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The role of load modeling in power systems is crucial for both operational and
regulatory considerations. It is essential to develop an effective and reliable
method for optimizing load modeling parameter identification. In this paper,
the dung beetle algorithm is improved by using the good point set, and a load
model parameter identification strategy based on the good point set dung beetle
optimization algorithm (GDBO)within the framework of themeasurement-based
load modeling method. The proposed parameter identification strategy involves
utilizing PMU voltage data as input, selecting a comprehensive load model, and
refining the initialization process based on the good point set to mitigate the
influence of local maxima. Through iterative optimization of the objective
function using the Dung Beetle Optimizer (DBO) algorithm, the optimal
parameters for the comprehensive load model are determined, enhancing the
model’s ability to accurately capture the power curve. Analysis of examples
pertaining to PMU-measured modeling parameter identification reveals that
the proposed GDBO algorithm, which incorporates a good point set,
outperforms alternative methods such as the improved differential evolution
algorithm (IDE), particle swarm optimization algorithm (PSO), grey wolf
optimization algorithm (GWO), and conventional DBO algorithm. This
demonstrates the superior performance of the introduced approach in the
context of load model parameter identification.
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1 Introduction

At present, digital simulation plays an irreplaceable role in power systems across various
domains such as power network planning, operation, control, and personnel training
(Zhang et al., 2020; Yang et al., 2022a; Diao et al., 2023; Wu et al., 2023; Zhang et al., 2023a;
Zhu et al., 2023). The accuracy of the simulation results depends on the conformity of the
adopted component models and parameters. Selecting an inappropriate load model in
power system simulation can lead to deviations in the simulation results from the actual
situation, potentially resulting in misallocation of planning funds and operational decision-
making errors (Ju, 2015; Xu et al., 2023). Therefore, in the process of dynamic simulation, it
is very important to select a suitable load model to describe the load of a specific area
(Swarupa et al., 2024).
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Load modeling has two main approaches (Wang et al., 2014;
Chen et al., 2020; Yang et al., 2022b) in power systems: component-
based and measurement-based. The component-based load
modeling first needs to count the characteristics of various
typical loads, the proportion of load equipment, and the
composition of loads (Wu et al., 2022; Fu et al., 2023; Yang
et al., 2024), then derive the mathematical models and
parameters of various typical loads, and finally integrate the
statistical data to establish the model of load nodes. However, the
load composition will change with time, the statistical workload is
large, and the voltage characteristics of reactive power cannot be
accurately obtained, so there are few practical applications. In
contrast, measurement-based load modeling considers the power
system as a stochastic system, first determines the model structure,
then identifies the model parameters based on the measured data,
and verifies its generalization ability (Wang et al., 2019; Zhang et al.,
2023b; Zhou et al., 2023). This method requires the installation of a
load characteristic recording device at the load node, which usually
obtains data for identification under large disturbances. Although
there are some drawbacks to measurement-based load modeling, it
can be widely used in practice by using input-output models to solve
the problem of complex load components without much statistical
work (Zhang, 2007; Yang et al., 2018).

With the continuous development and popularization of
artificial intelligence, intelligent algorithms have been widely used
in the research of load modeling technology (Wang et al., 2011;
Wang et al., 2020; Kang et al., 2021; Guo et al., 2022). Reference
(Wang et al., 2020; Guo et al., 2022) has applied the grey wolf
optimization (GWO) algorithm to load modeling based on its
advantages of better global convergence, fewer adjustment
parameters, and easy identification. It has been proven that the
GWO algorithm can improve the accuracy of load modeling.
Reference (Kang et al., 2021) adds the weight of flight inertia,
global optimum, and flight interference factor to the butterfly
algorithm to avoid the butterfly algorithm falling into the local
optimum prematurely and improve the accuracy of the
comprehensive load model. In order to prevent local convergence
of the algorithm and increase the accuracy of identification findings,
the chaos algorithm is incorporated into the ant colony method in
Reference (Wang et al., 2011). However, due to the mixing of
algorithms, the selection of parameters becomes complicated.

The dung beetle optimization (DBO) algorithm is an intelligent
optimization algorithm that achieves global exploration and local
development through the ball rolling, oviposition, foraging and
stealing behavior of dung beetles (Yang et al., 2022c; Xue and
Shen, 2022). The algorithm has the ability for global exploration
and local development, which can speed up convergence and
prevent premature phenomena. Presently, it has found extensive
application in diverse research domains, including but not limited to
range-free localization (Pan and Bu, 2023) and neural network
training (Li et al., 2023). However, few scholars have applied the
DBO algorithm to the research of load modeling.

In summary, this study employs the Dung Beetle Optimizer
(DBO) algorithm, alternatively recognized as the Good Point Set
Dung Beetle Optimizer (GDBO), to ascertain and refine the essential
parameters inherent in the comprehensive load model. The PMU
measured data is used as the input samples for load modeling. The
optimal parameters of the load model are achieved through repeated

optimization of the objective function, improving the model’s fit to
the power curve. Finally, a comparison between the optimized
sample curves and model responses produced by the proposed
algorithm and the algorithms for improved differential evolution
(IDE) (Xu et al., 2009a; Pattanaik et al., 2017), particle swarm
optimization (PSO) (Fang et al., 2022), GWO (Wang et al., 2020;
Guo et al., 2022), and DBO is made. This confirms that the proposed
method is more accurate and solves load modeling parameters
more quickly.

The paper is organized as follows: The establishment of the
comprehensive loadmodel is shown in the second chapter. The third
chapter introduces the parameter identification of the integrated
load model, including the principle of parameter identification,
parameter identification method, the improvement of the
identification method and the specific process of the
identification algorithm. In the fourth chapter, the example
simulation of parameter identification is carried out. The fifth
chapter gives the conclusion.

2 Comprehensive load model

The comprehensive load model comprises a static ZIP load
model and a three-order induction motor model in parallel (Liu,
2007; Sheng et al., 2021; Yang et al., 2022d; Wang et al., 2023). The
model is shown in the following Figure 1.

The static ZIP part adopts a polynomial model, which can be
described as follows Equation 1:

Ps � PZ
U

U0
( )2

+ PI
U

U0
( ) + PP

Qs � QZ
U

U0
( )2

+ QI
U

U0
( ) + QP

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩ (1)

in the above formula, we use PZ to represent the static active power
under the load constant impedance model, PI to represent the static
active power under the load constant current model, and PP to
represent the static active power under the load constant power
model and constant power, satisfying the following formulaic
conditions: PZ + PI + PP � 1 −Kpm.The static ZIP part’s active
and reactive powers are denoted by Ps and Qs.Under static
reactive load, components QZ, QI, and QP satisfy the following
requirements: QZ + QI + QP � 1 − Qmotor

Q0
.

The induction motor part can be described as Equations 2, 3:

dE′
d
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dE′
q

dt
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T′ E′
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d

dw
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2H
Aω2 + Bω + C( )T0 − E′

dId + E′
qIq( )[ ]

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(2)

Id � 1

Z′2 Rs Ud − E′
d( ) + Xs +Xm Xr‖( ) Uq − E′

q( )[ ]
Iq � 1

Z′2 Rs Uq − E′
q( ) − Xs +Xm Xr‖( ) Ud − E′

d( )[ ]
⎧⎪⎪⎪⎨⎪⎪⎪⎩ (3)

In the formula: T′ � Xr+Xm
Rr

; Z′2 � R2 + (Xs +Xm‖Xr)2;
w′ � w − 1; The stator winding resistance and leakage reactance are

Frontiers in Energy Research frontiersin.org02

Xing et al. 10.3389/fenrg.2024.1415796

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1415796


represented byRs andXs, respectively;Xm representsmutual inductance
of stator and rotor; The rotor winding’s resistance and leakage reactance
are represented by numbers Rr and Xr (Kang et al., 2021); The above
parameters are all per-unit values under the base value of their own
capacity; E′

q represents the potential of the equivalent motor under the
q-axis sub-transient state; E′

d denotes the potential of the equivalent
motor under the d-axis sub-transient state; Where A + B + C � 1 is
satisfied; w represents the rotational speed of the equivalent motor; H is
the corresponding motor’s inertia time constant (Xu et al., 2009b).
Xm‖Xr means that Xm and Xr are connected in parallel to form
XmXr
Xm+Xr

. In addition to the above 12 parameters, in order to transform
themodel parameters into per-unit values, two parametersKpm andM1f

are defined as follows Equations 4, 5:

Kpm � P0
′

P0
(4)

M1f � P0
′

SMB
( )/ U0

UB
( ) (5)

where: P0
′ is the corresponding motor’s starting active power; P0

stands for the load’s initial active power; Kpm represents the
distribution parameter of initial active power; SMB represents the
rated capacity of induction motor (Guo et al., 2022). The rated
starting load rate coefficient is denoted by M1f.

To sum up, the parameters to be identified are Rs, Xs, Xm, Xr,
Rr, PZ, PP, QZ, QP, Kpm, M1f, H, A, and B. The use of this
integrated load model makes the load modeling more
comprehensive and accurate, and can better meet the needs of
practical applications. The identification and improvement of
model parameters can enhance the dependability and relevance
of load modeling, hence offering a crucial point of reference for
power system management and planning.

3 Parameter identification of
load model

3.1 Principle of parameter identification

After determining themodel structure, it is necessary to select an
efficient and reliable optimization algorithm for parameter

identification. At the core of parameter identification lies the
estimation of model parameters by fitting a mathematical model
of the system using input and output data. The principles of this
process are illustrated in Figure 2.

The system input in the above figure is voltage. In the actual
system, this curve specifically showcases the accurately measured
values of active and reactive power for the load. Similarly, the
simulation system’s output curve mirrors this scenario, providing
a simulated perspective on the active and reactive power of the load
in response to voltage disturbance.

Initially, it is imperative to establish both the model structure
and the objective function. Subsequently, the parameter
identification process unfolds through the utilization of input and
output data, employing an optimization method with the core
principle of minimizing the objective function value. The central
focus of this paper lies in defining the objective function, as
articulated below Equation 6:

J �

��������������������������������
1
n

∑n
i�1

Pi

∧ − Pm,i( )2

+∑n
i�1

Qi

∧ − Qm,i( )2⎛⎝ ⎞⎠√√
(6)

in the formula: Pm,i, Qm,i represent the active and reactive power

measured at time i, and n represents the number of samples. Pi

∧
and

Qi

∧
represent the active and reactive power computed at time i.

3.2 Dung beetle optimization algorithm
(DBO)

The DBO algorithm specifically comes from the four living
habits of DB, which are rolling, spawning, foraging and stealing.
The Dung Beetle Optimizer (DBO) algorithm is a nature-
inspired optimization technique based on the behavior of
dung beetles. These insects exhibit unique foraging strategies
that have been effectively translated into optimization
algorithms to solve complex problems. The algorithm adapts
the movement strategies of the dung beetles based on their
success in finding good solutions. This adaptive mechanism
enhances the efficiency of the search process. The principle

FIGURE 1
Equivalent structure of integrated load model.
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diagram of the dung beetle optimization algorithm is shown in
Figure 3, and the global optimal solution can be found after
multiple iterations.

3.2.1 Rolling DB
Rolling dung balls is a common behavior among dung beetles.

These insects have a tendency to roll dung balls that are larger than
their own size to their preferred location. During this rolling process,
they utilize celestial cues, such as the Sun and Moon, to maintain a
straight trajectory for the dung ball. The passage delineates the
navigational conduct of a dung beetle within a designated search
space. In order to replicate this behavioral phenomenon, adherence
to a predetermined trajectory is imperative. This emulation is
encapsulated within a formalized rolling mathematical model,
wherein the dynamic repositioning of both the dung beetle and
the concomitantly propelled ball undergo continuous updates
throughout the rolling process. The rolling mathematical model
is as follows Equation 7:

yi t + 1( ) � yi t( ) + βmyi t − 1( ) + cΔy,
Δy � yi t( ) − Cw

∣∣∣∣ ∣∣∣∣ (7)

the current iteration times are denoted by t in the formula, where
yi(t) is the location information of the i-th DB at the t-th iteration;
According to the references (Pan and Bu, 2023), 0<m≤ 1/5 is a
constant value that represents the defect coefficient. c is a constant
value between Zero and One, and β is a coefficient with a value
of −1 or 1. The worst place in the world is represented by Cw, the
change of Δymeans the change of light intensity, and the higher the
value of Δy, the weaker the light source. The values of m and c are
critical; m and c are set to 0.1 and 0.3, respectively. Natural causes
that can lead DB to diverge from its original path are denoted by β.
Specifically, when β � −1, it means that the update position deviates
from the original dung beetle position, and when β � 1, it means that
the update position has no deviation. To imitate the complicated
environment in the actual world, β is set to 1 or -1 using a probability
strategy in this study. Δy can promote rolling ball DB by providing
the following two benefits:

1) In the optimization process, explore the entire problem space
as fully as feasible.

2) Improved search performance, with less reliance on the
local optimal.

When DB encounters obstacles that hinder its progress, it adopts
a unique strategy akin to a dance to overcome the impediment and
discover an alternative route. The essence of this method involves
utilizing the tangent function to calculate a fresh roll direction,
mirroring the intricate movements observed in a dance routine.
Once the appropriate direction is determined, DB seamlessly
continues its journey by rolling the associated ball backward.
This dynamic approach constitutes the core of DB’s ability to
adapt and navigate challenging environments. In essence, the
process encompasses the update of DB’s position and establishes
a comprehensive definition of its distinctive dance-like behavior
Equation 8:

FIGURE 2
Schematic diagram of parameter identification system.

FIGURE 3
DBO algorithm schematic diagram.
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yi t + 1( ) � yi t( ) + tan θ( ) yi t( ) − yi t − 1( )∣∣∣∣ ∣∣∣∣ (8)

in the formula: yi(t) represents the position of the i-th
DB in the t-th iteration update, yi(t − 1) represents the

position of the i-th DB in the t-1-th iteration update,
similarly, yi(t + 1) represents the position of the i-th DB in
the t+1-th iteration update. θ refers to the offset angle
during the position update process, and its value range is

FIGURE 4
GDBO Flowchart.
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0–180°, if θ equals 0, π/2, or π, the location of the DB is
not updated.

3.2.2 Spawning DB
Dung beetles show a fascinating behavior in nature. They

carefully roll the dung balls, roll the cow dung into a dung ball
with a diameter of about 2.5 cm, and quickly push it underground
and bury it as the next-generation of food. This process is crucial for
dung beetles (DB), as they carefully select a suitable spawning site to
establish a safe habitat for the upcoming generation. The previous
discussion underscored the importance of this behavior and
motivated the introduction of boundary selection methods. This
method is designed to simulate the specific area of female
oviposition. The focus is on mimicking the natural conditions
that ensure the safety and wellbeing of beetle offspring. The
upper and lower limits of the selected region can be expressed by
Formula 9:

Lbc � max 1 − 1 − t

Tmax
( )( ][ C*, Lb{ }

Ubc � min 1 + 1 − t

Tmax
( )( ][ C*, Ub{ } (9)

where: Ubc and Lbc are used to characterize the upper and lower
boundaries of the dung beetle’s renewal spawning area respectively,
while Ub and Lb represent the upper and lower limits of the
optimization problem. Tmax represents the upper bound
constraint on the number of iterations; C* means the current
local position optimal solution.

In the DBO algorithm, each female DB only lays a single egg per
iteration to maintain ecological balance. This process prompts
dynamic alterations in the boundary range of the spawning area,
predominantly governed by adjustments to the R value. The
determination of this R value may change at different stages of
the iteration, thus affecting the size and shape of the spawning area.
Therefore, in the whole iteration process, not only the number of
eggs is regulated, but also the position of the hatching ball remains
dynamic, evolving with the continuous adjustment of the boundary
range. The specific position iteration formula can be articulated as
follows Equation 10:

Yi t + 1( ) � C* + ∑2
m�1

dm Yi t( ) − Lbc( ) (10)

in the formula, Bi(t) denotes the update position of the i-th DB
breeding ball during the t-th iteration. dm (m � 1, 2) are
independent random vectors, Only the spawning area—that is, a
specific area—is permitted to have the breeding ball.

3.2.3 Foraging DB
The little DB that emerges from the breeding ball wants to feed,

so we build the best foraging area and direct it there. The small DB’s
position is updated in this way:

Lbd � max 1 − R( )Cb, Lb( )
Ubd � min 1 + R( )Cb, Ub( ) (11)

the ideal foraging area’s boundary division is shown above. Cb

denotes the best position in the foraging area of all range classes;

as the definition of the above formula, Lbd and Ubd are defined as
the upper and lower limits of the optimal foraging area, respectively,
along with other parameters stated in Formula 9. As a result, the
little database’s location is changed as Formula 12:

yi t + 1( ) � yi t( ) + ∑2
m�1

km × yi t( ) − Lbd( ) (12)

in the formula, the variables yi(t) represent the location information
of the i-th tiny DB at the t-th iteration, km (m � 1, 2) represent the
random number that follows the normal distribution.

3.2.4 Stealing DB
There are also some DBs who steal turds from other DBs.

Furthermore, Eq. 11 shows that Cd is the best position for the dung
ball (food), and it stands to reason that the best area for competition for
food is in the vicinity of Cd. The following iterative formula is used to
describe the position update of the thief dung beetle Equation 13:

yi t + 1( ) � Cb + a · l · yi t( ) − C*
∣∣∣∣ ∣∣∣∣ + yi t( ) − Cb

∣∣∣∣ ∣∣∣∣( ) (13)

in the formula, yi(t) is the position of the i-th thief at the t-th
iteration; The value of a is constant. l is a stochastic vector generated
from a normal distribution, with its dimensionality denoted by
1 × D.

3.3 The good point set

Nowadays, the initialization method of most swarm intelligence
optimization algorithms is a random initialization form. The
randomly generated population is unevenly distributed in the
whole solution space. It is very gathered in some areas and
scattered in others, resulting in the algorithm’s utilization of the
entire search space not being high and the population diversity not
being strong. Aiming at the problem of random initialization, many
scholars have proposed and used good point-set initialization. The
theory of the good point set originated from Hua Luogeng, a famous

FIGURE 5
Fitting diagram of active power identification.
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Chinese mathematician. The randomness of random initialization is
too high, and there may be a phenomenon where the first-generation
solution is very far from the optimal value. If the value of the first-
generation solution is very close to the optimal value, it can not only
improve the convergence speed but also the optimization accuracy
under the premise of a certain number of iterations.

Using the good point set for initializing the population in
optimization algorithms ensures uniform coverage of the search space,
which improves the balance between exploration and exploitation,
accelerates convergence, reduces bias, and enhances performance,
particularly in high-dimensional spaces. This leads to more effective
and efficient optimization, making it a preferred choice for initializing
candidate solutions. To ensure population diversity and ergodicity, which
can ultimately enhance the algorithm’s search performance, it is crucial to
maintain a uniform distribution within the initial population. Achieving

population diversity in DBO can be challenging due to the random
selection of individuals during initialization.

A uniform and effective method for point selection is employed
to initialize the population, aiming to address the aforementioned
challenges, enhance population diversity, and optimize the
utilization of the current solution. Leveraging the uniform
distribution attribute of an excellent point set bolsters the
flexibility and comprehensiveness of the population initialization
process, enabling more thorough exploration of the solution space.

Currently, numerous clever algorithms (Cheng and Ding, 2020;
Yan et al., 2023) have implemented the excellent point set
initialization method with successful outcomes. The population’s
initialization can be dispersed over the solution space by employing
the good point set, which increases population variety and helps the
algorithm find the globally optimal solution more effectively. The
following is the principle: Let us assume that the person in the DBO
algorithm is a point in n-dimensional Euclidean space, or,
alternatively, that it is a position in the unit cube. When the
number of individuals in a population exceeds the volume of the
unit cube, it will cause individual repetition. The following actions
can be performed to lower the repetition rate Equation 14:

Pm n( ) � g m( )
1 · n{ },/, g m( )

R · n{ }( ), 1≤ n≤m{ } (14)

in the formula: Pm(n) is a set of good points, and the deviation
ϕ(m) � C(g, ε)m−1+ε, where φ(m) � C(g, ε)m−1+ε is a constant
only related to g and ε; g is a good point; Taking the fractional
part is represented by g(n)

R · n{ }, n represents the number of points,

gk � 2 cos(2nπp ), 1≤ n≤R{ }; The smallest prime number satisfying

(p −D/2)≥D is p. In the search space, map the set of good spots
(Equation 15).

yi j( ) � Ubj − Lbj( ) · g i( )
j · n{ } + Lbj (15)

in the formula: The top and lower boundaries of the j-th dimension
are denoted by Ubj and Lbj.

FIGURE 6
Reactive power identification fitting diagram.

FIGURE 7
Comparison between active power DBO and GDBO.

FIGURE 8
Comparison between reactive power DBO and GDBO.
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3.4 Algorithm flow

In this paper, the DBO algorithm enhanced by initializing the
population with a good point set before updating the iterative
position. The specific process is shown in Figure 4, which can be
divided into seven steps:

Step 1: During the initial phase of the algorithm, a set of initial
parameters is defined, serving as the starting point for
subsequent optimization processes.

Step 2: Utilizing Formula 15, the algorithm initializes the
population based on a pre-defined optimal point set,
providing a well-founded starting configuration for the
optimization process.

Step 3: By executing the objective function, the algorithm calculates
fitness values for each dung beetle in the population,
reflecting their performance at their current positions.

Step 4: Positions of all dung beetles are adjusted using a specified
strategy to seek more optimal solutions. This step propels
the population towards favorable directions.

Step 5: Examine the positions of each dung beetle to ensure they
adhere to the defined problem boundaries, maintaining
the problem’s feasibility and validity.

Step 6: In each iteration, it is essential to review and update the
current optimal solution along with its corresponding
fitness value to prevent the algorithm from disregarding
potential global optima.

Step 7: Iterate through Steps 3 to 6 iteratively until the pre-defined
termination criterion is satisfied. Upon termination, report
the attained global optimal solution and its corresponding
fitness value, concluding the entire optimization process.

4 Case analysis

4.1 Algorithm initialization and parameter
setting

The optimization algorithm’s parameter selection significantly
impacts the optimization outcomes; hence, it is essential to
meticulously choose optimal parameter values for simulation.
Within each dung beetle colony, four distinct agents are present
namely, the rolling ball DB, the spawning DB, the foraging DB, and
the stealing DB. In the GDBO algorithm, the position vector of the i-th
DB is represented by xi(t)=(yi1(t) , . . . , yiD(t)) at the t-th iteration. In this
paper, the size of DB group is N = 70 (the population size of other
algorithms is 70). The numbers of rolling, spawning, foraging and thief
DB were 14, 14, 16, and 26, respectively. The prescribed maximum
iteration count is established at 500, where the primary scaling factor,
secondary scaling factor, and crossover probability of IDE are set to 0.5,
0.3, and 0.8. Both learning factors of PSO are set to 0.5.

4.2 Measured data of a power plant and
example simulation

To assess the efficacy of the DBO algorithm in the context of
parameter identification for load modeling, this paper uses IDE,T
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PSO, and GWO to identify the PMU measured data recorded by a
power plant in Ruilijiang, Yunnan Province, at 10:14 on
20 November 2019, sampling once every 10 ms, for a total of
6,000 times. Figures 5, 6 illustrate the correlation between active
and reactive power for both empirical and simulated datasets,
respectively. The unit of each parameter is p.u.

According to the above Figures 5, 6, it is not difficult to see that
the DBO algorithm used in this paper is more accurate for the fitting
value of parameter identification results and basically achieves
coincidence. However, the traditional Dung Beetle Optimizer
algorithm has a wide range for the first iteration of the initial
population, resulting in a higher fitting value in the front, and
then tends to be stable. Hence, the algorithm denominated as the
Dung Beetle Optimizer, founded upon the well-defined point set
articulated in this study, aptly addresses the aforementioned issue.
The comparative outcomes pertaining to active and reactive power
are visually presented in Figures 7, 8. The parameter values for
identification derived through the application of the Dung Beetle
Optimizer algorithm are delineated in Table 1.

Figures 7, 8 show that the DBO algorithm based on the good
point set has a faster initial iteration speed and can fit to the real
value faster than the traditional DBO. The identification instances
given above demonstrate that the DBO based on good point set has
superior accuracy and speed than the other four algorithms in
parameter identification of load modeling through a large
number of practices.

4.3 Fitting effect evaluation

In this research, the assessment of fitting performance between
observed data and simulated data relies on the utilization of specific
metrics, namely the Mean Absolute Error (MAE) and the Root Mean
Square Error (RMSE). These metrics serve as quantitative measures to
evaluate the accuracy of the simulated data in comparison to the
actual observations. The corresponding formulations for MAE and
RMSE are precisely defined by Eqs 16, 17, respectively. By employing
these metrics and their associated mathematical expressions, this
study establishes a rigorous framework for quantifying the level of
agreement or discrepancy between the simulated data and the
observed data, thereby enhancing the precision and reliability of
the evaluation process.

MAE �
∑m
i�1

yi − xi

∣∣∣∣ ∣∣∣∣
m

(16)

RMSD �

����������∑m
i�1

yi − xi( )2
m

√√
(17)

within themathematical expression, xi denotes the i-th actual value of
either active or reactive power, yi represents the i-th simulated value
of active or reactive power, and m corresponds to the total number
of data sets.

Compared with the traditional method, the improvement rates
of the Mean Absolute Error (MAE) and the Root Mean Square Error
(RMSE) of the method used in this paper are represented by IMAE%
and IRMSD% respectively.

IMAE% � MAERA −MAEGDBO

MAERA
*100% (18)

IRMSE% � RMSERA − RMSEGDBO

RMSERA
*100% (19)

MAERA represents the absolute average error of the traditional
algorithm, and MAEGDBO represents the absolute average error of
the GDBO algorithm proposed in this paper. RMSERA represents the
root mean square error of the traditional algorithm, and RMSEGDBO

represents the rootmean square error of theGDBO algorithmproposed
in this paper.

The assessment outcomes for the fitting efficacy of measured
data using the GDBO algorithm, which relies on the proposed
favorable point set in this study, along with comparisons to
alternative algorithms, are presented in Table 2.

Through a comparative analysis with alternative algorithms,
upon careful examination, in the active power fitting, the GDBO
algorithm used in this paper is compared with the IDE, PSO, GWO
and traditional DBO algorithm in reducing the absolute average
error, which is increased by 82.14%, 82.81%, 82.03%, and 51.75%
respectively. In terms of reducing the root mean square error, the
improvement rate of the GDBO algorithm also reached 73.64%,
71.64%, 75.02%, and 52.19%, respectively. At the same time, as
shown in Table 2, the GDBO algorithm demonstrates remarkable
performance when fitting reactive power applied to measured data
of the model. Specifically, it exhibits the most minimal mean
absolute error and root mean square error among the tested
algorithms. This compelling observation underscores the superior
efficacy of the proposed algorithm in the realm of parameter
identification. The algorithm’s ability to minimize errors in fitting
the measured data points to the model highlights its robustness and
accuracy, signifying its potential as an effective tool in practical
applications requiring precise parameter estimation. Moreover, the

TABLE 2 Evaluation of model fitting effect.

Algorithm
Active power Reactive power

MAE IMAE% RMSD IRMSE% MAE IMAE% RMSD IRMSE%

IDE 0.003870 82.14% 0.084758 73.64% 0.007184 93.05% 0.027833604 96.92%

PSO 0.004020 82.81% 0.078759 71.64% 0.006203 91.96% 0.020259353 95.77%

GWO 0.003846 82.03% 0.089420 75.02% 0.007996 93.76% 0.03254387 97.37%

DBO 0.001432 51.75% 0.046723 52.19% 0.002183 77.14% 0.009065738 90.56%

GDBO 0.000691 — 0.022338 — 0.000499 — 0.000856037 —
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algorithm demonstrates increased robustness in the face of
fluctuations in both active and reactive power.

5 Conclusion

DBO is utilized in this paper for load modeling and parameter
identification. The results of the identification of load modeling reveal
that DBO has a considerable improvement in accuracy and speed when
compared to the other three methods. Consequently, DBO can be
effectively utilized for parameter identification in load modeling, which
can improve load modeling accuracy. Furthermore, the DBO method
based on the good point set outperforms the classic DBO algorithm in
terms of accuracy and speed, and gives a higher level of solution for
parameter identification of load modeling.
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Nomenclature

PZ The static active power under the load constant impedance model

PI The static active power under the load constant current mode

PP The static active power under the load constant power model

Ps The static zip part’s active powers

Qs The static zip part’s reactive powers

QZ The static reactive power under the load constant impedance model

QI The static reactive power under the load constant current mode

QP The static reactive power under the load constant power model

Rs The stator winding resistance

Xs The stator winding leakage reactance

Rr The rotor winding resistance reactance

Xr The rotor winding leakage reactance

Xm Mutual inductance of stator and rotor

E′
q

The potential of the equivalent motor under the q-axis sub-transient state

E′
d

The potential of the equivalent motor under the d-axis sub-transient state

P0
′ The corresponding motor’s starting active power

P0 The load’s initial active power

Kpm The distribution parameter of initial active power

SMB The rated capacity of induction motor

Pm,i The active power measured at time i, and n represents the number of
samples

Qm,i The reactive power measured at time i, and n represents the number of
samples

Pi

∧ The active power computed at time i

Qi

∧ The reactive power computed at time i

m A constant value that represents the defect coefficient

c A constant value between Zero and One

β A coefficient with a value of −1 or 1

Cw The worst place

Δy The change of light intensity

yi(t) The position of the i-th DB in the t-th iteration update

yi(t − 1) The position of the i-th DB in the t-1-th iteration update

yi(t + 1) The position of the i-th DB in the t+1-th iteration update

θ The offset angle during the position update process

Ubc The upper boundaries of the dung beetle’s renewal spawning area

Lbc The lower boundaries of the dung beetle’s renewal spawning area

Tmax The upper bound constraint on the number of iterations

C* The current local position optimal solution

Bi(t) The update position of the i-th DB breeding ball during the t-th iteration

Cb The best position in the foraging area of all range classes

Ubd The upper limits of the optimal foraging area

Lbd The lower limits of the optimal foraging area

km The random number that follows the normal distribution

Cd The best position for the dung ball

Pm(n) A set of good points
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