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In recent years, the ever-rising penetration of distributed photovoltaics (PV)
power has presented substantial challenges in power system dispatch due to
its inherent randomness and unpredictability. To bridge this gap, this paper
proposes a two-stage robust optimization method for power system security
dispatch considering traditional generators as well as flexible resources, such as
load demand response and energy storage systems. Specifically, a price-based
demand responsemodel is established to optimize the system’s load curve during
a day. On this basis, a two-stage optimization problem for day-ahead and intra-
day power system dispatch model is proposed. The dispatch objective is to
minimize the overall cost in worst-case scenarios through properly scheduling
unit commitment (UC) as well as flexible resources in each dispatch interval.
Column and constraint generation (C&CG) algorithm is adopted for problem
solving. The effectiveness of the proposed method is validated by case studies
based on a modified 6-node system and a 24-node system. Simulation results
indicate that through appropriately scheduling the energy storage system and
load demand response, the proposed dispatch method can significantly reduce
the total operation cost of a PV rich power system, which in turn facilitates the
integration of PV power.

KEYWORDS

photovoltaics (PV), energy storage system, demand response, robust optimization,
column and constraint generation algorithm

1 Introduction

In recent years, distributed photovoltaic (PV) power generation has emerged as an
effective solution to mitigate the carbon emission of the society. China has explicitly
outlined its objective of achieving “carbon peak and carbon neutralization”, and the
government has implemented various policies, such as electricity subsides, to support
the further development of renewable energy resources including PV power (Xue et al.,
2014; Wang et al., 2023; Yu et al., 2024). As a result, China achieved a noteworthy milestone
in clean energy generation, reaching 2.54 trillion kilowatt-hours in 2023 (increased by 5.3%
year-on-year), which accounts for 30.26% of the total electricity power generation across the
country. However, the growing penetration of PV power may significantly challenge the
dispatch and security operation of a power system due to the volatile nature of PV power
(Gao et al., 2023; Ju et al., 2023; Yu et al., 2023).
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To ensure the secure and reliable operation of the system and the
effective utilization of renewable energy resources such as PV power,
the most direct approach to addressing output fluctuations is
installing energy storage devices on the generation side for power
smoothing. The energy storage device is able to deal with bi-
directional power flows and it thus has the capability of cross-
time energy transfer (Chen et al., 2021; Ge et al., 2022). The
introduction of energy storage device allows for the storage of
excess electric energy during periods when PV power generation
exceeds the load demand. Conversely, the energy storage device will
release the electricity energy during demand peaks or when PV
power generation is insufficient. This strategy safeguards the
stability of the power system, mitigating the curtailment of solar
resources. In Li et al. (2017), a case of power grid energy storage
based on theMonte Carlo method was presented, demonstrating the
effectiveness of energy storage technology in handling uncertain
factors. In Hajipour et al. (2015), the author proposed a novel energy
storage technology aimed at optimizing power grid operations;
however, the associated management costs were high, and there
was no reduction in the operational costs of the power grid. In Liu
et al. (2023), the author explored the hierarchical optimal
configuration of distributed energy storage in distribution
networks with a high PV penetration. A multi-objective model
was established and solved using an improved genetic algorithm,
validating that a judicious configuration of distributed energy
storage can achieve peak cutting and valley filling. Considering
the necessary dispatch costs and the potential impact on
environment, the demand response (DR) and energy storage
systems should be properly coordinated to optimize the load
curve, which will consequently enhance the operation flexibility
and economic efficiency of a power system.

DR aims to guide or encourage users to adjust their power
consumption patterns at specific times or under defined conditions
in response to the power system’s load demand. DR can be
categorized into two types: price-based and incentive-based.
Price-Based Demand Response (PBDR) directs users to reduce
electricity consumption during periods of high electricity prices,
leveraging changes in electricity prices such as peak-valley
differentials. Incentive-Based Demand Response motivates
consumers to adopt specific power management measures
through incentives or incentive mechanisms, playing a crucial
role in balancing supply and demand, enhancing efficiency,
reducing electricity tariffs, and promoting sustainable energy use
in the electricity market. In Kang et al. (2023), the author proposed
an optimal scheduling method for an integrated energy source
system that incorporates demand response. With the dual
objectives of minimizing economic costs and carbon emissions,
the method was demonstrated to enhance the distribution of the
system load. In the context of cooperative optimal scheduling
discussed in Zhu et al. (2020), the rational allocation of DR
resources leads to a 6% increase in PV power consumption rates.
In Du and Wei (2020), the author addressed two types of demand
responses and establishes a two-stage optimal scheduling model.
The results highlight that the two-stage model enhances PV
consumption capacity compared to solely considering the day-
ahead phase.

The aforementioned studies had explored the impact of energy
storage and demand response on the load in distributed energy

systems, yet they had not addressed the uncertainty associated with
renewable distributed energy generation (Han et al., 2020; Tian et al.,
2021; Zhu et al., 2021). The output of PV generation is subject to
volatility and unpredictability, influenced by weather and natural
conditions. Fluctuations in PV necessitate additional flexibility
resources in the power system to provide backup (Wang et al.,
2012; Zhang et al., 2013; Zhang et al., 2019). However, as the
permeability of renewable distributed energy increases, the
availability of flexibility resources in the system decreases,
resulting in reduced overall system flexibility (Cheng et al., 2019;
Wang et al., 2021; Wen et al., 2024). This contradiction has emerged
as a constraint on the development of renewable energy sources. In
Alireza et al. (2017), the uncertainty of renewable energy is
characterized using a probability distribution function, and a
stochastic optimization method is applied to address the
associated challenges. This approach facilitates probabilistic
modelling of the variability of renewable energy resources. In Ji
et al. (2015), the author established a robust optimization model to
determine the optimal operating cost of the system under the worst-
case scenario for wind power. In Wei et al. (2022), considering the
uncertainty in the scene distribution probability of PV in the power
grid, a two-stage robust distribution optimization model
was proposed.

Building upon the preceding analysis, this paper introduces a
methodology that incorporates demand response and energy
storage to optimize the system load curve. The objective is to
minimize the system’s operating cost in the worst-case scenario
involving uncertain PV power output. A two-stage robust
optimization model is devised, addressing both day-ahead and
intraday stages. Initially, price-based demand response measures
are implemented on the user side. Simultaneously, a power
system dispatch model encompassing energy storage and load
demand response is formulated. In the day-ahead stage, reserve
capacity is strategically allocated to meet base load demand and
address uncertainties. Subsequently, in the intra-day stage, the
goal is to minimize real-time scheduling costs under the worst
operating scenarios. This three-level robust optimization
problem can be iteratively solved by the column and
constraint generation (C&CG) algorithm. Simulation results
indicate that the day-long load curve can be optimized
through our proposed method, which helps the integration of
renewable energy resources such as PV power into power
systems, as well as the reduction of overall operation cost of a
power system.

Despite extensive research on PV system operation with energy
storage, power system operation with demand response, and
uncertainty handling in renewable energy generation, this study
introduces several key innovations and addresses specific gaps in the
existing literature:

Integration of Multiple Flexible Resources: Previous studies have
often examined the use of energy storage or demand response
independently. This paper explores their combined effect in a
robust optimization framework, which is crucial for enhancing
system flexibility and reliability.

Two-Stage Robust Optimization Approach: Unlike
conventional methods, this paper employs a two-stage robust
optimization model that considers both day-ahead and intra-day
uncertainties. This approach allows for dynamic adjustments and
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more resilient scheduling, ensuring the power system can effectively
respond to real-time fluctuations in PV output.

Application of Column and Constraint Generation Algorithm:
The use of the Column and Constraint Generation (C&CG)
algorithm for solving the multilevel optimization problem is a
novel aspect. This method improves the computational efficiency
and feasibility of obtaining optimal solutions in complex scenarios.

By addressing these aspects, this study not only advances the
theoretical understanding of robust optimization in PV-rich power
systems but also provides practical insights and tools for improving
system operation and integration of renewable energy sources.
Therefore, the necessity of this study lies in its potential to
enhance the reliability, economic efficiency, and sustainability of
power systems facing increasing PV penetration.

2 Demand response model

This paper adopts the PBDR model to regulate the electricity
consumption behavior of users through varied electricity prices
across different periods. The model aims to diminish electricity
consumption during peak periods, optimize the load curve, and
enhance the flexibility of power grid operations. Distinct electricity
price levels are established or different time intervals, with higher
prices set during peak hours and lower prices during off-peak
periods. The users’ responsiveness to electricity prices is
quantified using the commonly employed elastic coefficient.
Following the implementation of PBDR on the demand side, a
relationship emerges between the change in load and the alterations
in time-of-use prices. This relationship can be expressed as follows:

ΔLPBDR � EΔp (1)
e � ΔL

L
×

p
Δp

(2)

ΔLa

ΔLb
[ ] �� eaa

eba
eab
ebb

[ ] Δpa
Δpb

[ ] (3)

Equations. 1–3: E is the elasticity coefficient matrix of electricity
price change and electricity demand. The elasticity coefficient e is
defined as the ratio of load to the rate of change of electricity price,
which indicates the relative change in electricity demand caused by
the change in electricity price (Kirschen et al., 2020). The diagonal
elements eaa and eaa in the elastic matrix are called self-elastic
coefficients, and their values are negative, indicating the response of
users electricity demand to the change in electricity price in the
current period, and the load in the current period cannot be
transferred to other periods. The non-diagonal elements eab and
eba are called mutual elasticity coefficients, whose values are positive,
indicating the response of users’ electricity demand to the changes in
electricity prices in other periods, and the current load of users can
be transferred to other periods.

3 Power system model with PV power,
energy storage and demand response

The distributed power supply in the power grid mainly includes
generators, battery energy storage, PV, and so on.

3.1 Unit operation modeling

The power generation cost function of the generator set is
mainly calculated by variable costs. In this paper, a quadratic
function model related to power generation is established to
represent the operation cost of the generator.

cg Pg,t( ) � a1 Pg,t( )2 + a2Pg,t + a3ug,t ∀g , t (4)

Equation. 4: Cg is the unit operation cost function, Pg,t is the
output of generator g at t time, a1 and a2 are the coefficients of the
quadratic function model, ug,t are binary variables, when ug,t � 1, it
indicates that the unit is in the open state, otherwise it is in the
shutdown state, a3 is the unit start-stop cost factor.

3.2 Unit output constraints

The output of the generator set is limited by the rated power, and
its available reserve capacity does not exceed the maximum output
power of the generator.

Pg,t + Rg ,t ≤Pg
maxug,t ,∀g , t (5)

Pg,t − Dg,t ≥Pg
minug,t ,∀g , t (6)

Equations 5, 6: Rg,t and Dg,t are the upward and downward
reserve capacity provided by g at t time respectively, and Pg

max and
Pg

min are the maximum and minimum output of g.

3.3 Constraints on the ramp rates

Considering the generator type, rated capacity, and load
requirements, the following ramp up/down rate constraints are
established:

Pg ,t − Pg,t ≤RUg ,∀g , t (7)
Pg ,t−1 − Pg,t ≤RDg ,∀g , t (8)

Equations 7, 8: RUg and RDg are the upper limits of g climbing
up and down the slope per unit dispatch-ing time.

3.4 Constraints on energy storage systems

Considering the factors affecting the life of the energy storage
device, the constraints established in this paper mainly include the
energy storage capacity and the upper and lower limits of charge and
discharge power.

Ej,t+1 � Ej,t + ηchPch
j,t − ηdischPdisch

j,t ,∀j, t (9)
Ej
min ≤ Ej,t ≤Ej

max ,∀j, t (10)
ij,tP

disch,min
j,t ≤Pdisch

j,t ≤ vj,tP
ch,max
j,t ,∀j, t (11)

vj,tP
ch,min
j,t ≤Pch

j,t ≤ vj,tP
disch,max
j,t ,∀j, t (12)

vj,t + ij,t ≤ 1,∀j, t (13)

Equations 9–13: Ej,t is the amount of energy j stored at t time;
ηch and ηdisch are charge and discharge efficiency coefficients; Ej

max
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and Ej
min are the upper and lower limits of the installed capacity of

energy storage respectively. ij,t and vj,t are binary variables, showing
the charge and discharge state of energy storage; ij,t � 1 means that
energy storage is in the state of discharge at t time, similarly, vj,t � 1
means that energy storage is in charge state at t time; Pdisch,min

j,t ,
Pch,min
j,t and Pdisch,max

j,t , Pch,max
j,t are the upper and lower limits of

energy storage charge and discharge power respectively; Eq. 13
indicates whether the energy storage cannot be charged and
discharged at the same time.

3.5 Constrains on PV power generation

The output of PV is affected by many factors, and its output is
predicted according to historical data and meteorological
conditions.

0≤Pd,t ≤Pd,t
pre,∀d, t (14)

Equation 14: Pd,t is the output value of a PV farm at t time, and
Ppre
d,t is the predicted value of PV output at t time.

3.6 Constraints on the line power flow

The line flow constraints maintain the stability of voltage at
various nodes and ensure the safe and stable operation of the power
system under normal conditions and during faults.

Pl,t � 1
Xl

θl+,t − θl−,t( ),∀l, t (15)
Pl
min ≤Pl,t ≤Pl

max ,∀l, t (16)
θ min ≤ θb,t ≤ θ max,∀b, t (17)

Equations 15–17: Pl,t is the transmission power of line l at t time;
Xl is the line reactance; θl+,t and θl−,t are the voltage phase angle of
the line l inflow and outflow respectively at t time; Pl

max and Pl
min are

the upper and lower limits of the transmission power of the line;
θmax and θ min are the upper and lower limits of the voltage phase
angle respectively.

3.7 Constraints on the reserve capacity

The equipment that can provide reserve capacity in the system
established in this paper is a generator and energy storage. Under the
premise for the providing sufficient reserve capacity of power grid,
the combination mode of unit and energy storage output should be
set up reasonably.

0≤Rg ,t ≤Rg
max ,∀g , t (18)

0≤Dg ,t ≤Dg
max ,∀g , t (19)

∑
g∈Ng

Rg,t + ∑
j∈NE

Pdisch
j,t − Pch

j,t( )≥Rmin,∀t (20)

∑
g∈Ng

Dg ,t ≥Dmin,∀t (21)

Equations 18–21:NG andNE are the number of generators and
energy storage devices in the system; Rg

max and Dg
max are the upper

limits of the upward and downward reserve capacity that the
generator set can provide, respectively; Rmin and Dmin are the
lower limits of the upward and downward reserve capacity
required by the system, respectively; Eq. 20 indicates that the
generator set and the energy storage device jointly provide
upward reserve capacity for the system.

3.8 Constraint on the demand response

After PBDR implementation, each node’s load change stays
within its limit, and the overall power consumption remains
unchanged during the dispatch cycle.

0≤ΔLPBDR
b,t ≤ΔLPBDR,max

b,t ,∀b, t (22)

∑NT

t�1
ΔLPBDR

b,t � DDR,∀b (23)

ΔLPBDR
b,t � EΔpt (24)

0≤Δpt ≤Δpt
max ,∀t (25)

Equations 22–25: ΔLPBDR
b,t is the load change of node b at t time

after the implementation of PBDR, ΔLPBDR,max
b,t expressed as the

upper limit of load transfer, andDDR is the total power consumption
in the dispatching cycle. Δpt and Δpt

max represent the change in
power and its maximum value at t time, respectively. The matrix E is
the normalized matrix of power quantity and prices.

3.9 Constraints on the power balance

Maintain the balance of power production and power
consumption within the system to ensure the stable operation of
the power system. Power production includes generator output, PV
output, and energy storage discharge power; power consumption
includes line transmission power, energy storage charging power,
and load electricity consumption.

∑
g∈Gb

Pg ,t + ∑
d∈Db

Pd,t + ∑
l: b∈l+

Pl,t − ∑
l: b∈l−

Pl,t + ∑
j∈Jb

Pdisch
j,t − Pch

j,t( )
� Lb,t + ΔLPBDR

b,t ,∀b, t (26)

Equation 26: Gb, Db and Jb are the sets of generators,
distributed energy and energy storage devices connected to node
b, respectively; l: b ∈ l+ and l: b ∈ l− represent the set of
transmission lines injected into and out of node b,respectively;
Lb,t is the initial load value of node b at t time.

4 Two-stage robust optimization
model

The increasing integration of distributed photovoltaic (PV)
power generation into power systems presents significant
challenges due to its variability and unpredictability. This paper
addresses the problem of optimizing the dispatch of a PV-rich power
system composed of traditional generators, energy storage systems,
and demand response resources. The primary goal is to ensure
secure and economical operation of the power system under varying
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scenarios, particularly focusing on worst-case conditions caused by
PV output fluctuations. The system operates by balancing the
generation from traditional units with the flexibility provided by
energy storage and demand response measures, aiming to maintain
reliability while minimizing operational costs. This problem is
particularly relevant for power systems with high PV penetration
where traditional methods struggle to cope with the variability of
renewable energy sources.

A two-stage robust optimization method is established in this
paper. The uncertainty associated with PV output is represented by
an uncertain set. In the initial stage, utilizing historical data or
weather forecasts, the uncertainty of PV output is estimated. This
involves selecting a reference value or average value to formulate an
initial plan, allocating reserve capacity to meet basic load demand,
and addressing uncertainties. Subsequently, in the second stage,
using real PV output data, the power system’s operation strategy is
adjusted. This adjustment encompasses the allocation of generator
output and reserve capacity to minimize costs under uncertainty or
maximize the robustness and reliability of the power system. The
objective function of the model is:

minCM +max
U

min Cs (27)

The two-stage robust optimization model offers the advantage of
flexibly adjusting the power system’s operation strategy in response
to various fluctuations in PV output. This adaptability ensures that
the power grid can effectively manage the fluctuations in PV and
maintain stable operation. The model contributes to reducing the
uncertainty risks associated with the variability of PV,
simultaneously enhancing the integration of distributed energy
within the power system. This becomes crucial in promoting the
utilization of renewable energy and decreasing reliance on
traditional power generation.

4.1 Modeling uncertainty factors

The primary sources of uncertainty considered in this paper
stem from the variability in PV power generation. Building on
existing literature, an uncertain set U is defined to encapsulate the
model’s uncertain factors. The focus of the study is to identify the
worst-case scenario, prompting a specific consideration for the
fluctuation of PV output. This approach better aligns with the
criteria for determining the “worst scenario”. Consequently, the
following uncertain sets can be established:

U �

Wd,t � Pd,t
pre + U+

d,t Pd,t
max − Pd,t

pre( ) − U−
d,t Pd,t

pre − Pd,t
min( ),∀d, t

∑NT

t�1
U+

d,t + U−
d,t( )≤ Γt ,∀d

∑ND

d�1
U+

d,t + U−
d,t( )≤ Γd ,∀t

U+
d,t + U−

d,t ≤ 1,∀d, t

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(28)

Equation. 28:Wd,t is the actual output of PV, which is the sum of
Ppre
d,t predicted value and the magnitude of upward or downward

fluctuations; NT and ND are the number of PV and transmission
lines, respectively.U+

d,t,U
−
d,t are binary variables, which represent the

upward and downward fluctuations of PV output at t time,

respectively. When the value is 1, it indicates the upward or
downward fluctuation of PV power output. Γt and Γd are the
uncertainty limits of PV groups in time and space.

The magnitude of the uncertainty limit signifies the extent of
uncertainty incorporated into the model. A larger limit enhances the
robustness of the optimal scheduling result obtained by the model;
however, it may lead to an overly conservative dispatching method,
resulting in a significant increase in the operating cost of the power
system. Therefore, in balancing robustness and economic
considerations, the dispatcher should judiciously set the
uncertainty limit to attain the optimal scheduling method.

4.2 Day-ahead dispatch model

The first stage involves day-ahead dispatching, comprising the
following tasks: a) forecasting daily load demand using historical
data; b) predicting PV output based onmeteorological and historical
data; c) assigning reserve capacity based on load forecasts to ensure
stable power system operation in response to load variations.

4.2.1 Objective function
In the day-ahead stage, the objective is to minimize the

dispatching cost of the power grid. The decision variables
encompass generator output, reserve capacity, and the charge and
discharge power of energy storage.

CM � ∑NT

t�1
∑NG

g�1
CgPg,t + Cr Rg ,t + Dg ,t( )( ) +∑NT

t�1
∑NE

j�1
Ce Pdisch

j,t + Pch
j,t( ) (29)

Equation 29: Cr represents the cost coefficient for both upward
and downward reserve capacity for generating units, while Ce

denotes the operation and maintenance cost coefficient of
energy storage.

4.2.2 Constraints
Equations 4–25 encompass the constraints adhered to by the

power system operation model in the first stage. These constraints
include equipment operation constraints, reserve capacity
constraints, transmission constraints, PV output constraints,
among others. They are integrated into the optimization process
to guarantee that the scheduling strategy aligns with all essential
requirements. Simultaneously, to uphold the reliability of the power
grid amid uncertainty, the power balance constraints specified in Eq.
26 must be satisfied.

4.3 Intra-day dispatch model

The second stage involves real-time scheduling, wherein the
actual PV outputs are known. Operators, during this phase, must
adapt the operational strategies of the power system dynamically
based on the actual conditions to ensure the reliability and stability
of the grid. This process includes monitoring the actual PV outputs
and comparing them with predicted values to identify any
discrepancies. In response to real-time conditions, actions are
taken, such as adjusting generator outputs, reconfiguring
transmission lines, and allocating reserve capacity.
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4.3.1 Objective function
The real-time scheduling phase introduces uncertainty factors,

aiming to minimize the real-time scheduling cost under the
system’s worst operating conditions. The decision variables
encompass reserve capacity, PV outputs, and the amount of
emergency load shedding.

Cs � ∑NT

t�1
∑NG

g�1
Cs

r Rs
g,t + Ds

g,t( )( ) + ∑ND

d�1
Cp Ws

d,t − Ps
d,t( ) +∑NB

b�1
CL Fs

b,t( )
(30)

Equation 30: Cs
r denotes the reserve capacity cost coefficient of

the second stage generator set; Rs
g,t and Ds

g,t represent the upward
and downward reserve capacity values called in the second stage,
respectively; Cp is the penalty coefficient,Ws

d,t signifies the available
PV of the second stage, Ps

d,t indicates the PV consumption at the
moment of the second stage. Fs

b,t and CL are emergency load
shedding and compensation cost coefficient.

4.3.2 Constraints
To guarantee the stable operation of the system, power flow

constraints are established as follows.

Ps
l,t �

1
Xl

θsl+,t − θsl−,t( ),∀l, t (31)
Pl
min ≤Ps

l,t ≤Pl
max ,∀l, t (32)

θ min ≤ θsb,t ≤ θ max,∀b, t (33)

Equations 31–33: Ps
l,t is the transmission power of line l at t time

in the second stage. θsb,t is the voltage phase angle of the second stage
at t time. The physical quantity of the second stage is denoted by the
superscript “s”.

Ps
g ,t � Pg,t + Rs

g ,t − Ds
g ,t ,∀g , t (34)

0≤Rs
g,t ≤Rg,t ,∀g , t (35)

0≤Ds
g,t ≤Dg,t ,∀g , t (36)

Equations 34–36: Ps
g,t represents the actual output of the second

stage generator set at time t, obtained by conbining the output value
of the first stage generator set (Pg,t) with the upward and downward
reserve capacity (Rs

g,t; D
s
g,t) invoked in the second stage.

0≤Ps
d,t ≤W

s
d,t (37)

Equation 37: Ws
d,t represents the actual available electricity of

the second stage PV.

0≤ Fs
b,t ≤ Fb,t

max ,∀b, t (38)

Equation 38: Fb,t
max is the maximum emergency cutting load

allowed by the system.

5 Solution methodologies based on
C&CG algorithm

5.1 Model formulation

The scheduling model developed in this paper is a day-ahead-
real-time-two-stage model with a three-tier structure, posing a

challenge for direct solutions using general commercial solvers
like CPLEX and GUROBI. Existing solving methods include
the Benders decomposition method and the column and
constraint generation algorithm (C&CG algorithm). Both
methods decompose the multilevel optimization problem into
a master problem and a bilevel subproblem. They transform the
inner min structure into max structure and merged with the outer
structure using strong duality theory or KKT conditions, then
iterate the principal subproblem to find the optimal solution. The
two-stage robust optimization problem established in this paper
is a mixed-integer programming problem. The column and
constraint generation (C&CG) algorithm is particularly
efficient in solving such problems. Hence, the C&CG
algorithm is employed to decompose the aforementioned
multilevel optimization problem. The model can be expressed
in the following form:

min
y

cy +max
u∈U

min
x
dx( ) (39)

Ay ≤ b (40)
Ey + Fx ≤ h − Ru (41)

Equations 39–41: y is the first stage decision variable,
including Pg,t, Rg,t, Dg,t, Pdisch

j,t , Pch
j,t, Pd,t, Pl,t, Δpt ΔLPBDR

b,t , θb,t;
x is the second stage decision variable, including Ps

g,t, R
s
g,t, D

s
g,t,

Ps
d,t, P

s
l,t, θ

s
b,t, F

s
b,t, Eq. 39 serves as the objective function for the

two-stage problem; Eq. 40 is the first stage constraint conditions,
including constraint Eqs 1–26 and Eq. 41 is the second stage
constraint conditions, covering constraint Eqs 31–38; U is
uncertain set coefficient matrix and c, d, A, E, F, b, h are the
coefficient and constant matrices of the objective function and
constraints.

According to the reference, the above model is decomposed and
the following principal subproblems are obtained. The principal
problem of the i iteration is:

MP:

min y,α cy + α( )
s.t.α≥ dxk,∀k ≤ i
Ay ≤ b
Ey + Fxk ≤ h − Ruk

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (42)

Equation 42: i is the number of iterations; α is the auxiliary
decision variable introduced; xk is the decision variable added to the
main problem after k iterations; uk is the uncertain variable obtained
by solving the subproblem in the k iteration.

The subproblem is a max − min bilevel structure, where the
decision variable x of the second stage is a continuous variable,
which satisfies the strong dual condition. The inner min problem is
transformed into a max problem, leading to the second iteration of
the transformed subproblem model is.

SP:
max
x,λ,u∈U

dxi + h − Ey − Ru( )Tλ( )
s.t.FTλ≤ dT

λ≤ 0

⎧⎪⎪⎨⎪⎪⎩ (43)

Equation 43: the variable λ is the dual corresponding to the
constraint of the second stage.

There is a bilinear term uTλ coefficient in the above objective
function, which can be linearized by the large M method and
introduce an auxiliary variable δ, as shown below.
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−Mz ≤ δ ≤ 0 (44)
λ≤ δ ≤ λ −M 1 − z( ) (45)

Where M is a very large positive real number.

5.2 Implementation for the model

The C&CG algorithm is applied to optimize the dispatch of a PV-
rich power system by integrating demand response and energy storage.
In the day-ahead stage, the objective is to minimize the total dispatch
cost, including generation, energy storage operation, and reserve costs.
This involves constraints on generation limits, reserve requirements,
demand response adjustments, energy storage operations, and overall
power balance. The goal is to ensure that the total generation matches
the load demand while efficiently managing the flexibility provided by
energy storage and demand response.

In the intra-day stage, the objective shifts to minimizing real-time
scheduling costs, considering reserve capacity adjustments, penalties
for deviations in PV output, and emergency load shedding costs. The
algorithm dynamically adjusts generation outputs and reserve
allocations based on actual PV outputs and system conditions.

The iterative C&CG algorithm process involves solving a master
problem to obtain first-stage decision variables and an auxiliary
variable, followed by solving a subproblem to identify the worst-case
scenario and corresponding second-stage decision variables. The
objective function’s upper and lower bounds are updated iteratively,
ensuring convergence when the bounds difference is minimal.

5.3 Algorithm description

Following the aforementioned discussion, the two-stage robust
optimization model can be equivalently converted into a mixed-
integer linear programming problem. The solution procedure of the
C&CG algorithm in iteratively solving the main and sub-problems
are demonstrated as follows:

Step 1: given the initial bad scene, set the number of iterations
i � 1, the upper bound of the model U � +∞ threshold,
the lower bound L � −∞ threshold, and the convergence
criterion set to ε.

Step 2: solve the main problem shown in Eq. 40, obtain the
optimal solution (ŷk, âk, x̂1, . . . , x̂k ), update the lower
bound of the objective function to L � âk .

Step 3: replace the solution obtained from themain problem into the
subproblem shown in Eq. 41 and determine the objective
function value of the subproblem fk(ŷk ) as well as the
worst-case scenario ûk+1 , update the upper bound of the
objective function value as U � min(U, cŷk + fk(ŷk )).

Step 4: if |U − L|≤ ε is equivalent, stop the iteration, the value of
the objective function is U, and the optimal solution is
(ŷk , x̂k ); otherwise, add the variable xk+1 and the
following constraints to the main problem:

α≥ dxk+1 (46)
Ey + Fxk+1 ≤ h − Ruk+1 (47)

Let i � i + 1, return to step 2, until convergence.

6 Case studies

This paper conducts an analysis of the 6-node system and the
IEEE 24-bus (Trtst, 1979) test system. Figure 1 illustrates the system
wiring diagram. The model is solved using the Cplex solver in the
Matlab environment to validate its effectiveness. Figure 2 showcases
the predicted values of PV power and load demand during a day.
The mutual elasticity coefficient and self-elasticity coefficient of
PBDR are specified as 0.02 and −0.4, respectively. Table 1 provides
the operational parameters for the equipment in the model.

6.1 Optimal scheduling results under the
different scenarios

In order to further study the impact of uncertain factors on the
scheduling results of the model, simulation results of two scenarios
are demonstrated as below.

Scenario 1: the uncertainty of PV power generation is not
considered. Scenario 2: the uncertainty of PV power generation is
considered. The optimal results of the model in different scenarios
are shown in Table 2.

Scenario 1 does not consider the impact of uncertainties,
representing the traditional deterministic dispatch method.
Comparing Scenario 1 and Scenario 2, considering the uncertainty
of photovoltaic and wind power output, the system’s emergency load
shedding decreases by 396 kW·h under the most severe operating
scenario, as shown in Table 2. It can be seen that the total scheduling
cost in such scenarios is the highest, but it also indicates that the
system’s ability to cope with adverse scenarios is stronger.

6.2 The influence of uncertainty limit on the
scheduling results

To examine the influence of the uncertainty limit on the
scheduling results of the model, in the 24-node system, the
uncertainty limits Γl, Γt and Γd in the worst operation scenario
are set to 1, 8 and 1 respectively, then gradually reduce the size of the
uncertainty limit, and calculate the total scheduling cost and
emergency load in this scenario. The results are shown in Table 3.

FIGURE 1
Diagram of 6-bus system.
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Analyzing the solution results reveals that an increase in the
uncertainty limit corresponds to a rise in the day-ahead scheduling
cost. This implies that the system requires a greater reserve capacity
to fulfill the load demand. Concurrently, the emergency load cut and
the total scheduling cost witnessed significant reductions. This
highlights the significance of selecting an appropriate uncertainty
limit to balance low operating costs while enhancing the safety and
reliability of system operation.

6.3 The influence of demand response on
system operation

By adjusting electricity prices, users can be guided to modify
their consumption behavior, thereby optimizing the load curve and
achieving peak shaving and valley filling in the power system.

Figures 3, 4 show the changes of load and electricity price before
and after the implementation of price-based demand response.

Figures 3, 4, it can be observed that after the implementation of
PBDR, although there is no significant change in the total load of the
system, the load of the system shifts over time with the change in
electricity prices, achieving the effect of peak shaving and valley
filling, thereby enhancing the flexibility of the system.

6.4 The impact of energy storage on system
reserve capacity

Figure 5 illustrates the changes in reserve capacity before and
after the addition of energy storage devices. Specifically, Figure (a)
shows the reserve output of three units, while Figure (a) depicts the
power provided or absorbed by the energy storage.

FIGURE 2
The forecast data of PV power and load.

TABLE 1 Operational parameters of the equipment within the model.

Parameter Numerical value Parameter Numerical value

Pmax/kW 200,150,180 Emax/kV•A 600

Pmin/kW 0 Emin/kV·•A 40

Pdisch,min/kW 0 ηdisch 0.9

Pdisch,max/kW 80 ηch 0.9

Pch,min/kW 0 CL (¥ · kWh−1) 100

Pch,max/kW 90 CP (¥ · kWh−1) 10

TABLE 2 Optimized scheduling results in different scenarios.

Scenario Reservation
cost/¥

Unit operation
cost/¥

Operation cost of
energy storage/¥

Emergency load
Shedding/kW·h

Total scheduling
cost/¥

1 725 45,850 25,360 452 76,445

2 1,273 40,810 20,742 56 62,881
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TABLE 3 Optimized scheduling results considering different uncertainty limits.

Scene Uncertainty
limit

Emergency cut load/kW·h Day-ahead scheduling cost/¥ Total scheduling cost/¥

Γl Γt Γd
1 2 8 1 0 598,907 624,635

2 1 5 1 1,054 365,860 1,095,459

3 0 0 0 7,654 245,504 1,685,860

FIGURE 3
Load consumption before and after implementation of PBDR.

FIGURE 4
Electricity price changes before and after implementation of PBDR.
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As can be seen from Figure 5B, after the energy storage is
connected, the operating hours of the unit are reduced, and during
the low load period, the energy storage is in the charging state and
the excess energy is stored. At the same time, energy storage can
provide the system with upward reserve capacity to cope with the
risk caused by uncertain events.

7 Conclusion

In this study, we establish a power system model comprising
distributed energy sources, generators, energy storage, and loads,
accounting for the uncertainty of PV power generation. We propose
a two-stage robust optimization method that leverages demand
response resources and energy storage to optimize the system’s
load curve.

Despite an increase of operation costs under the worst
conditions when considering the uncertainty of PV power
output, the system’s resilience to risks improves. Setting an
appropriate uncertainty limit becomes crucial in balancing the
robustness and economy of the system.

Furthermore, when compared to the independent operation of
energy storage, optimizing the load curve through a combination of
demand response and energy storage significantly reduces the cost of
system’s reserve capacity allocation. Additionally, the incorporation
of energy storage devices enhances the integration of renewable
energy resources such as PV power.
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