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1 Introduction

As a typical spatial–temporal flexible resource, mobile energy storage can respond
promptly to ensure uninterrupted power supply in case of life safety issues and economic
loss due to the consequences of electricity outages (Sun et al., 2022; Sun et al., 2017;
Chuangpishit et al., 2023). In addition to emergency power supply, mobile energy storage
systems can also provide various ancillary services, including peak shaving and valley filling
(Li et al., 2023; Manojkumar et al., 2021; Li X. et al., 2021), distributed renewable energy
consumption (Li X. et al., 2021; Zhou et al., 2021; Zhong et al., 2023), and power quality
management (Xiong et al., 2020; Cao et al., 2024; Naderi et al., 2021). Nevertheless, energy
storage mostly stays in a standby state, thus failing to fully leverage its multiple spatiotemporal
applications, leading to low utilization and long investment payback periods (Li et al., 2022).
Moreover, the existing literature studies (Wang et al., 2023a; Yang, 2021; Wang et al., 2023b)
on the research of power supply trading models mainly focus on the economic efficiency, and
the presented charging standards of power supply are uniform. This results in customers with
significantly different power supply demands paying the same electricity price, severely
undermining customers’ enthusiasm for purchasing emergency supply services.
Consequently, this paper aims to offer insightful opinions and discussions on a multi-
grade pricing strategy for mobile energy storage systems providing emergency power supply
services that meet the differentiated demands of customers.

The main contributions of this paper are twofold, as listed: (1) a hierarchical trading
framework is presented for mobile energy storage systems to provide emergency power
supply services, and three metrics, namely, power supply capacity, duration of power
supply, and response time, are formulated to evaluate the reliability of emergency power
supply. (2) A bi-level pricing optimization model based on Stackelberg game is proposed to
obtain tiered prices of emergency power supply and customer purchase capacity of
emergency power supply, thereby increasing the revenue of mobile energy storage and
reducing the emergency power supply cost of customers.

2 Multi-grade metrics of emergency power
supply services

Currently, there is no established pricing mechanism for MESS to provide emergency
power supply services in China (Yang et al., 2023). Shang (2021) selected power supply

OPEN ACCESS

EDITED BY

Anant Kumar Verma,
Universidad de O’Higgins, Chile

REVIEWED BY

Ziqing Zhu,
Hong Kong Polytechnic University, Hong Kong,
SAR China
Jian Zhao,
Shanghai University of Electric Power, China
Xiang Huo,
Texas A&M University, United States

*CORRESPONDENCE

Xiang Gao,
gaoxiang@szpu.edu.cn

RECEIVED 08 April 2024
ACCEPTED 27 August 2024
PUBLISHED 11 September 2024

CITATION

Bao J, Gao X and Yan X (2024) Opinions on the
multi-grade pricing strategy for emergency
power supply of mobile energy
storage systems.
Front. Energy Res. 12:1414068.
doi: 10.3389/fenrg.2024.1414068

COPYRIGHT

© 2024 Bao, Gao and Yan. This is an open-
access article distributed under the terms of the
Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in this
journal is cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Energy Research frontiersin.org01

TYPE Opinion
PUBLISHED 11 September 2024
DOI 10.3389/fenrg.2024.1414068

https://www.frontiersin.org/articles/10.3389/fenrg.2024.1414068/full
https://www.frontiersin.org/articles/10.3389/fenrg.2024.1414068/full
https://www.frontiersin.org/articles/10.3389/fenrg.2024.1414068/full
https://www.frontiersin.org/articles/10.3389/fenrg.2024.1414068/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fenrg.2024.1414068&domain=pdf&date_stamp=2024-09-11
mailto:gaoxiang@szpu.edu.cn
mailto:gaoxiang@szpu.edu.cn
https://doi.org/10.3389/fenrg.2024.1414068
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#editorial-board
https://www.frontiersin.org/journals/energy-research#editorial-board
https://doi.org/10.3389/fenrg.2024.1414068


duration as the standard to divide emergency power supply
subsidy tariffs. Meanwhile, Yu (2015) suggested that the
significance of energy storage in offering differentiated
emergency power supply services is primarily demonstrated by
the magnitude of emergency standby capacity and response speed.
It is known that the higher the emergency power supply capacity
and the longer the duration of the emergency power supply, the
greater the investment cost of energy storage equipment will be. In
addition, the mobile cost of energy storage increases with the
amplification of response speed (Sun et al., 2022; Lei et al., 2019).
Consequently, power supply capacity, duration of power supply,
and response time were selected as the three metrics to delineate
the classification of power supply levels in this paper. Based on the
typical capacity of mobile energy storage and the historical
downtime of customers (Xiao, 2021), three levels have been
classified, with higher levels indicating a greater demand for
emergency power supply (Zhu and Si, 2023; Zhang et al., 2021).
This is shown in detail in Figure 1A, where H1 represents the
lowest power supply level, while H3 represents the highest power
supply level. Hence, the unit price of emergency power supply
λhp ,ht ,hr is composed of a basic electricity price and an additional
electricity price, which is expressed as Equation 1:

λhp ,ht ,hr � λbasehp
+ Δλht + Δλhr, (1)

where λbasehp
is the basic price of emergency power supply with

capacity at the hp level and duration and response time at the
H1 level; Δλht and Δλhr are the additional electricity price of
emergency power supply with duration at the ht level and
response time at the hr level, respectively.

3 Hierarchical trading framework of the
mobile energy storage system

According to the analysis of the interactive mechanism between
energy storage and customers, the hierarchical trading framework for
energy storage providing emergency power supply services is
established, as depicted in Figure 1A. On one hand, mobile energy
storage strategically sets electricity prices to maximize the benefits for
emergency power supply, but on the other hand, power supply
customers optimize the emergency power supply capacity to
achieve the maximum utility during power outages. Therefore, it is
a sequential decision process, thereby constituting a Stackelberg game
relationship dominated by energy storage, which can be expressed as a
bi-level mathematical optimization model (Sun et al., 2022; Xu et al.,
2023). The upper level of this model aims to maximize the revenue of
mobile energy storage providing emergency power supply services,
considering the energy storage investment constraint, individual
rational constraint, and premium pricing constraint. The lower
level takes the purchase decision constraint into account to
maximize the customer utility of emergency power supply. As the
leader in this game relationship, mobile energy storage takes the
initiative to make electricity price decisions. Meanwhile, customers
functioning as followers in the model adapt their electricity purchase
strategies in response to the pricing decisions. Subsequently, the leader
revises the initial decision framework, creates new decisions, and
shares them with all the followers. Then, the followers adjust their
power supply strategy again based on the latest electricity prices. This
iterative process continues until equilibrium is achieved, resulting in
optimal tiered pricing of emergency power supply and optimal power
supply capacity purchase strategies of customers.

FIGURE 1
Multi-grade pricing strategy for emergency power supply of mobile energy storage. (A) Hierarchical trading framework of the mobile energy
storage. (B) Pricing model based on Stackelberg game.
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(a) The utility function of customers purchasing emergency
power supply considering outage loss.

The utility function of emergency power supply on the
customer’s side is determined by calculating the difference
between the reduced economic losses after choosing the power
supply service and the emergency power supply service fee paid,
which is formulated as Equation 2:

Fuems
u � Lems

u − Fems
u , (2)

where Lems
u and Fems

u are the reduced economic losses and the
emergency power supply service fee paid of customer u,
respectively. They can be defined as Equations 3, 4:

Lems
u � Nems

u Sems
u tems

u lotgu , (3)
Fems
u � Nems

u Sems
u tems

u λu

� Nems
u Sems

u tems
u ∑Hp

hp�1
∑Ht

ht�1
∑Hr

hr

ςu,hpςu,htςu,hrλhp ,ht ,hr⎛⎝ ⎞⎠, (4)

where Nems
u is the annual emergency power supply times of

customer u; Sems
u and tems

u are emergency power supply
capacity and emergency power supply duration of customer u,
respectively; lotgu is outage losses per unit electricity consumption
of customer u; λu is the unit price of emergency power supply
paid for customer u; ςu,hp, ςu,ht , and ςu,hr are Boolean variables
representing customer u’s choice of the power capacity level,
power supply duration level, and response time level,
respectively, with a value of 1 indicating customer u’s
selection of that emergency power supply level.

(b) The income function of mobile energy storage providing
emergency power supply services.

Mobile energy storage is typically kept in a standby state, only
being utilized to provide an emergency power supply in the event
of a power outage (Cao et al., 2024; Jiang et al., 2021). Considering
energy storage resource reuse strategies to enhance its capacity
utilization efficiency, the standby capacity for emergency power
supply can be used for peak–valley arbitrage and distributed
renewable energy consumption in electricity trading to
maximize revenue (Li et al., 2023) (Zhong et al., 2023).
Therefore, the income function of mobile energy storage is
composed of the emergency power supply service income,
peak–valley arbitrage income, distributed renewable energy
consumption income, and power supply service cost, which is
formulated as Equation 5:

Fsta � Fems + Fsta
pva + Fsta

nec − Csta, (5)
where Fems, Fsta

pva, and Fsta
nec are the revenue of emergency power

supply, peak–valley arbitrage, and distributed renewable energy
consumption by mobile energy storage; Csta is the total annual
cost of energy storage providing emergency power supply services.
They can be defined as Equations 6–9:

Fems � ∑U
1

Fuems
u � ∑U

1

Nems
u Sems

u tems
u ∑Hp

hp�1
∑Ht

ht�1
∑Hr

hr

ςu,hpςu,htςu,hrλhp ,ht ,hr⎛⎝ ⎞⎠,

(6)

Fsta
pva � ∑D

i�1
ηdisλF −

λG
ηcha

( )TratS
sta + ηdisλF −

λG
ηcha

( ) TratS
sta − Pnec,i( ),

(7)

Fsta
nec � ∑D

i�1
ηchaηdisλFPnec,i − λSPnec,i( ), (8)

Csta � Cinv + Cop + Cch + Ccar + Coil + Clab, (9)

where U is the number of customers; D is the annual operating
days of energy storage; ηcha and ηdis are the charging and
discharging efficiencies of energy storage, respectively; λF, λG,
and λS are the peak price, the valley price, and the on-grid
price, respectively; Trat is rated charging and discharging time
of energy storage; Ssta is the energy storage battery capacity to
provide emergency power supply services; Pnec,i is the releasing
power absorbed by energy storage on day i; Cinv is the investment
cost of energy storage equipment; Cop is the annual operating cost
of energy storage equipment; Cch is the annual charging cost; Ccar

is the vehicle acquisition cost; Coil is the annual fuel cost; Clab is the
annual labor cost.

4 Stackelberg game-based bi-level
pricing optimization strategy

The multi-grade pricing of a mobile energy storage system is
designed as a one-leader-multi-follower bi-level optimization
problem in Figure 1B, where the mobile energy storage is the
leader in the upper-level problem and the multi-type customers
are the followers in the lower-level problem (Ding et al., 2023).
In the upper-level problem, the energy storage aims to
maximize its operating income by optimizing the expected
revenue from emergency power supply services, with multi-
grade electricity price (λhp ,ht ,hr

*) as the decision variable. In the
lower-level problem, customers tend to mitigate economic
losses caused by power outages by expecting lower fees of
emergency power supply services, with the customer power
supply purchase strategy (Sems*

u ) as the decision variable.
Thus, energy storage and the users are in a strong game
relationship. The bi-level pricing optimization model of
emergency power supply is established in this paper based on
the Stackelberg game, as detailed below.

(a) Upper-level problem: maximize the benefits of energy storage
for emergency power supply, which can be defined in
Equations 10–13.

max Fsta � ∑U
u�1

Nems
u Sems

u tems
u ∑Hp

hp�1
∑Ht

ht�1
∑Hr

hr

ςu,hpςu,htςu,hrλhp ,ht ,hr⎛⎝ ⎞⎠ + Fsta
pva

+ Fsta
nec − Csta.

(10)

s.t. (11)–(13)

Fems
hp ,ht ,hr

≥ Csta
hp ,ht ,hr

, (11)
Euλu ≤ kableu Cbuy

u

Fems
u ≤ ku expLems

u

{ , (12)
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λbasehp+1 > λbasehp

Δλht+1>Δλht
Δλhr+1>Δλhr

⎧⎪⎨⎪⎩ . (13)

Constraints (11)–(13) are the energy storage investment
constraint, individual rational constraint, and premium pricing
constraint, respectively. Here, Fems

hp ,ht ,hr
and Csta

hp ,ht ,hr
are the revenue

and investment cost of mobile energy storage providing emergency
power supply service with capacity at the hp level, duration at the ht
level, and response time at the hr level; Eu is the annual amount of
power outage of customer u; λu is the unit price of emergency power
supply paid by customer u; Cbuy

u is the total annual cost of self-
funded energy storage equipment by customer u; kableu and ku exp are
the expected discount coefficient and expected utility coefficient,
respectively.

(b) Lower-level problem: maximize the utility of emergency
power supply for customers, which can be defined in
Equations 14, 15.

maxFusems � ∑U
u�1

Nems
u Sems

u tems
u lotgu − ∑Hp

hp�1
∑Ht

ht�1
∑Hr

hr�1
ςu,hpςu,htςu,hrλhp ,ht ,hr⎛⎝ ⎞⎠⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦,

(14)
s.t.Sems

u,min ≤ Sems
u ≤ Sems

u,max, (15)

where Sems
u,min is the minimum power supply capacity of customer u.

Constraint (15) is the customer purchase electricity strategy
constraint.

It is evident that the objective function involves the
multiplication of decision variables, but a bi-level nonlinear
optimization problem cannot be directly solved by the available
commercial solver. Since the objective functions for energy storage
and customers are all in the linear space for their decision variables,
Karush–Kuhn–Tucker (KKT) theory is used to transform the lower-
level problem into constraints of the upper-level problem (Zhou
et al., 2023). Therefore, the bi-level multi-grade pricing problem can
be converted into the game equilibrium single-level MILP model
(Chuangpishit et al., 2023), which can be optimized by the Gurobi
solver based on MATLAB.

Since the maximum power supply capacity standard is 250 kW
in Section 2, this paper selects the lithium iron phosphate batteries as
the energy storage battery, with an energy storage inverter capacity
of 250 kW. The cost of the energy storage vehicle body is
150,000 yuan, with an annual labor cost of 100,000 yuan (Gong
et al., 2022). Basic parameters and other energy storage parameters
are explained in Fang et al. (2023). The scenario considers
20 emergency power supply customers, and parameters for

power supply customers are referenced in the literature (Wang
et al., 2023b; Fang et al., 2023; Chen, 2015; Li J. et al., 2021). In
order to evaluate the effectiveness of the multi-grade pricing method
for emergency power supply of mobile energy storage, this paper
designs three cases to conduct a comparative analysis of energy
storage economics. Case 1 is the multi-grade pricing strategy
proposed in this paper. In case 2, mobile energy storage provides
emergency power supply without considering grading. In case 3,
energy storage only engages in peak–valley arbitrage and distributed
renewable energy consumption, and customers independently
configure energy storage as backup power at their own expense
in case of blackout. Furthermore, based on the parameters provided
above, calculations are performed according to formulas 4 to 8, and
the results of the economic benefits (Fang et al., 2023) of mobile
energy storage under different cases are shown in Table 1.

Compared with cases 2 and 3, the total revenue of case 1 is the
highest, while the total cost is the highest in Table 1, as the increased
revenue of emergency power supply in case 1 far outweighs the
increase in cost. This demonstrates that emergency power supply
services can significantly increase the annual operating income of
energy storage and that emergency power supply services provided
by energy storage have strong commercial prospects.

5 Discussion and conclusions

Mobile energy storage plays a crucial role in peak shaving and valley
filling, distributed renewable energy consumption, and power quality
management, especially in ensuring the reliability of power supply. In
this paper, a comprehensive overview of themulti-grade pricing strategy
for emergency power supply of the mobile energy storage system is
conducted. The key findings of this paper can be summarized as follows:
1) the hierarchical pricing metrics of the emergency power supply
service provided bymobile energy storage are proposed, which consist of
the power supply capacity, power supply duration, and response time.
These metrics achieve a precise delineation of emergency power supply
levels, having specific significance for the formulation of customized
power service grade standards in the future. 2) A bi-level pricing
optimization model based on Stackelberg game is proposed to obtain
optimal tiered pricing of emergency power supply and optimal power
supply capacity purchase strategies of customers, achieving interest
equilibrium between mobile energy storage and consumers.

Numerous studies (Wang et al., 2023a; Yang, 2021; Xiao, 2021;
Jiang et al., 2021) have been conducted on the configuration of mobile
energy storage. The power emergency center optimizes and schedules
mobile energy storage based on customers’ demand for power supply
within the emergency mechanism (Xiao, 2021). Therefore, combining

TABLE 1 Economic benefits of mobile energy storage under different cases (yuan/year).

Economic indicator Case 1 Case 2 Case 3

Revenue of emergency power supply 166,822.87 144,952.32 0.00

Revenue of peak–valley arbitrage 347,545.76 347,545.76 347,545.76

Revenue of distributed renewable energy consumption 10,037.46 10,037.46 10,037.46

Total cost of energy storage 442,795.23 430,113.62 319,767.01

Total revenue 81,610.86 72,421.93 37,816.21
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the configuration of energy storage and the emergency power supply
needs of customers within a certain region, the tiered pricing model
proposed in this paper can be applied to calculate the electricity prices
for different levels of emergency power supply. In the existing power
market, energy storage can profit by providing multiple customized
power services (Fang et al., 2023). Thus, according to the results of the
emergency power supply price and customers’ demand for power
supply, the emergency power supply service can be paid on a per-
use basis.

During the process of mobile energy storage transporting
to designated power supply points, the traffic network is
highly complex. The multi-grade pricing model in this paper does
not take into account real-time scheduling issues of mobile energy
storage, only calculating the annual operational costs but ignoring
daily or real-time operational conditions. The next step could
integrate real-time scheduling of mobile energy storage into the
multi-grade pricing model.
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