22, 5.52] [4.65, 6.14] [4.05, 6.00] [3.51, 5.86]

P-value (PD) 2e-16 100%** 100%** 100%** 100%**

Signify. Codes: H0 is rejected “**”, H0 is accepted “*” with a 0.05 significance level.

BRM, with a ridge (Model 1), BRM, with Horseshoe (Model 2), BRM, with R-square induced Dirichlet Decomposition (R2-D2) (Model 3), and BRM, with weakly informative (Model 4) priors.
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