
TYPE Original Research
PUBLISHED 24 June 2024
DOI 10.3389/fenrg.2024.1414516

OPEN ACCESS

EDITED BY

Chaojie Li,
University of New South Wales, Australia

REVIEWED BY

Muhammad Tariq,
National University of Computer and
Emerging Sciences, Pakistan
Keping Yu,
Hosei University, Japan

*CORRESPONDENCE

Zhan Shi,
w_1234567892021@163.com

RECEIVED 09 April 2024
ACCEPTED 02 May 2024
PUBLISHED 24 June 2024

CITATION

Shi Z (2024), Edge–end collaborative secure
and rapid response method for multi-flow
aggregated energy dispatch service in a
distribution grid.
Front. Energy Res. 12:1414516.
doi: 10.3389/fenrg.2024.1414516

COPYRIGHT

© 2024 Shi. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Edge–end collaborative secure
and rapid response method for
multi-flow aggregated energy
dispatch service in a distribution
grid

Zhan Shi*

Power Dispatching and Controlling Center of Guangdong Power Grid Company Limited, Guangdong,
Guangzhou, China

With a high proportion of distributed source–grid–load–storage resources
penetrating into the distribution network, multi-flow aggregated energy
dispatch is essential to enhance renewable energy consumption capacity
and maintain grid stability. However, intelligent energy dispatch has stringent
requirements for low latency and security, which necessitates the development
of secure and rapid response methods. In this paper, we combine the
edge–end collaboration with container microservices architecture and propose
a container and microservice empowered edge–end collaborative secure and
rapid response framework for multi-flow aggregated energy dispatch service
in a distribution grid. Then, a container selection optimization problem is
formulated to minimize the total microservices execution delay. To cope with
the dynamic environment such as electromagnetic interference, noise, and
workload variation, we propose a microservice container selection algorithm
based on an enhanced ant colony with empirical SINR and delay performance
awareness. The proposed algorithmbenefits from the local and global integrated
pheromone updating methods and the empirical performance-based dynamic
pheromone and heuristic information updating mechanism. Simulation results
demonstrate that the proposed algorithm outperforms the existing methods in
average service execution delay and convergence speed.

KEYWORDS

enhanced ant colony algorithm, multi-flow aggregated energy dispatch, end–edge
collaboration, container selection, microservice computing, 5G edge computing

1 Introduction

As a key link in the construction of a new type of power system, the distribution
grid, which is located between the power transmission system and the power consumption
equipment, combines various advanced communication technologies such as 5G and
intelligent management systems to provide users with high-quality and reliable power
supply (Shunxin et al., 2022). With an ultra-high percentage of intermittent distributed
renewable energy penetrating the grid, the distribution grid undertakes more and more
responsibility for aggregating and dispatching energy to accommodate bidirectional power
demand on both the demand side and load side (Wu et al., 2019; Li et al., 2022). Aggregated
energy dispatch involves the integration and collaborative management of dispersed

Frontiers in Energy Research 01 frontiersin.org

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#editorial-board
https://doi.org/10.3389/fenrg.2024.1414516
https://crossmark.crossref.org/dialog/?doi=10.3389/fenrg.2024.1414516&domain=pdf&date_stamp=2024-06-22
mailto:w_1234567892021@163.com
mailto:w_1234567892021@163.com
https://doi.org/10.3389/fenrg.2024.1414516
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fenrg.2024.1414516/full
https://www.frontiersin.org/articles/10.3389/fenrg.2024.1414516/full
https://www.frontiersin.org/articles/10.3389/fenrg.2024.1414516/full
https://www.frontiersin.org/articles/10.3389/fenrg.2024.1414516/full
https://www.frontiersin.org/articles/10.3389/fenrg.2024.1414516/full
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles

Shi 10.3389/fenrg.2024.1414516

resources such as energy sources, loads, and energy storage through
technical means to achieve efficient operation of the power system
and energy utilization (Tariq and Poor, 2018; Yang et al., 2020). On
one hand, it refers to multiple flows, which includes the data flow
generated by distributed electrical equipment and offloaded to edge
servers for computing, the energy flow formed by the intelligent
dispatching with the interaction of source–grid–load–storage, and
the service flow established in a chain form through the processing
of decomposed services (Shen et al., 2023; Xue et al., 2023). On
the other hand, since decentralized distribution grid operators of
source, load, and storage participate in the dispatch as independent
market players, the complex interactive game among them needs to
aggregate global information as a support for dispatching strategy.
Oftentimes, aggregated energy dispatch services impose stringent
low latency requirements, prompting a pressing need for the study
of rapid response methods (Dong et al., 2016).

The combination of edge–end collaboration technology and
container microservices architecture provides a viable solution
for achieving rapid responses in aggregated energy dispatch
(Buzato et al., 2018). Microservice architecture divides complex
service into multiple simple microservices with small size, low
consumption, and independent operation, which forms a chain
structure and significantly improves the computing efficiency
(Naik et al., 2021; Zhou et al., 2023a; Lyu et al., 2020). Container
technology is a lightweight kernel-level virtualization technology
in the operating system layer. Each container has independent
resources and is not interfered with by the other processes
(Al-Debagy and Martinek, 2018; Wu et al., 2018). Through
edge–end collaboration, Internet of Things (IoT) devices offload
the microservices to containers on edge servers for further
processing (Li et al., 2021). Nevertheless, as containers are limited
in their ability to handle specific types of microservices, edge–end
collaboration struggles with microservices’ heterogeneity, leading
to uneven resource utilization across edge servers and significant
service execution delay. Edge–edge collaboration serves as an
extension of edge–end collaboration, allowing the migration of
microservices among edge servers via a 5G network (Wang et al.,
2022). This facilitates service execution, load balancing, and
better utilization of computing resources. To achieve an organic
combination of fast response and edge–end collaboration, the core is
to choose appropriate containers for microservices to minimize the
response time (Zhou et al., 2023b).

Edge–end collaborative container selection for power services
should be carefully conducted due to the limited resources and
latency concerns in a distribution grid. To this end, some works
have been devoted to developing an optimized container selection
solution. Chhikara et al. (2021) proposed a best-fit container selection
algorithm for finding the best suitable destination host for the
migration process and used the heap data structure to get the
lowest overhead node with constant time. Tan et al. (2022) proposed
a cooperative coevolution genetic programming hyper-heuristic
approach to solve the container selection problem and reduce
energy consumption. However, they are not applicable to the
multi-flow aggregated energy dispatch scenario with a coupled
relationship of microservices and containers. Tang et al. (2019)
modeled the container migration strategy as multiple-dimensional
Markov decision process spaces and proposed a deep reinforcement
learning algorithm to realize rapid container selection. Gao et al.

(2020) described a microservice composition problem for multi-
cloud environments and proposed an artificial immune algorithm
for optimal container strategies. Although these approaches provide
some valid ideas for container selection, their solving ability fall short
in thehuge solution spacewithmultiplemicroservices andcontainers.

The ant colony algorithm is an intelligent heuristic algorithm,
which offers advantages such as distributed computing capacity,
high parallelism, and adaptability in container selection problem.
Han et al. (2021) investigated interference-aware online multi-
component service placement in edge cloud networks and translated
it into an ant colony optimization problem to provide computational
offloading services with quality of service guarantees. Cabrera et al.
(2023) presented a mobility-aware, priority-driven, ant colony
algorithm-based service placement model that prioritizes according
to their criticality and minimizes service delays. However, they
struggle to cope with dynamic environmental changes such as load
fluctuations and electromagnetic interference. Additionally, since
some key parameters and initial values have a large impact on
the performance of the algorithm, their search ability tends to be
unstable and prone to local optimal solutions (Tariq et al., 2021).

There are still several challenges in the problem of optimizing
container selection for microservices of multi-flow aggregated
energy dispatch. First, the relationship between the containers
and microservices is a complicated coupling. On one hand, there
are complex interdependencies between successive microservices
generated by the same device. On the other hand, microservices
generated by different devices but processed in the same container
are also intertwined. The coupling relationship brings about the
problem of a large solution space and the curse of dimensionality,
leading to the inability to apply existing model-based algorithms and
closed-form solutions. Second, although the ant colony algorithm
has the advantages of strong distributed computing capability, high
parallelism, and adaptability, it suffers from local optimality due to
strong randomness and often leads to slower convergence. Thus, it
is difficult to directly apply the traditional ant colony algorithm to
find a global optimal solution for the complex coupled microservice
selection problem. In addition, the presence of uncertainties such as
electromagnetic interference, noise, and workload variation leads to
large fluctuations in performance, which further reduces the learning
efficiency of the ant colony algorithm. Finally, the execution of
microservices processing encounters multiple security and privacy
challenges. Malicious devices or edge servers pose threats through
various attacks, aiming tomaximize their gains. Concurrently, certain
malicious entities attempt to extract sensitive information from
intercepted data exchanged between the devices and edge servers.
Without resolving these security and privacy concerns, devices
and edge servers may hesitate to accept the edge–end computing
framework.

Security of microservice processing requires a reliable data
management scheme, and the traditional data management scheme
adopts centralized storage, which is easy to manage and maintain the
databystoringthedataintheclouddatacenterafterunifiedencryption.
However,due to thecomplexstructureof thenewdistributionnetwork
and the high privacy of the data, the application of centralized storage
will face data security risks, which are mainly manifested in the poor
security of the centralized data center and its vulnerability to single-
point-of-failure attacks. The centralized storage data have the risk of
privacy leakageandarevulnerable tomalicious tamperingbyattackers.

Frontiers in Energy Research 02 frontiersin.org

https://doi.org/10.3389/fenrg.2024.1414516
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles

Shi 10.3389/fenrg.2024.1414516

Blockchain, as a distributed ledger technology, has the advantages of
decentralization, data traceability, and being tamper-proof. Unlike in
centralized storage, data in a blockchain are encrypted and stored
in the form of transactions in the nodes running the blockchain.
Transactions are constantly assembled to form blocks, and blocks are
linked to each other through hash values to form a blockchain. Each
transactionandeachblockhascorresponding timestampinformation,
and the consistency of the stored data among the nodes is guaranteed
by the consensus protocol. Benefiting from the good characteristics
of blockchain, the blockchain-based service offloading management
scheme has gradually become the mainstream scheme.

In response to the above issues, this paper proposes an
edge–end collaborative secure and rapid response method for
multi-flow aggregated energy dispatch service in a distribution
grid. First, the container and microservice-empowered edge–end
collaborative secure and rapid response framework for multi-
flow aggregated energy dispatch service in a distribution grid
is proposed. On this basis, we propose a scheme for smart
contract design and blockchain construction. In addition, the
models of end–edge microservice offloading delay, edge–edge
microservice migration delay, microservice data queuing and
computing delay, and total execution delay of microservices
are established. Then, the optimization problem is formulated,
which aims to minimize the time-averaged total execution delay
under the constraints of container selection and resources. A
microservice container selection algorithm based on the enhanced
ant colony with empirical SINR and delay performance awareness
is proposed to solve the optimization problem. By incorporating
heuristic information updating based on empirical performance
awareness into the conventional ant colony and combining local
and global integrated pheromone updating, the algorithm improves
the searching efficiency and convergence speed and realizes the
efficient and flexible selection of containers for microservices.
Finally, the superiority of the proposed algorithm is verified through
simulations. The contributions are summarized as follows:

• Improved searching efficiency under coupled solution space: we
employ the efficient searching ability of the heuristic algorithms
to solve the issues caused by coupled solution space. Specifically,
we incorporate the ant colony algorithm into the searching
process of our container selection optimization problem, where
paths for ants are mapped to the container selection strategies
for microservices. By modeling the information transfer and
feedback mechanism of ants, the searching direction can be
guided by updating the pheromones and heuristics on the path,
which helps speed up the searching efficiency.
• Adaptive path selection with empirical performance awareness:
considering the uncertainties in the environment, we calculate
the historical average SINR between the edge servers and
the historical average queuing delay and computing delay of
all the microservices processed in the containers. Based on
these empirical performances, local pheromone and heuristic
information can be dynamically updated to accommodate
uncertainties for better convergence performance.
• Blockchain-based secure microservice processing: we propose a
secure microservice processing scheme based on blockchain
construction and smart contract design aimed at guaranteeing
privacy, fairness, and security. Our approach leverages the

Merkle hash tree and smart contracts to implement “proof-of-
computing” and mitigate risks.

2 System model

In this section, we introduce the system model, which includes
the proposed secure and rapid response framework, smart contract
design and blockchain construction, and the delay model.

2.1 Container and microservice
empowered edge–end collaborative
secure and rapid response framework

The container and microservice-empowered edge–end
collaborative secure and rapid response framework for multi-
flow aggregated energy dispatch service in a distribution grid
is shown in Figure 1, which consists of the device layer and
edge layer. In the device layer, there are primarily three types of
electric equipment: power generation equipment such as distributed
photovoltaic (PV) and thermal power units, load equipment such
as intelligent charging piles and street lights, and energy storage
equipment such as batteries (Meshram et al., 2022). Multi-flow
energy dispatch services achieve energy supply and demand balance
through the coordination of PV output and energy storage charging
and discharging with load demand. The dispatch service can be
further decomposed into a chain of interrelated microservices,
which contain various types, such as device status collection,
active power control, and historical data storage. A number of IoT
devices are deployed on electric equipment to collect the data on
energy dispatchmicroservice like voltage, current, and temperature.
Afterward, the collected data are offloaded to the containers located
in the edge layer through multimodal channels including power
line communication (PLC) and high-speed radio frequency (HRF).
The edge layer is composed of edge servers, which communicate
with each other through 5G base stations and harness container
technology for the processing of microservice data offloaded by
the devices. Container technology facilitates virtualization by
isolating the resources using a shared operating system kernel
and the related toolsets. The orchestration of multiple containers
is managed systematically to enhance the efficiency of microservice
data processing, thereby achieving a secure and rapid response for
multi-flow aggregated energy dispatch.

Multi-flow aggregated energy dispatch involves the interaction
of data flow, energy flow, and service flow. Data flow is formed
by the microservice data collected by IoT devices and offloaded
from the device layer to the edge layer for subsequent processing.
These data are further processed in containers to support the
energy dispatch service. Energy flow is formed by intelligently
dispatching distributed energy sources, grid, load, and energy
storage to realize the energy demand–supply balance. Service flow
is formed by processing chain-structured microservices and feeding
back service performance to improve the strategy of container
selection of data flow.

Considering a total of T slots, the slot set is denoted as T =
{1,…, t,…,T}. During each slot, it is assumed that the system state
such as channel gain, container computing resource, bandwidth,

Frontiers in Energy Research 03 frontiersin.org

https://doi.org/10.3389/fenrg.2024.1414516
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles

Shi 10.3389/fenrg.2024.1414516

FIGURE 1
Container and microservice-empowered edge–end collaborative secure and rapid response framework for multi-flow aggregated energy dispatch
service in the distribution grid.

and transmission power remains unchanged. There are a total of N
devices, and the n-th device generates M microservices. The set of
microservices is defined as Vn = {vn,1,…,vn,m,…,vn,M}, where vn,m
denotes the m-th microservice of the n-th IoT device. We assume
that the edge layer consists ofG edge servers, and its set is denoted as
W = {w1,…,wg,…,wG}. Each edge server virtualizes the computing
resources into I containers. Specifically, the container set of edge
serverwg is denoted as Cg = {c1g ,…,cig,…,cIg}, where cig represents the
i-th container of wg .

In each slot, devices offloadmicroservice data to edge containers
for processing. A slot ends until all the generated microservices
of devices are processed. The variable of microservice container
selection is defined as sg,in,m(t) ∈ {0,1}. If the microservice vn,m of the
n-th device is offloaded to the container cig of the edge serverwg , then
sg,in,m(t) = 1. Otherwise, sg,in,m(t) = 0. Due to constrained computing
and storage resources, a container can only process a limited type
of microservice data. The type matching variable of microservice is
defined as zg,in,m ∈ {0,1}. If the container cig can process the type of
microservice vn,m, then zg,in,m = 1, and otherwise, zg,in,m = 0. Therefore,
consecutivemicroservices can be processed at containers of different
edge servers through edge–edge collaboration. The complementary
integration of end–edge offloading and edge–edge collaborative
processing enables the achievement of better load balance and more
flexible utilization of container computing resources.

In order to ensure the security of microservice processing and
prevent privacy leakage, we employ the blockchain framework.
Authorized base stations act as the consensus nodes to maintain the
blockchain. Base stations include the register authority component,
computation component, and storage component. The register
authority component, tasked with overseeing registration and
identitymanagement, derives its jurisdiction from the governmental
departments. It allocates a distinct digital certificate to individual
devices to validate their authenticity. The computation component

is accountable for formulating and executing smart contracts.
Additionally, it engages in blockchainmining to obtain rewards.The
storage component preserves the complete blockchain ledger, which
is essential for verifying the authenticity of the blocks and facilitating
microservices offloading and migration validation.

The total microservices computing process based on the
blockchain framework is introduced as follows. First, all devices,
edge servers, and base stations acquire their secure wallets,
which contain a certain amount of digital currency for settling
microservice offloading transactions. Each device generates its
own key pair, including a public key and a private key, which
are responsible for data encryption and decryption. The base
station employs its public and private keys for the generation and
verification of digital signatures. For the three components of the
edge server, their key pairs are identical. Each device will also be
registered with the register authority component for certification.
Second, the device selects an available container for themicroservice
and sends its offloading or migration request to the edge server.
Then, the edge server executes the smart contract, and the device
offloads or migrates the encrypted data to the selected container.
Third, the edge server checks the entire microservices computing
process to check for any malicious behavior. Subsequently, honest
microservices are rewarded in the form of digital currency, while
malicious microservices will be penalized according to the smart
contract. Finally, the edge server constructs a transaction block
and uploads it to the blockchain. Other edge servers engage in
competition to discover a valid proof-of-work, with the initial
discovery being broadcasted to the remaining edge servers for
verification. Upon receiving acceptance from the majority of the
edge servers, the block is then appended to the end of the blockchain.

When processing chain-structured microservices at different
edge servers, there is a dependency relationship between consecutive
microservices. The subsequent microservice must wait for the

Frontiers in Energy Research 04 frontiersin.org

https://doi.org/10.3389/fenrg.2024.1414516
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles

Shi 10.3389/fenrg.2024.1414516

completion of its preceding microservice processing and the
migration of dependency data before it can be executed. Therefore,
the total execution delay of microservices is composed of four parts:
end–edge microservice offloading delay, edge–edge microservice
migration delay, microservice queuing delay, and microservice
computing delay. The paper aims to choose the appropriate
container selection strategy sg,in,m(t) to minimize the total execution
delay, thereby achieving secure and rapid response for multi-flow
aggregated energy dispatch service in the distribution grid.

2.2 Smart contract design and blockchain
construction

We design a smart contract to ensure the transparency and
trustworthiness of the transaction. Smart contracts are jointly
verified and executed by nodes on the blockchain network. Take
edge serverwg as an example.Define the public and private key of the
base station asKpub

bs andKpri
bs . Similarly, the key pair of the n-th device

is denoted as (Kpub
dn ,K

pri
dn) and that of the edge server wg is denoted

as (Kpub
wg , {K

pri
wg}), where {K

pri
wg} represents the private keys of all the

communication links linked to wg . Signatures that are generated by
the register authority component for the device and edge server are
defined as SIGdn and SIGwg .

2.2.1 Microservice offloading request
Devices select wg for microservice offloading and send the

request SIGdn‖SIGsg‖τ0 to the computation component, where τ0 is
the delay requirement. Upon receiving the microservice offloading
request, the device, edge server, and computation component each
contribute a portion of coins to establish a deposit within τ0. This
deposit is held by the computation component during the execution
of the smart contract. Following this, the computation component
forwards the signatures of the device and edge server to the
register authority component. Subsequently, the register authority
component provides the certificate of the device to the edge server
CERwg and the certificate of the edge server to the device CERdn,
enabling both parties to mutually verify each other’s validity, which
is given by Eq. 1,

CERwg = K
pri
sg ‖SIGwg,

CERdn = K
pri
dn‖SIGdn, (1)

where || denotes the combination of the public key and the
signature to obtain the corresponding certificate.

2.2.2 Microservice offloading and migration
Assume that each microservice of the device comprises h

basic fragments. These fragments are employed to construct a
Merkle hash tree as the leaf nodes, facilitating the verification
of data offloading and migration. To enhance security during
transmission or migration, the device or edge server encrypts data
using the public key of the next communication node w′g. This
encryption is represented as ENCKpub

wg′
(data), and the encrypted data

are subsequently transmitted to the next node. In addition, the
Merkle hash root valueROOT(m1) is generated by the starting point.
This value is then forwarded to the computation component as
SIGdn‖ROOT(m1) from the device or SIGwg‖ROOT(m1) from the
edge server.

2.2.3 Microservice computation
The edge server w′g utilizes its private key Kpri∗

wg to decrypt
the microservice data it receives, thus initiating the computation
process. Subsequently, using both the microservice data and
computation outcomes, w′g generates the Merkle hash root value
ROOT(m2).

2.2.4 Outcome feedback
SIGwg′‖ROOT(m2) is transmitted to the computation

component, which employs a Merkle tree-based proof-of-
computing check mechanism to verify the computation results.
This involves comparing ROOT(m1) with ROOT(m2). If
ROOT(m2) = ROOT(m1), it indicates an attempt by the edge
server w′g to deceive the computation component by directly using
offloaded ormigrated data to generateROOT(m2). In case of equality
or failure byw′g to submitROOT(m2) to the computation component
within τ0, the smart contract will terminate the transaction
automatically, identifying w′g as engaging in malicious behavior. w′g
will face penalties and be required to compensate the computation
component with a payment of some currencies.The currencies from
the deposit will be refunded to the others’ wallets. The microservice
offloading ormigration failure event ofw′gwill be logged in the block.
Conversely, successful completion of microservices computing is
acknowledged if no discrepancies arise.

Subsequently, w′g employs the public key of the transmission
starting point in its certificate to encrypt the results.These encrypted
results are then forwarded back to the device as ENCKpub

dn
(outcome)

or to the edge server as ENCKpub
wg′
(outcome).

2.2.5 Transaction settlement
Following the outcome feedback, the transmission starting point

utilizes its private key for outcome decryption and then computes a
new Merkle hash root value ROOT(m3) based on ROOT(m1) and
the received outcomes. Subsequently, ROOT(m3) is transmitted to
the computation component, either as SIGdn‖ROOT(m3) from the
device or SIGwg‖ROOT(m3) from the edge server. The computation
component settles the transaction by comparing ROOT(m3) with
ROOT(m2). If they are equal, it signifies that the edge server
w′g received the outcome within the stipulated delay. Both the
communication parties receive a portion of currencies from the
deposit, while the remainder is refunded to the base station’s wallet.
The successful microservice offloading and migration event of w′g is
recorded in the block. If they are not equal, the transmission starting
point is penalized and required to compensate the computation
component with a payment of currencies. The currencies in the
deposit are then returned to the respective entities’ wallets. The
successful microservice offloading and migration event of w′g is
recorded in the block.

2.2.6 Blockchain construction
The base station initiates the creation of a block to record the

transaction and submits it to the blockchain. Each block header
comprises four key elements: a timestamp, difficulty level, the
previous block’s hash value, and the Merkle hash root value of the
entire block body. The timestamp and difficulty are predetermined
by the blockchain network. Every authorized base station endeavors
to discover its unique proof-of-work by computing the block’s hash
value using a random variable phi and other pertinent data from the

Frontiers in Energy Research 05 frontiersin.org

https://doi.org/10.3389/fenrg.2024.1414516
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles

Shi 10.3389/fenrg.2024.1414516

block header, including the timestamp, Merkle hash root value, and
the previous block’s hash value, denoted as datahead. This calculation
aims to satisfy the condition H(phi+ datahead) < Difficulty. The base
station that first identifies a valid proof-of-work, represented by phi,
broadcasts both the block and phi to other base stations within
the blockchain network for verification. Upon consensus from the
majority of the base stations regarding the validity of the proof-of-
work, the block is permanently appended to the blockchain.Thebase
station responsible for discovering this proof-of-work is rewarded
with mining rewards.

2.3 End–edge microservice offloading
delay

The delay of offloading the first microservice generated by the
n-th device to the container cig on the edge server wg is given Eq. 2:

τoffn,g (t) = s
g,i
n,1 (t)

an,1 (t)

Roff
n,g (t)
, (2)

where an,1(t) denotes the data size of the first microservice vn,1 and
Roff
n,g(t) denotes the transmission rate from the n-th device to edge

server wg , which is calculated by Eq. 3:

Roff
n,g (t) = Bn,glog2 (1+ SINRn,g (t)) . (3)

where Bn,g denotes the transmission bandwidth and SINRn,g(t)
denotes the signal to interference plus noise ratio (SINR) from the
n-th device to the edge server wg . SINRn,g(t) is calculated by Eq. 4:

SINRn,g (t) =
Ptrann (t)hn,g (t)
δ+ en,g (t)

, (4)

where Ptrann (t) is the transmission power of the n-th device,
hn,g(t) is the channel gain, δ is the white noise power, and
en,g(t) is the electromagnetic interference power. The alpha stable
state distribution is used to characterize the electromagnetic
interference (Zhou et al., 2016), and its characteristic function is
calculated as Eq. 5:

E[exp(χφen,g (t))] =

{{{{{{{{
{{{{{{{{
{

exp(χμn,gφ− ξn,g|φ|
αn,g

(1− χβn,gsgn(φ) tan
αn,gπ

2
)), αn,g ≠ 1

exp(χμn,gφ− ξn,g|φ|

−χβn,gsgn(φ) ln |φ|
2
π
), αn,g = 1

,

(5)

where χ and φ are characteristic exponents of the distribution.
αn,g , βn,g , ξn,g , and μn,g are the characteristic factors, skew
parameters, scale parameters, and position parameters of
electromagnetic interference, respectively.

2.4 Edge–edge microservice migration
delay

When the microservice vn,m and its subsequent microservice
vn,m+1 are executed at different edge servers, after the execution

of vn,m, it is necessary to migrate the dependency data from
the container where vn,m has been processed to the container
where vn,m+1 is processed. When vn,m and vn,m+1 are processed
at the same edge server, edge–edge microservice migration delay
can be ignored. When vn,m and vn,m+1 are processed at different
edge servers, considering the data security in the 5G public
network environment, data encryption must be performed when
migrating data between different edge servers. Furthermore, the
data encryption process involves computing the ciphertext, which
includes extensive numerical computations and logical operations.
In contrast, the decryption process simply requires the confirmation
of a match between the ciphertext and the key, without requiring
extensive computations. Hence, we only consider the delay induced
by data encryption (Mota et al., 2017). The data encryption process
of microservice vn,m on container cig includes three parts: generating
encrypted files, generating file summary, and generating digital
signature.

To protect the confidentiality and integrity of sensitive
microservice data, the edge server converts the original raw data
into a coded format and generates encrypted files. The delay of
generating encrypted files is calculated by Eq. 6:

τenc,1n,m,g,i (t) =
adepn,m+1 (t)χenc

ξig
, (6)

where adepn,m+1(t) is the size of the dependency data required
by the executing microservice vn,m+1. χenc is the computational
complexity (cycles/bit) of the generating encrypted files. ξig is
the available amount of the computing resources of container cig
per second.

Then, a summary of the encrypted file is generated to create a
concise representation of it. The delay of generating the data file
summary is calculated by Eq. 7:

τenc,2n,m,g,i (t) =
adepn,m+1 (t)δencχdig

ξig
, (7)

where δenc is the encryption ratio that represents the ratio
of the encrypted data size to the original data size, and χdig
is the computational complexity of generating the data file
summary.

Finally, a digital signature is generated to create a unique
identifier for the file summary using a private key. The delay of
generating the digital signature is calculated by Eq. 8:

τenc,3n,m,g,i (t) =
adepn,m+1 (t)δencχsig

ξig
, (8)

where χsig is the computational complexity of generating the digital
signature.

Therefore, the total data encryption delay of the microservice
vn,m on container cig is the sum of the delay of generating encrypted
files, the delay of generating data file summary, and the delay of
generating a digital signature, which is given by Eq. 9:

τencn,m,g,i (t) = τ
enc,1
n,m,g,i (t) + τ

enc,2
n,m,g,i (t) + τ

enc,3
n,m,g,i (t) . (9)

After data encryption of vn,m, the encrypted dependency data
are migrated to the container where the subsequent microservice

Frontiers in Energy Research 06 frontiersin.org

https://doi.org/10.3389/fenrg.2024.1414516
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles

Shi 10.3389/fenrg.2024.1414516

vn,m+1 is processed. The delay of the migrating dependency data is
calculated as Eq. 10:

τtran,m,g,i (t) =

{{{{{{{{
{{{{{{{{
{

0,
I

∑
i=1

sg,in,m+1 (t) = 1

sg,in,m (t)
G

∑
g′=1

I

∑
i′=1

sg
′,i′

n,m+1 (t)(τ
enc
n,m,g,i (t) + τ

sen
n,m,g,g′ (t)) ,

Otherwise
(10)

where
I
∑
i=1

sg,in,m+1(t) = 1 represents that vn,m and vn,m+1 are processed
at the same edge server. τsenn,m,g,g′(t) is the delay of migrating the
encrypted dependency data vn,m from the edge server wg to the
edge server w′g. Since the size of the data file summary and digital
signature is too small to impact τsenn,m,g,g′(t), it can be calculated simply
as Eq. 11:

τsenn,m,g,g′ (t) =
adepn,m+1 (t)δenc

Rtra
g,g′ (t)

, (11)

where Rtra
g,g′(t) denotes the transmission rate from the edge server wg

to the edge server w′g in the t-th slot, which is calculated as Eq. 12:

Rtra
g,g′ (t) = Bg,g′log2 (1+ SINRg,g′ (t)) , (12)

where Bg,g′ and SINRg,g′(t) represent the transmission bandwidth
and SINR between the edge server wg and the edge server w′g,
respectively.

2.5 Microservice data queuing and
computing delay

Since a container can only process one microservice at a time,
a queue is maintained in the container to cache the microservices
waiting to be processed. The microservices in the queue will
be processed according to the first-in first-out principle. After
obtaining the encrypted dependency data of vn,m−1, the queuing
delay experienced by microservice vn,m at container cig can be
iteratively calculated by the queuing delay and computing the delay
of the microservice that ranks just before vn,m at cig, which is
given by Eq. 13:

τquen,m,g,i (t) = s
g,i
n,m (t)(Δτ

que
n,m,g,i (t) +Δτ

com
n,m,g,i (t)) , (13)

where Δτquen,m,g,i(t) and Δτcomn,m,g,i(t) represent the queuing delay and
computing delay of the microservice that ranks just before vn,m on
container cig, respectively.

The container cig utilizes its available computing resources to
process microservices in a serial manner, and the processing delay
of microservice vn,m on the container cig is given by Eq. 14:

τcomn,m,g,i (t) =

{{{{{{
{{{{{{
{

sg,in,1 (t)
an,1 (t)χn,1

ξig
, m = 1

sg,in,m (t)
adepn,m (t)δencχn,m

ξig
, Otherwise,

(14)

where χn,m denotes the computational complexity of
microservice vn,m.

2.6 Total execution delay of microservices

Therefore, the total execution delay of the M microservices of
the device bn is denoted as the sum of the end–edge microservice
offloading delay, the edge–edge microservice migration delay, and
the microservice data queuing and computing delay, which is
given by Eq. 15:

τsumn (t) = τ
off
n,g (t) +

M−1

∑
m=1

G

∑
g=1

I

∑
i=1

τtran,m,g,i (t)

+
G

∑
g=1

I

∑
i=1
(τquen,M,g,i (t) + τ

com
n,M,g,i (t)) .

(15)

The total execution delay for all devices is given by Eq. 16:

τtot (t) =
n=N

∑
n=1

τsumn (t) . (16)

3 Optimization problem formulation

In this paper, we consider the optimization problem of
microservice container selection for multi-flow aggregated energy
dispatch service in a distribution grid. The optimization objective
is to minimize the time-averaged total execution delay over T slots.
The optimization problem is formulated as Eq. 17:

P1: min
{sg,in,m(t)}

1
T

T

∑
t=1

1
N
τtot (t)

s.t. C1:
G

∑
g=1

I

∑
i=1

sg,in,m (t) = 1,∀vn,m ∈ Vn,∀cig ∈ Cg,∀t ∈ T ,

C2: s
g,i
n,m (t) ≤ z

g,i
n,m,∀vn,m ∈ Vn,∀cig ∈ Cg,∀t ∈ T ,

C3:
N

∑
n=1

sg,in,m (t) ≤ nummax
g,i ,∀vn,m ∈ Vn,∀cig ∈ Cg,∀t ∈ T , (17)

where C1 and C2 are the constraints for container selection, which
mean that microservice vn,m can only select one container, and the
selected container can process the type of microservice vn,m. C3
is the constraint of the maximum number of microservices that a
container can handle, which means that container cig can handle at
most nummax

g,i microservices in each time slot.

4 The Microservice container
selection algorithm based on the
enhanced ant colony with empirical
SINR and delay awareness

The formulated optimization problem of a microservice
container selection is NP-hard due to the following twofold
couplings. First, there exist complicated interdependencies between
consecutive microservices generated by the same devices. The
execution of the subsequent microservice requires the dependency
data of the preceding microservice, which depends on both the
SINR performance of edge–edge microservice migration and the
computing capacity of the container. Therein, solving the container
selection problem needs to consider the execution order of multiple

Frontiers in Energy Research 07 frontiersin.org

https://doi.org/10.3389/fenrg.2024.1414516
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles

Shi 10.3389/fenrg.2024.1414516

microservices. Second, the microservices generated by different
devices but processed in the same container are also intertwined.
The queuing delay experienced by a microservice depends on
not only container computing capacity but also the number of
microservices that rank before it. The solution requires balancing
these competitive relationships among the microservices generated
by different devices. Moreover, the presence of uncertainties
such as electromagnetic interference, noise, and container load
incurs significant performance fluctuations. As a result, it becomes
infeasible to directly apply conventional optimization techniques
relying on convex modeling and certain global knowledge. It is
intuitive to address this complexity by levering more intelligent and
flexible heuristic algorithms.

The ant colony algorithm is an intelligent heuristic algorithm
that simulates the foraging behavior of ant colonies in nature.
It offers advantages such as distributed computing capacity, high
parallelism, and adaptability, making it suitable for applications
in microservices container selection. However, the traditional ant
colony algorithm suffers from large randomness and relatively slow
convergence speeds, which has a larger tendency to fall into a
local optimum. Therefore, it is difficult to use the traditional ant
colony algorithm to find the global optimal solution efficiently
in complex microservice selection issues with interdependencies
between consecutive microservices of the same device and coupling
among microservices of different devices processed in the same
container.

In response to the aforementioned issues, we propose a
microservice container selection algorithm based on the enhanced
ant colony with empirical SINR and delay performance awareness,
as shown in Figure 2. Historical average metrics, including end-
to-edge migration SINR and queuing and computing delays of
containers, are amalgamated to form the empirical performance
profile. This profile dynamically updates the heuristic information,
improving both the search efficiency and convergence speed
of the ant colony. Consequently, it avoids selecting containers
with poor link conditions and high computational burdens.
Moreover, the algorithm combines both local and global pheromone
updating mechanisms. Locally, the incorporation of empirical
SINR within the pheromone matrix diminishes the likelihood
of selecting containers with inferior migration performance
and mitigates the risk of falling into local optima. Globally,
the insights derived from the empirically optimal solution are
disseminated to all ants through global pheromone updating,
thereby facilitating enhanced exploration capabilities in subsequent
iterations.

4.1 Rules for path selection considering
pheromone and heuristic information

Let A = {Ant1,…,Antl,…,AntL} represent the set of L ants, in
which Antl represents the l-th ant. In this paper, “path” refers to
the edge container selected by the ant for microservice processing.
ϕn,mg,i (t) and ηn,mg,i (t) are defined as the pheromone and heuristic
information on the path from vn,m to cig, which are used to guide
the ants to select the appropriate path. The influence factors of
ϕn,mg,i (t) and η

n,m
g,i (t) are denoted as α and β, which reflect their relative

importance degrees. A threshold σ0 ∈ (0,1) is set as a state transfer

factor. Through the comparison of a random number σ ∈ (0,1) with
σ0, we design two rules for path selection, which are as follows.

Rule 1: when σ ≤ σ0, select the path corresponding to the
maximum product of ϕn,mg,i (t) and ηn,mg,i (t) considering respective
influence factors, which is given by Eq. 18:

̂sg,in,m (t) = argmax
{sg,in,m(t)}

{[ϕn,mg,i (t)]
α[ηn,mg,i (t)]

β} , (18)

where ̂sg,in,m(t) represents the optimal solution of this iteration.
Rule 2: when σ > σ0, select the path according to the probability

distribution, which is given by Eq. 19:

P[sg,in,m (t) = 1] =

{{{{{
{{{{{
{

[ϕn,mg,i (t)]
α[ηn,mg,i (t)]

β

∑
cig∈Co

n,m
[ϕn,mg,i (t)]

α[ηn,mg,i (t)]
β
, cig ∈ Co

n,m,

0, others,

(19)

where Co
n,m = {cig|z

g,i
n,m = 1} is the set of optional paths available for

microservice vn,m, i.e., the set of containers that can process the type
of microservice vn,m.

4.2 Heuristic information updating with
empirical performance awareness

We design a heuristic information updating scheme based
on empirical performance awareness. We first introduce the
calculation of empirical performance of edge–edge SINR and
the empirical performance of queuing and computing delay. On
this basis, a dynamic heuristic information updating scheme
is proposed to dynamically update the empirical expectations
of microservices assigned to containers and then guide the
microservice to select the best containers according to the empirical
expectations, which effectively reduces the number of iterations of
the ant colony algorithm and prevents ants from falling into the
local optimum.

4.2.1 Empirical performance of SINR and delay
Due to the variation in electromagnetic interference and

container loads, it is difficult to accurately predict parameters such
as SINR, queuing delay, and computing delay. S̃INRn,m

̂g,g (t) is defined
as the historical average edge–edge SINR from the edge server
w ̂g, where the preceding microservice vn,m−1 is processed to wg ,
where the subsequent microservice vn,m is processed. ̃τqueg,i (t) and
̃τcomg,i (t) are defined as the historical average queuing delay and

computing delay of all the microservices processed in container
cig. S̃INRn,m

̂g,g (t) and ̃τ
que
g,i (t) + ̃τ

com
g,i (t) are given by the following

equations:

S̃INRn,m
̂g,g (t) =

1
t− 1

t−1

∑
r=1

SINRn,m
̂g,g (r) , (20)

̃τqueg,i (t) + ̃τ
com
g,i (t) =

t−1

∑
r=1

∑N
n=1
∑M

m=1
sg,in,m (r)(τ

que
n,m,g,i (r) + τ

com
n,m,g,i (r))

(t− 1)∑N
n=1
∑M

m=1
sg,in,m (r)

,
(21)

Frontiers in Energy Research 08 frontiersin.org

https://doi.org/10.3389/fenrg.2024.1414516
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles

Shi 10.3389/fenrg.2024.1414516

FIGURE 2
Microservice container selection algorithm based on the enhanced ant colony with empirical SINR and delay performance awareness.

where ∑Nn=1∑
M
m=1s

g,i
n,m(r)(τ

que
n,m,g,i(r) + τ

com
n,m,g,i(r)) represents the total

queuing and computing delay of the microservices that select
container cig.

4.2.2 Dynamic heuristic information updating
based on empirical performance

Heuristic information is an estimate that measures the merit of
a path, which provides insights about the path quality that help ants
make decisions along with the guidance of the pheromone. Once
ants do not have enough pheromone, the heuristic factor becomes
the main basis for decision making in path selection rules. It can
help ants to search effectively in the local space and avoid falling into
local optimal solutions. The heuristic information ηn,mg,i (t) signifies
the expectation of ants regarding assigning the microservice vn,m to
container cig. Based on Eqs 18, 19, a larger ηn,mg,i (t) represents a more
preferred path for ants. In order to achieve the minimization of the
total execution delay ofmicroservices in dynamic environments, the
heuristic information needs to be adaptively updated based on the
historical experience. It solves the effects of poor convergence and
low stability of heuristic information updating on an iteration-by-
iteration basis and also provides reliable empirical expectations for

themicroservice selection of containers, thus realizing the awareness
of SINR and delay. The dynamic heuristic information ηn,mg,i (t) is
updated as follows:

ηn,mg,i (t) = ωSINR ⋅ S̃INR
n,m
̂g,g (t) +

ωque+com

̃τqueg,i (t) + ̃τ
com
g,i (t)
, (22)

where ωSINR and ωque+com denote the weights assigned with the
empirical performance of SINR and the empirical performance of
queuing and computing delay, respectively.

4.3 Local and global integrated
pheromone updating

Pheromone is a chemical released by ants on a path to transmit
information. It acts as a collective memory in the ant colony
algorithm, which records the experience of the ant colony during the
searching process. Ants tend to choose pathswith higher pheromone
concentrations.Thus, when an ant on a path discovers a high-quality
solution, it releases more pheromone, leading other ants to be more
likely to choose the same path. In the container selection problem,

Frontiers in Energy Research 09 frontiersin.org

https://doi.org/10.3389/fenrg.2024.1414516
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles

Shi 10.3389/fenrg.2024.1414516

we define ϕn,mg,i (t) as the pheromone on the path from vn,m to cig, and
a larger ϕn,mg,i (t)means that ants prefer to choose the container cig for
the microservice vn,m based on Eqs 18, 19. In the process of iterative
ant colony path searching, we introduce amethod that involves both
local and global integrated pheromone updating to balance local and
global explorations and accelerate convergence speed.

4.3.1 Local pheromone updating
Local pheromone is updated after an ant has traveled a

path, and the ant has the capability to induce the evaporation
of pheromones along this path. Local pheromone is updated to
reduce the probability of repeatedly selecting the same path, thereby
mitigating the risk of entrapment in a local optimal solution. In
order to adjust the evaporation amount of the local pheromone, we
combine the updatingwith edge–edge SINR considering subsequent
microservice migrations. Co

n,m+1 = {c
i
g|z

g,i
n,m+1 = 1} is defined as the

optional container set for microservice vn,m+1, and |Co
n,m+1| is

defined as the number of optional containers. Since the subsequent
microservice vm+1may have a lower average SINR as it completes the
migration process from wg to wg′ ∈ Co

n,m+1, it will evaporate more
pheromone ϕn,mg,i (t) along the path. Thus, the detailed equation for
localized pheromone updating is as follows:

ϕn,mg,i (t) =(1−
ρ1 ⋅ y|C

o
n,m+1|

∑
cig′∈Co

n,m+1

S̃INRn,m
g,g′ (t)
) ⋅ϕn,mg,i (t) + ρ1ϕ0, (23)

where S̃INRn,m
g,g′(t) represents the historical average edge–edge SINR

from wg selected by the current microservice vn,m to wg ’ that can
be selected by the subsequent microservice vn,m+1. The calculation
of S̃INRn,m

g,g′(t) is similar to that in Eq. 20. ρ1 ∈ [0,1] is the local
pheromone evaporation parameter, ϕ0 is the initial pheromone
content, and y is a scaling factor.

4.3.2 Global pheromone updating
Global pheromone is updated after all ants in A have traveled

and selected their own paths, i.e., completing an iteration of training.
The global pheromone is updated. Global pheromone acts as a
synergistic guide between ant colonies. The ants are able to interact
and act synergistically in the searching space by sharing the global
pheromone. The updating of the global pheromone helps accelerate
the convergence of the ants to the global optimal solution. Upon
completing an iteration of training, a global optimal path planning
strategy with the smallest total microservice execution delay is
chosen, and the global pheromone on this optimal path is increased,
which is given by the following equation:

ϕn,mg,i (t) = (1− ρ2)ϕ
n,m
g,i (t) + ρ2Δϕ

n,m
g,i,best (t) , (24)

where ρ2 is the global pheromone updating parameter. Δϕn,mg,i (t) is
the increment of the pheromone on the global optimal path, which
is given by the following equation:

Δϕn,mg,i,best =
1
N
τtotbest (t)

NM
, (25)

where 1
N
τtotbest(t) represents the minimum total microservices

execution delay for all ants in setA.

4.4 Algorithm process

The implementation process of the proposed microservice
container selection algorithm based on the enhanced ant
colony with empirical SINR and delay performance awareness
is shown in Algorithm 1. We assume that there are a total of K
training iterations, and for one iteration, each ant inA should select
paths for all microservices in Vn. The allowed list for Antl is defined
as Fl, which indicates that microservices in Fl are waiting for Antl
to select paths for them.The tabu list for Antl is defined as F̂l, which
indicates that microservices in F̂l have finished path selection. The
procedures of the proposed algorithm are detailed below.

1) Initialization: initialize B, Vn, W , Cg, and {z
g,i
n,m}, and set

sg,in,m(t) = 0.
2) Global optimal path execution over slots: at the beginning

of slott, calculate the historical average SINR S̃INRn,m
̂g,g (t) between

all edge servers, the historical average queuing delay ̃τqueg,i (t),
and computing delay ̃τcomg,i (t) of all microservices processed in
container cig based on Eqs 20, 21. Through these calculations of
empirical performance, heuristic information ηn,mg,i (t) is updated
based on Eq. 22. Then, we start the iterative training of the
global optimal solution searching in procedure 3. Finally, the
devices and edge servers execute the global optimal path selection
strategy {sg,in,m} obtained in the K-th iteration and obtain the SINR
SINRn,m

̂g,g (t) between all edge servers as well as the queuing delay and
computing delay.

3) Global optimal path searching over iterations: at the beginning
of the k-th iteration, we initialize the allowed list Fl = ∅ and tabu
list F̂l = ∅ for all ants in A. Then, we perform the ant colony
optimization in procedure 4. Through the comparison of all the
ants’ total microservice execution delay, we obtain the best path
with theminimumdelay 1

N
τtotbest(t) and calculate the increment of the

pheromone on the global optimal path Δϕn,mg,i (t) based on Eq. 25. On
this basis, the global optimal path of the k-th iteration is derived, and
the global pheromone is updated based on Eq. 24.

4) Path selection through ant colony optimization: ants in A
sequentially perform path selection for all microservices. For ant
Antl, it adds the first microservice of all devices waiting to be
offloaded into Fl. Antl is placed randomly on a microservice, e.g.,
vn,m in Fl as the starting point, and then a container cig is selected
for the microservice vn,m based on the rules of Eqs 18, 19. Once
path selection is completed, the local pheromone on the selected
path is updated based on Eq. 23. Then, the current microservice
vn,m is taken out of Fl and put into the tabu list F̂l. In addition,
the subsequent microservice vn,m+1 is added into the allowed listFl.
When all the microservices have completed their path selection, i.e.,
Fl = ∅, the total microservice execution delay of Antl is calculated.

4.5 Convergence analysis

From the perspective of training iterations, ants search for
optimal paths based on the local and global integrated pheromone
updating method. On one hand, the update of the local pheromone
serves to alleviate the risk of being trapped in the local optimality.On
the other hand, the global pheromone provides positive incentives
for exploration.Through their combination, the proposed algorithm
exhibits a stronger ability to search for the global optimum in a large

Frontiers in Energy Research 10 frontiersin.org

https://doi.org/10.3389/fenrg.2024.1414516
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles

Shi 10.3389/fenrg.2024.1414516

  1: Initialization: initialize B, Vn, W, Cg, and

{zg,in,m}, and set s
g,i
n,m(t) = 0.

  2: For t = 1,…,T do

  3: Calculate the historical average SINR between

all edge servers based on Eq. 20.

  4: Calculate the historical average queuing

delay and computing delay of all the microservices

processed in container cig based on Eq. 21.

  5: Update heuristic information ηn,m
g,i(t)

based on Eq. 22.

  6: For k = 1,…,K do

  7: Initialize Fl = ∅, F̂l = ∅ for all ants in A.

  8: For l = 1,…,L do

  9: Add the first microservice of all devices

waiting to be offloaded into Fl.

  10: While Fl ≠ ∅
  11: Place Antl randomly on a microservice vn,m in

Fl as a starting point.

  12: Select a container for the current

microservice vn,m based on Eqs 18, 19.

  13: Update the local pheromone based on Eq. 23.

  14: Take the current microservice vn,m out of Fl

and put it into the tabu list F̂l.

  15: Add the subsequent microservice vn,m+1 into

the allowed list Fl.

  16: End while

  17: Calculate the total microservice execution

delay of Antl.

  18: End for

  19: Compare the total microservice execution

delay of ants in set A, and derive the global

optimal path.

  20: Update the global pheromone based on

Eqs 24, 25.

  21: End for

  22: Execute the global optimal path selection

strategy obtained in the K-th iteration.

  23: Obtain the SINR between all edge servers as

well as the queuing delay and computing delay of

all microservices processed in container cig in

slot t.

  24: End for

Algorithm 1. Microservice container selection algorithm based on the
enhanced ant colony with empirical SINR and delay awareness.

solution space and avoid falling into a local optimum. From the
perspective of slots, empirical SINR, queuing delay, and computing
delay are calculated at the beginning of each slot based on the
information obtained by executing the container selection strategy
at the end of the last time slot. Then, the heuristic information
used to perform path selection in this slot is updated. Dynamic
iterative heuristic information updating provides better direction for
optimal path searching. In addition, compared with conventional

ant colony algorithm, both pheromone updating and heuristic
information updating leverages empirical performance as a key
basis, which effectively accelerates the convergence speed and avoids
the performance decay due to the variation of the environment.

4.6 Complexity analysis

The complexity of the proposed algorithm is mainly related
to the procedures of path selection, pheromone updating, and
heuristic information updating. For path selection, the complexity
for an ant selecting one path for all devices’ microservices is
O(NM). Since there are total K training iterations in one slot
and L ants in each iteration, the complexity of path selection in
one slot is O(NMLK). For pheromone updating, the complexity
consists of two parts, i.e., local pheromone updating along
with each path selection and global pheromone updating at the
end of one iteration. Global pheromone updating relies on the
calculation of the total microservices execution delay of an ant
and their comparison result. Thus, the complexity of pheromone
updating in one slot is O(NMLK+NML2K). Heuristic information
is updated at the beginning of one slot based on the calculation
of empirical edge–edge SINR, queuing delay, and computing delay.
Therefore, the complexity of heuristic information updating is
O (G(G− 1)/2+ 2GI). Based on the above analysis, the complexity
of the proposed algorithm is O (NMLK(2+ L) +G(G+ 4I− 1)/2).
Compared with the conventional ant colony algorithm with
the complexity O(2NMLK), the proposed algorithm sacrifices
complexity slightly for better convergence performance and stronger
learning adaptability.

5 Simulation results

In this section, we first theoretically analyze the proposed
scheme from the perspectives of privacy, fairness, and security.Then,
we validate the proposed scheme by simulation in a specific scenario.

5.1 Privacy, fairness, and security analysis

5.1.1 Privacy protection
The devices and edge servers generate key pairs, with the public

and private keys used for encryption and decryption purposes.
This encryption ensures that intercepted data are incomprehensible
to attackers without access to the corresponding private key.
Furthermore, communication between devices and edge servers is
conducted through blinded signatures,maintaining their anonymity
within the network.

5.1.2 Fairness
According to the devised smart contract, any edge server

engaging in the “free-ride” attack will face penalties, and instances
of microservice offloading and migration failure are recorded in
the blockchain. Furthermore, entities of the “double-claim” and
repudiation attacks will likewise be penalized. Consequently, only
honest entities are eligible for rewards, with successful microservice
offloading and migration events being recorded.

Frontiers in Energy Research 11 frontiersin.org

https://doi.org/10.3389/fenrg.2024.1414516
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles

Shi 10.3389/fenrg.2024.1414516

FIGURE 3
IEEE-33-node power distribution system.

5.1.3 Security
In this section, we will conduct a security analysis of

three common blockchain attack threats: the “double-claim”
attack, the “free-ride” attack, and the “repudiation” attack. These
attacks are chosen due to their relevance to the microservices
computing process based on the blockchain framework proposed in
this paper.

1) Security against “double-claim” attack: upon the receipt
of ROOT(m3), the smart contract automatically triggers
transaction settlement, preventing any malicious device or
edge server from claiming rewards multiple times.

2) Security against “free-ride” attack: in the event that a malicious
edge server fails to allocate adequate computational resources,
it will be unable to provide the Merkle hash root value
ROOT(m2) to the computation component within the
stipulated timeframe. Consequently, the transaction is
automatically terminated, and the edge server faces penalties
for the failure in microservice offloading or migration.
Alternatively, if themalicious edge server generatesROOT(m2)
without performing actual data computation, resulting in
equality with ROOT(m1), it will be penalized for malicious
behavior, with the failure event being recorded in the
blockchain.

3) Security against “repudiation” attack: at the outset of the
microservice offloading and migration process, all three
entities must contribute to a currency deposit pool. The
smart contract design ensures that these currencies cannot

be returned to a malicious base station’s wallet until the
transaction settlement is complete. Additionally, if a device
attempts to deny the contributions of an edge server, it
must submit a ROOT(m3) distinct from ROOT(m2) to
the computation component. In such cases, the device is
ineligible for rewards, contravening the rationality assumption
of devices.

5.2 Simulations

The IEEE-33-based node distribution grid, as shown in
Figure 3, is selected for simulations, which contains distributed
PV, fuel generator sets, intelligent charging piles, distributed
energy storage units, IoT devices, and edge servers. The
simulation parameters are shown in Table 1 (Khapre et al., 2020,
Tariq et al., 2020, Zhu et al., 2024).

Two state-of-art algorithms are employed for comparison.
The first algorithm is the containerized microservices
deployment approach based on the ant colony (CMAC),
which adopts conventional ant colony algorithm (Lee et al.,
2023). The second algorithm is the upper confidence bound-
based microservices deployment approach (UCBM), which
achieves more rational exploration and improves resource
utilization by considering microservice priorities and resolving
conflicts between differentiated microservices (Deng et al.,
2023). Neither CMAC nor UCBM considers the empirical
performance of SINR between the edge servers as well as

Frontiers in Energy Research 12 frontiersin.org

https://doi.org/10.3389/fenrg.2024.1414516
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles

Shi 10.3389/fenrg.2024.1414516

TABLE 1 Simulation parameters.

Parameter Value Parameter Value

N 20 M 10

G 4 I 6

T 200 Bn,g 1 MHz

δ −114 dBm αn,g 1.4

βn,g −0.791 ξn,g 10–4

μn,g [1.2, 2.6] χenc 3× 106 cycles/Mbits

χdig 2× 106 cycles/Mbits χsig 3× 106 cycles/Mbits

δenc 0.8 χn,m [2, 10] ×106 cycles/Mbits

ξig [1× 108,3× 108] CPU cycles/s Ptrann (t) [0.1,0.4]W

Bg,g′ 1.2 MHz nummax
g,i 8

ρ1 0.8 ρ2 0.1

K 200 L 200

queuing and computing delay of microservices processed in
containers.

Figure 4 illustrates the average service execution delay versus
iteration under different algorithms. The average execution delay
refers to 1

N
τtot(t). When algorithms iterate 2,000 times, the proposed

algorithm reduces the average service execution delay by 23.64%
and 41.93% compared with CMAC and UCBM, respectively. The
proposed algorithm takes into account the empirical performance of
SINR, queuing delay, and computing delay in heuristic information
updating to minimize total delay, resulting in the best convergence
performance. Additionally, the proposed algorithm updates local
pheromones differently based on the empirical performance of
SINR, which significantly speeds up the convergence by avoiding
low-quality links.

Figure 5 shows the edge server computing workload with the
edge server under different algorithms. The computing load of the
edge server of the proposed algorithm is the most balanced. The
reason is that the proposed algorithm canmake full use of containers
with relatively poor computing resources but better link conditions
and less computing workload to reduce migration and queuing
delay. In contrast, CMAC and UCBM focus solely on computing
and aggressively select containers with rich computing resources to
reduce computing delay, which results in the unbalanced computing
workload of edge servers.

Figures 6, 7 illustrate the average service execution delay
versus the number of devices and the microservice computational
complexity, respectively. With the increase of the number of
devices and computational complexity, it is evident that the average
service execution delays of the three algorithms are significantly
enhanced. On one hand, as the number of devices increases,
the total number of microservices to be processed also increases,
resulting in higher queuing and migration delay. On the other

FIGURE 4
Average service execution delay under different algorithms.

hand, the rise in computational complexity leads to an increase in
computing delay. When the number of devices is 26, the proposed
algorithm reduces the average service execution delay by 31.18%
and 52.33% compared to CMAC and UCBM, respectively. When
the computational complexity is 10× 106 cycles/Mbits, the proposed
algorithm reduces the average service execution delay by 34.34% and
50.1%, respectively. This is attributed to the proposed algorithm’s
consideration of the empirical performance of queuing delay and
SINR of container selection, effectively mitigating the increase
in queuing delay and migration delay. Furthermore, due to the
balanced computing workload of the edge server, the increase in

Frontiers in Energy Research 13 frontiersin.org

https://doi.org/10.3389/fenrg.2024.1414516
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles

Shi 10.3389/fenrg.2024.1414516

FIGURE 5
Edge server computing workload under different algorithms.

FIGURE 6
Average service execution delay versus the number of devices.

computing complexity has less influence on the computing delay of
the proposed algorithm.

Figure 8 compares the composition of service execution delay
under different algorithms. It can be seen that the offloading
delays of the three algorithms are the same because the offloading
delay is mainly affected by the first microservice. Although the
proposed algorithm exhibits a higher computing delay compared
to CMAC and UCBM, it effectively reduces the queuing delay
by 41.23% and 67.45% and migration delay by 44.63% and
61.32%, respectively. CMAC and UCBM only account for the
computing delay in container selection, leading to a large migration
delay. Furthermore, aggressive selection of containers with more
computing resources causes microservices to accumulate, resulting
in increased queuing delay. The proposed algorithm’s consideration
of workload balancing may result in the selection of a container
with subpar computing resources, leading to a calculation delay that

FIGURE 7
Average service execution delay versus microservice computational
complexity.

FIGURE 8
Delay composition of service execution delay under different
algorithms.

is not the lowest. However, it achieves optimal service execution
delay performance by significantly reducing the migration and
queuing delays.

Figures 9, 10 represent the average service execution delay
and migration delay under sudden electromagnetic interference,
respectively. Particularly, in the 80th time slot, the electromagnetic
interference on a specific edge–edge microservice migration link
is suddenly increased. Initially, the average service execution delay
and migration delay of the three algorithms sharply decreased and
stabilized after five time slots. However, after 80 slots, the sudden
increase in electromagnetic interference led to a notable rise in the
migration delay and average service execution delay for all three
algorithms. In the 200th time slot, compared to CMAC and UCBM,
the proposed algorithm reduces the average service execution delay
by 25.44% and 46.34%, respectively, and reduces the migration
delay by 52.96% and 72.01%, respectively. Notably, the proposed

Frontiers in Energy Research 14 frontiersin.org

https://doi.org/10.3389/fenrg.2024.1414516
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles

Shi 10.3389/fenrg.2024.1414516

FIGURE 9
Average service execution delay under sudden electromagnetic
interference.

FIGURE 10
Migration delay under sudden electromagnetic interference.

algorithm considers the empirical performance of SINR and can
avoid choosing the edge–edge microservice migration channel with
large electromagnetic interference, resulting in the smallest increase
in the average service execution delay and migration delay and the
fastest convergence speed. UCBM is sensitive to the initial estimate,
and it takes a longer time to converge when the electromagnetic
interference changes suddenly, performing the worst among the
three algorithms.

6 Conclusion

In this paper, we studied the edge–end collaborative secure and
rapid response method for multi-flow aggregated energy dispatch
service in the distribution grid. In response to the optimization
problem of microservice container selection, we proposed a
microservice container selection algorithm based on the enhanced

ant colony with empirical SINR and delay performance awareness
to minimize the time-averaged total execution delay. This proposed
algorithm, building upon the traditional ant colony algorithm,
integrates the historical average performance of edge–edge
migration SINR and delay of queuing and computing to obtain
more accurate heuristic information updating. It also combines
local and global integrated pheromone updating, enhancing the
searching efficiency and convergence speed. The simulation results
demonstrate that compared to CMAC and UCBM algorithms, the
proposed algorithm reduces the average service execution delay
by 23.64% and 41.93%, respectively, and shows faster convergence
and more balanced workloads. Q2–2: In forthcoming research,
we will explore integrated sensing, transmission, and computing
services aligned with comprehensive environmental sensing, cloud-
edge–end management, and intelligent data processing, while also
examining the security implications of IoT devices connecting to
edge servers via 5G, with the goal of optimizing container selection
and enabling automated energy dispatch.

Data availability statement

The raw data supporting the conclusion of this article will be
made available by the authors, without undue reservation.

Author contributions

ZS: writing–original draft and writing–review and editing.

Funding

The author declares that financial support was received
for the research, authorship, and/or publication of this article.
This work was supported by the China Southern Power Grid
technology project under Grant number 03600KK52220019
(GDKJXM20220253).

Conflict of interest

Author ZS was employed by the Power Dispatching and
Controlling Center of Guangdong Power Grid Company
Limited.

The authors declare that this study received funding from China
Southern Power Grid technology project. The funder was involved
in the study design, collection, analysis, interpretation of data, the
writing of this article, and the decision to submit it for publication.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors, and the
reviewers. Any product thatmay be evaluated in this article, or claim
thatmay bemade by itsmanufacturer, is not guaranteed or endorsed
by the publisher.

Frontiers in Energy Research 15 frontiersin.org

https://doi.org/10.3389/fenrg.2024.1414516
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles

Shi 10.3389/fenrg.2024.1414516

References

Al-Debagy, O., and Martinek, P. (2018). “A comparative review of microservices
and monolithic architectures,” in 2018 IEEE 18th International Symposium on
Computational Intelligence and Informatics (CINTI), Budapest, Hungary, 21-22
November 2018, 149–154.

Buzato, F. H. L., Goldman, A., and Batista, D. (2018). “Efficient resources utilization
by different microservices deployment models,” in 2018 IEEE 17th International
Symposium on Network Computing and Applications (NCA), Cambridge, MA, USA,
1-3 November 2018, 1–4.

Cabrera, C., Svorobej, S., Palade, A., Kazmi, A., and Clarke, S. (2023). Maaco: a
dynamic service placement model for smart cities. IEEE Trans. Serv. Comput. 16,
424–437. doi:10.1109/TSC.2022.3143029

Chhikara, Tekchandani, R., Kumar, N., and Obaidat, M. S. (2021). An efficient
container management scheme for resource-constrained intelligent IoT devices. IEEE
Internet Things J. 8 (16), 12597–12609. doi:10.1109/jiot.2020.3037181

Deng, X., Li, B., Li, X., Wu, Z., and Yang, Z. (2023). “Container and microservice-
based resource management for distribution station area,” in 2023 5th International
Conference on Intelligent Control, Measurement and Signal Processing (ICMSP),
Chengdu, China, 19th to 21st May 2023, 578–581.

Dong, M., Ota, K., and Liu, A. (2016). RMER: reliable and energy-efficient data
collection for large-scale wireless sensor networks. IEEE Internet Things J. 3 (4),
511–519. doi:10.1109/jiot.2016.2517405

Gao, Chen, M., Liu, A., Ip, W. H., and Yung, K. L. (2020). Optimization of
microservice composition based on artificial immune algorithm considering fuzziness
and user preference. IEEE Access 8, 26385–26404. doi:10.1109/access.2020.2971379

Han, P., Liu, Y., and Guo, L. (2021). Interference-aware online multicomponent
service placement in edge cloud networks and its ai application. IEEE Internet Things
J. 8, 10557–10572. doi:10.1109/jiot.2020.3048832

Khapre, S. P., Chopra, S., Khan, A., Sharma, P., and Shankar, A. (2020). “Optimized
routing method for wireless sensor networks based on improved ant colony algorithm,”
in 2020 10th International Conference on Cloud Computing, Data Science and
Engineering (Confluence), Noida, India, 29-31 January 2020, 455–458.

Lee,W.-T., Yang, Z.-Y., Liu, Z.-W., and Lee, S.-J. (2023). “Containerizedmicroservices
deployment approach based on ant colony optimization,” in 2023 10th International
Conference on Dependable Systems and Their Applications (DSA), Tokyo, Japan,
August 10-11, 2023, 472–473.

Li, Q., Li, S., Song, X., Shen, Z., Xue, C., Xing, Y., et al. (2022). “Research on key
technologies of multi-objective coordinated optimal operation of source, network and
load of new power distribution system,” in 2022 IEEE 6th Conference on Energy
Internet and Energy System Integration (EI2), Chengdu, China, Oct. 28th to 30th, 2022,
3099–3104.

Li, W., Li, X., and Ruiz, R. (2021). “Scheduling microservice-based workflows to
containers in on-demand cloud resources,” in 2021 IEEE 24th International Conference
on Computer Supported CooperativeWork in Design (CSCWD), Pune, India, 5-7May
2021, 61–66.

Lyu, Z., Wei, H., Bai, X., and Lian, C. (2020). Microservice-based
architecture for an energy management system. IEEE Syst. J. 14, 5061–5072.
doi:10.1109/jsyst.2020.2981095

Meshram, D. K., Goel, N., and Chacko, S. (2022). “Integration of battery energy
storage system with solar power generation system along with load management
system,” in 2022 International Conference for Advancement in Technology (ICONAT),
Goa, India, 21-22 January 2022, 1–8.

Mota, A. V., Azam, S., Shanmugam, B., Yeo, K. C., and Kannoorpatti, K.
(2017). “Comparative analysis of different techniques of encryption for secured data
transmission,” in 2017 IEEE International Conference on Power, Control, Signals
and Instrumentation Engineering (ICPCSI), Chennai, India, 21-22 Sepember 2017,
231–237.

Naik, A., Choudhari, J., Pawar, V., and Shitole, S. (2021). “Building an edtech platform
using microservices and docker,” in 2021 IEEE Pune Section International Conference
(PuneCon), Pune, India, 16-19 December 2021, 1–6.

Shen, Z., Ding, F., Yao, Y., Bhardwaj, A., Guo, Z., and Yu, K. (2023).
A privacy-preserving social computing framework for health management
using federated learning. IEEE Trans. Comput. Soc. Syst. 10 (4), 1666–1678.
doi:10.1109/tcss.2022.3222682

Shunxin, L., Min, Z., Wenhai, N., Yinan, Z., Xin, L., and Shaoqiao, D. (2022).
“Research on the smart grid development needs of power distribution network under
and comprehensive electric energy use system,” in 2022 IEEE 2nd International
Conference on Power, Electronics and Computer Applications (ICPECA), Shenyang,
China, 21-23 January 2022, 849–851.

Tan, A., Ma, H., Mei, Y., and Zhang, M. (2022). A cooperative coevolution
genetic programming hyper-heuristics approach for on-line resource allocation
in container-based clouds. IEEE TCC 10 (3), 1500–1514. doi:10.1109/tcc.2020.
3026338

Tang, Zhou, X., Zhang, F., Jia, W., and Zhao, W. (2019). Migration modeling and
learning algorithms for containers in fog computing. IEEE T Serv. Comput. 12 (5),
712–725. doi:10.1109/tsc.2018.2827070

Tariq, M., Adnan, M., Srivastava, G., and Poor, H. V. (2020). Instability detection
and prevention in smart grids under asymmetric faults. IEEE Trans. Ind. Appl. 56 (4),
1–4520. doi:10.1109/tia.2020.2964594

Tariq, M., Naeem, F., Ali, M., and Poor, H. V. (2021). Vulnerability assessment of 6G
enabled smart grid cyber-physical systems. IEEE Internet Things J. 8 (7), 5468–5475.
doi:10.1109/jiot.2020.3042090

Tariq, M., and Poor, H. V. (2018). Electricity theft detection and localization in
microgrids. IEEE Trans. Smart Grid 9, 1920–1929. doi:10.1109/TSG.2016.2602660

Wang, Y., Ding, P., Shen, Y., Shi, X., and Zhou, H. (2022). “Fine-grained object
tracking system infrastructure based on cloud-edge collaboration,” in 2022 IEEE
International Symposium on Broadband Multimedia Systems and Broadcasting
(BMSB), Bilbao, Spain, June 15 -17, 2022, 1–5.

Wu, J., Dong, M., Ota, K., Li, J., and Guan, Z. (2019). FCSS: fog-computing-based
content-aware filtering for security services in information-centric social networks.
IEEE Trans. Emerg. Top. Comput. 7 (4), 553–564. doi:10.1109/tetc.2017.2747158

Wu, J., Dong, M., Ota, K., Li, J., and Guan, Z. (2018). Big data analysis-
based secure cluster management for optimized control plane in software-defined
networks. IEEE Trans. Netw. Serv. Manage. 15 (1), 27–38. doi:10.1109/tnsm.2018.
2799000

Xue, H., Chen, D., Zhang, N., Dai, H., and Yu, K. (2023). Integration of blockchain
and edge computing in internet of things: a survey. Future Gener. comput. Syst. 144,
307–326. doi:10.1016/j.future.2022.10.029

Yang, J., Lin, G., Lv, R., Gao, C., and Chen, T. (2020). “Research on construction and
dispatching of virtual power plant based on reserve energy storage of communication
base station,” in 2020 IEEE 4th Conference on Energy Internet and Energy
System Integration (EI2), Wuhan, China, 30 October 2020 - 01 November 2020,
398–403.

Zhou, H., Wang, Z., Zheng, H., He, S., and Dong, M. (2023a). Cost minimization-
oriented computation offloading and service caching in mobile cloud-edge
computing: an A3C-based approach. IEEE Trans. Netw. Sci. Eng. 10 (3), 1326–1338.
doi:10.1109/tnse.2023.3255544

Zhou, H., Zhang, Z., Wu, Y., Dong, M., and Leung, V. C. M. (2023b). Energy efficient
joint computation offloading and service caching for mobile edge computing: a deep
reinforcement learning approach. IEEE Trans. Green Commun. Netw. 7 (2), 950–961.
doi:10.1109/tgcn.2022.3186403

Zhou, Z., Yang, X., and Xu, C. (2016). “Performance evaluation of multi-antenna
based m2m communications for substation monitoring,” in 2016 International
Conference on Information and Communication Technology Convergence (ICTC),
Jeju, Korea (South), 19-21 October 2016, 97–102.

Zhu, X., Ma, F., Ding, F., Guo, Z., Yang, J., and Yu, K. (2024). A low-
latency edge computation offloading scheme for trust evaluation in finance-
level artificial intelligence of things. IEEE Internet Things J. 11 (1), 114–124.
doi:10.1109/jiot.2023.3297834

Frontiers in Energy Research 16 frontiersin.org

https://doi.org/10.3389/fenrg.2024.1414516
https://doi.org/10.1109/TSC.2022.3143029
https://doi.org/10.1109/jiot.2020.3037181
https://doi.org/10.1109/jiot.2016.2517405
https://doi.org/10.1109/access.2020.2971379
https://doi.org/10.1109/jiot.2020.3048832
https://doi.org/10.1109/jsyst.2020.2981095
https://doi.org/10.1109/tcss.2022.3222682
https://doi.org/10.1109/tcc.2020.3026338
https://doi.org/10.1109/tcc.2020.3026338
https://doi.org/10.1109/tsc.2018.2827070
https://doi.org/10.1109/tia.2020.2964594
https://doi.org/10.1109/jiot.2020.3042090
https://doi.org/10.1109/TSG.2016.2602660
https://doi.org/10.1109/tetc.2017.2747158
https://doi.org/10.1109/tnsm.2018.2799000
https://doi.org/10.1109/tnsm.2018.2799000
https://doi.org/10.1016/j.future.2022.10.029
https://doi.org/10.1109/tnse.2023.3255544
https://doi.org/10.1109/tgcn.2022.3186403
https://doi.org/10.1109/jiot.2023.3297834
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles

	1 Introduction
	2 System model
	2.1 Container and microservice empowered edge–end collaborative secure and rapid response framework
	2.2 Smart contract design and blockchain construction
	2.2.1 Microservice offloading request
	2.2.2 Microservice offloading and migration
	2.2.3 Microservice computation
	2.2.4 Outcome feedback
	2.2.5 Transaction settlement
	2.2.6 Blockchain construction

	2.3 End–edge microservice offloading delay
	2.4 Edge–edge microservice migration delay
	2.5 Microservice data queuing and computing delay
	2.6 Total execution delay of microservices

	3 Optimization problem formulation
	4 The Microservice container selection algorithm based on the enhanced ant colony with empirical SINR and delay awareness
	4.1 Rules for path selection considering pheromone and heuristic information
	4.2 Heuristic information updating with empirical performance awareness
	4.2.1 Empirical performance of SINR and delay
	4.2.2 Dynamic heuristic information updating based on empirical performance

	4.3 Local and global integrated pheromone updating
	4.3.1 Local pheromone updating
	4.3.2 Global pheromone updating

	4.4 Algorithm process
	4.5 Convergence analysis
	4.6 Complexity analysis

	5 Simulation results
	5.1 Privacy, fairness, and security analysis
	5.1.1 Privacy protection
	5.1.2 Fairness
	5.1.3 Security

	5.2 Simulations

	6 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References

