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With the growing integration of renewable energy into medium- and low-
voltage distribution networks, the distribution substation area (DSA) has
emerged, encompassing energy storage and loads. This paper introduces
an energy interaction framework for multiple DSAs aimed at enhancing
local renewable energy consumption. The energy interaction issue among
various DSAs is modeled as a Nash bargaining problem to encourage energy
exchanges. However, the variability in pricing and internal demand response
may influence scheduling decisions, necessitating further investigation. To
address price forecast errors, scenarios are developed using a stochastic
programming approach to represent price uncertainties while adjusting the
DSA’s load accordingly. Optimal power flow constraints are integrated into the
model to bolster power system operation security. Additionally, the transmission
capacity can impact scheduling outcomes and operational costs. The influence
of transmission limitations on operational strategies is examined within the
allowable capacity. To solve this issue, the bargaining model is divided into
two subproblems, and an enhanced alternating direction multiplier method
(ADMM) is used to maintain the privacy of DSAs. The simulation results obtained
using the IEEE-33 bus system indicate that energy interaction among multiple
DSAs significantly lowers operating costs and facilitates the integration of
renewable energy.

KEYWORDS

multiple distribution substation areas, energy interaction, uncertain prices, demand
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1 Introduction

The integration of distributed renewable energy is a key challenge within distribution
networks. To facilitate energy interaction, a distribution substation area (DSA), comprising
a renewable power station, energy storage, and loads, can support local consumption and
reduce disturbances in the network (Hirsch et al., 2018). Using energy storage, the DSA
can adjust the load demand and better accommodate renewable generation. However, the
inherent unpredictability of renewable sources may lead to energy shortages or surpluses.
To optimize renewable energy efficiency, DSAs can interconnect with neighbors to facilitate
energy exchanges (Kumar and Saravanan, 2017). Guided by the time-of-use (TOU) pricing
set by the distribution network operator, energy interaction among multiple DSAs is
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encouraged, forming a small-scale interconnected DSA energy
market (Vieira and Zhang, 2021). Given the shared interests, it is
crucial to develop an interactivemechanism that incentivizes energy
exchanges while maintaining economic viability and reliability
within the region (Tushar et al., 2020).

A game theory-based mechanism is instrumental in studying
and analyzing interactive strategies among multiple DSAs
(Tushar et al., 2018). Generally, the game theory approach to
interaction processes among participants can be categorized into
non-cooperative and cooperative games (Tushar et al., 2019). In
a non-cooperative game, buyers and sellers negotiate to establish
interaction prices and quantities, achieving market clearing
while maintaining the supply–demand balance (Paudel et al.,
2019). A Stackelberg game-based negotiation process between
buyers and sellers, which considers participant competition
and achieves market clearing, is detailed by Jiang et al. (2022).
Although Nash equilibrium solutions can be obtained in non-
cooperative games, the decision-making processes are typically
self-centered, and these solutions are not necessarily unique
local optima (Chen et al., 2019).

To balance individual and collective interests, a cooperative
game theory-based energy interaction model is proposed
to achieve global optimization in energy sharing (Luo et al.,
2022). The Nash bargaining game theory is well suited for
energy interactions among multiple DSAs, ensuring equitable
benefit allocation (Dehghanpour and Nehrir, 2017; Wang and
Huang, 2016). Building on this cooperative model, optimal
power flow constraints are incorporated into the system
operation to enhance the model’s practicality (Li et al., 2018).
However, these studies often overlook the impact of the demand
response on energy interaction, which could potentially increase
operational costs.

The demand response is an effective and promising approach
that shifts electricity demand to periods when renewable generation
is more abundant or the demand is lower. By leveraging load
baselines, the demand response aids in the integration of
renewable generation and reduces operational costs, thereby
facilitating energy interaction (Sarker et al., 2020). A bi-level
optimization model has been introduced for energy storage
planning and operation, considering the electricity–heat demand
response while utilizing Nash bargaining methods for benefit
allocation (Alizadeh et al., 2024). However, these studies often
distribute cooperative benefits equally among participants,
which may lead to fairness concerns (Luo et al., 2022). To
address this, a generalized Nash bargaining theory is adopted
to incentivize energy interaction among multiple DSAs and
allocate cooperative benefits based on the quantities of energy
interaction (Kim et al., 2019).

The aforementioned studies formulate energy interaction
models based on deterministic optimization, often overlooking
forecast errors in TOU prices. Price uncertainty significantly
impacts the economic and security aspects of an energy system.
Generally, stochastic programming (Li et al., 2022) and robust
optimization (Wei et al., 2021) are two prevalent methods used
for addressing uncertainties. Considering the conservative
nature of robust optimization, a stochastic optimization model
is developed for unpredictable prices, aiming to achieve
optimal scheduling (Baharvandi et al., 2019) and effective energy

management (Chang et al., 2020). However, the influence of
uncertain prices on energy interaction, as well as Nash bargaining-
based operation decisions, is often neglected in these studies.
Given the uncertain prices, DSAs schedule their demand to
respond dynamically, which may alter their final decisions and
operational costs. Considering the interdependent relationship
between prices and demand response, the decisions of DSAs
should integrate these influencing factors to devise optimal
strategies.

Another aspect investigated in energy interaction is the
consideration of physical constraints. Voltage fluctuations at each
node (Jin et al., 2020) and power losses resulting from energy
interaction (Khorasany et al., 2020) are modeled as costs paid
to the operator. Although these factors are considered costs,
further analysis is needed to understand strategy changes when
transferring power to neighbors within the specified capacity limits.
In other words, the congestion of transmission lines is directly
addressed during the energy interaction process. Therefore, an
energy interaction model is established that incorporates uncertain
prices, demand response, and transmission capacity during energy
interaction.

To sum up, the main contribution of this paper is to derive
optimal operation strategies by considering the interdependent
relationship between uncertain prices and the demand response
of DSAs. Specifically, this paper investigates the effect of
price uncertainty on the Nash bargaining theoretical model,
analyzing both operation costs and the internal decision-
making strategies of DSAs. To mitigate these adverse effects,
the demand response combined with energy storage is
proposed to enhance the flexibility of DSAs by shifting the
load demand to periods of lower prices. The final operation
strategies should account for the interconnected nature of price
uncertainty and demand response. Additionally, optimal power
flow is integrated into the optimization model to improve
its practicality. Transmission limitations are also included to
examine the impact of capacity restrictions on operation costs.
Finally, the cooperative benefits are allocated based on the
interaction of DSAs, ensuring a fair distribution that reflects
the contribution of each participant to the energy interaction
process.

2 Problem description

As illustrated in Figure 1, an energy interaction problem
with M DSAs is considered, formulated as an interaction set
M = 1,…,M. Each DSA, which consists of PV/wind generation,
energy storage, and loads, interacts with others to maintain
the balance between supply and demand. Supported by the
distribution network, these interconnected DSAs participate in
energy interactions to share electricity with neighboring entities.
In this process, electricity is transferred from one bus to another,
which can be described as an AC power flow. To address the
volatility of electricity prices, a stochastic programming approach
is incorporated into the model, capturing price uncertainty through
discrete scenarios.

Given the price scenarios, DSAs negotiate with each other
and respond to the prices by shifting load demands. To this end,
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FIGURE 1
System with interconnected DSAs.

the energy interaction problem is formulated as a generalized
Nash bargaining game model to incentivize energy interaction
and achieve fair benefit allocation. Additionally, a penalty for
DSAs caused by the demand response is incorporated into the
model to account for comfort levels. DSAs develop optimal
operation strategies to maximize cooperative benefits and allocate
these benefits based on their respective contributions. Congestion
may occur during the process of energy transmission, especially
considering the energy interaction among DSAs. To address this
issue, we adjust the operation strategies of DSAs and analyze the
impact on operation costs.

3 Energy interaction model

An independent operation model of a DSA and an energy
interaction model among multiple DSAs are established for

the comparative analysis of the operation costs of DSAs.
Compared to independent operations, DSAs achieve cost
savings through energy interaction with neighbors, which
includes energy sharing, renewable generation integration,
energy storage scheduling, and load shifting. Then, based
on the generalized Nash bargaining theory, cooperative
benefits are allocated by leveraging the bargaining power
parameters.

3.1 Basic operation optimization model of
the individual DSA

The objective function of a DSA is to minimize operational
costs in the face of uncertain pricing. To achieve this, the
DSA uses demand response strategies and manages the
charging and discharging of energy storage systems. The
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model, accounting for various price scenarios, is structured as
follows:

Ci
Non=minxi,t,wNon

W
∑
w=1

T
∑
t=1

1
W [μ

t,w
PbP

i,t,w
Pb −μ

t,w
Ps P

i,t,w
Ps +cE(P

i,t,w
Ec +P

i,t,w
Ed )

+cLoad(P
i,t,w
Load−P

i,t
Load,Pre)

2],

(1a)

s.t.Pi,t,wPb + P
i,t,w
Gen + P

i,t,w
Ed = P

i,t,w
Ps + P

i,t,w
load + P

i,t,w
Ec ,∀i ∈M,∀t ∈ T ,∀w ∈Ω,

(1b)

0 ≤ Pi,t,wPb ≤ P
max
Pb,i ,∀i ∈M,∀t ∈ T ,∀w ∈Ω, (1c)

0 ≤ Pi,t,wPs ≤ P
max
Ps,i ,∀i ∈M,∀t ∈ T ,∀w ∈Ω, (1d)

0 ≤ Pi,t,wEc ≤ P
max
Ec,i ,∀i ∈M,∀t ∈ T ,∀w ∈Ω, (1e)

0 ≤ Pi,t,wEd ≤ P
max
Ed,i ,∀i ∈M,∀t ∈ T ,∀w ∈Ω, (1f)

SOCmin
i ≤ SOC

i,t,w ≤ SOCmax
i ,∀i ∈M,∀t ∈ T ,∀w ∈Ω, (1g)

SOCi,t,wCapi = SOCi,t−1,wCapi + ηi,t,wEc Pi,t,wEc − 1/η
i,t,w
Ed Pi,t,wEd ,

∀i ∈M,∀t ∈ T ,∀w ∈Ω,
(1h)

SOCi,24,w = SOCi
exp,∀i ∈M,∀w ∈Ω, (1i)

(1− αL)P
i,t
Load,Pre ≤ P

i,t,w
Load ≤ (1+ αL)P

i,t
Load,Pre, (1j)

T

∑
t=1

Pi,t,wLoad =
T

∑
t=1

Pi,tLoad,Pre, (1k)

where the objective function (1a) represents the individual operation
cost Ci

Non of DSA i ∈M, which includes the interaction cost with
the distribution network, degradation cost of the energy storage,
and comfortable penalty cost. The purchasing and selling prices
denoted as μt,wPb and μt,wPs , respectively, and quantities Pi,t,wPb and Pi,t,wPs
in scenarios w ∈Ω are used to calculate the operation cost with
the distribution network. The degradation cost of energy storage
consists of the unit cost cE and charging/discharging variables (P

i,t,w
Ec

and Pi,t,wEd , respectively). The comfort penalty cost is expressed as
the product of the unit cost cLoad and load regulation quantities.
The power balance constraint (Equation 1b) involves the forecast
renewable generation Pi,t,wGen and load demand Pi,tload,pre at time t ∈
T , as well as the actual load demand Pi,tload during the decision
process. Constraints in Equations 1c, d define the lower and upper
bounds (Pmax

Pb,i and Pmax
Ps,i , respectively) for purchasing/selling energy

from/to a distribution network. The charging and discharging
limitation of a battery is indicated by constraints in Equations 1e,
f with upper bounds Pmax

Ec,i and Pmax
Ed,i . The state of charge (SOC)

is limited by constraints in Equations 1g, i, based on the storage
capacity.The constraint in (1g) defines theminimum andmaximum
SOC values, while the constraint in (1h) specifies its balance
expression. To ensure continuity in energy storage, the expected
SOC must adhere to the constraint in (1i). For the demand
response, the power reduction offered by each DSA i should
satisfy the constraint in Equation 1j, where αL represents the load

shifting ratio. Given that load shifting is considered, the total daily
demand should match the predicted value Pi,tLoad,Pre, as specified
by the constraint in Equation 1k. The decision variables in the
individual operation model are represented by the vector xi,t,wNon =
[Pi,t,wPb ,P

i,t,w
Ps ,P

i,t,w
Ec ,P

i,t,w
Ed , SOCi,t,w,Pi,t,wLoad].

3.2 Branch power-flow formulation

Following Farivar and Low (2013), the power flow model is
established in a radial network using angle and conic relaxation.
Additionally, quadratic terms in the power flow constraints
are neglected since the branch powers pj,t,w and qj,t,w are
significantly larger than the quadratic terms in the branch
flow equation. Consequently, the expression is simplified as
follows:

pj,t,w = − ∑
i:i→j

Pi,j,t,w + ∑
k:j→k

Pj,k,t,w,∀(i, j) ∈ E , (2a)

qj,t,w = − ∑
i:i→j

Qi,j,t,w + ∑
k:j→k

Qj,k,t,w,∀(i, j) ∈ E , (2b)

pi,t,w = P
i,t,w
g − (P

i,t,w
Pb − P

i,t,w
Ps ) , (2c)

qi,t,w = Q
i,t,w
g −Q

i,t
L,pre, (2d)

−Pi,jmax ≤ Pi,j,t,w ≤ P
i,j
max,∀(i, j) ∈ E , (2e)

−Qi,j
max ≤ Qi,j,t,w ≤ Q

i,j
max,∀(i, j) ∈ E , (2f)

−Pig,max ≤ P
i,t,w
g ≤ Pig,max, (2g)

−Qi
g,max ≤ Q

i,t,w
g ≤ Qi

g,max, (2h)

Uj,t,w = Ui,t,w − 2(Pi,j,t,wri,j +Qi,j,t,wxi,j) ,∀(i, j) ∈ E , (2i)

Ui
min ≤ Ui,t,w ≤ Ui

max,∀i, j ∈N ,∀t ∈ T ,∀w ∈Ω, (2j)

where the active and reactive powers in a branch are defined
by constraints in Equations 2a, b, while the injection power of
node i ∈N can be obtained using constraints in Equations 2c,
d. Constraints in Equations 2e, f set the limitation of branch
flow for all branches (i, j) ∈ E . The active and reactive bounds
supported by the distribution network are specified by constraints
in Equations 2g, h. The square of magnitudes of nodal voltage
is provided by Equation 2i, and the constraint in Equation 2j
ensures that Ui,t,w always remains within the interval
[Ui

min,U
i
max].

3.3 Operation cost for cooperative DSAs

Supported by the distribution network, DSAs engage
in energy interaction with neighbors to share idle energy
while reducing disturbance to the main grid. Taking into
account the impact of uncertain prices and the demand
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response, their cooperative formulation is expressed as
follows:

Ci
Tra=minxi,t,wTra

W
∑
w=1

T
∑
t=1

1
W (μ

t,w
PbP

i,t,w
Pb −μ

t,w
Ps P

i,t,w
Ps +c

i
E(P

i,t,w
Ec +P

i,t,w
Ed )

+cLoad(P
i,t,w
Load−P

i,t
Load,Pre)

2),

(3a)

s.t. (1c) − (1k) , (2a) − (2b) , (2d) − (2j)

Pi,t,wPb + P
i,t
Res + P

i,t,w
Ed + P

i,t,w
Tra = P

i,t,w
Ps + P

i,t
Load + P

i,t,w
Ec , (3b)

M

∑
i
Pi,t,wTra = 0, (3c)

pi,t,w = P
i,t,w
g − (P

i,t,w
Pb + P

i,t,w
Tra − P

i,t,w
Ps ) , (3d)

∀i ∈M,∀t ∈ T ,∀w ∈Ω.

Unlike the individual operation in model (1), the interaction
variable Pi,t,wTra is introduced by the constraint in Equation 3b.
Considering energy interaction, DSAsmaintain the supply–demand
balance through energy exchange with the main grid and
neighboring DSAs. The constraint in Equation 3c ensures
that the total power output equals the power imported
from neighbors’. Additionally, the net injection at node i
incorporates energy interaction among DSAs, as detailed
by the constraint in Equation 3d. The decision variables
in cooperative mode are represented by the vector xi,t,wTra =
[Pi,t,wPb ,P

i,t,w
Ps ,P

i,t,w
Ec ,P

i,t,w
Ed ,SOC

i,t,w,Pi,t,wTra ,P
i,t,w
Load].

3.4 General Nash bargaining game-based
energy interaction

The general Nash bargaining game-based scheduling strategy is
proposed to incentivize energy interaction among DSAs and ensure
that benefits are allocated according to the contribution of each
participant.

max
M

∏
i=1
(Ci

Non − (C
i
Tra +Ce

i
Pay))

αi , (4a)

Ci
Tra +Ce

i
Pay⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Ci
Total

≤ Ci
Non,∀ i ∈ M, (4b)

M

∑
i
CeiPay = 0. (4c)

DSAs engage in energy interaction with neighbors to maximize
social welfare, as expressed in the objective function (Equation 4a).
The constraint in Equation 4b ensures that the cooperation
cost does not exceed the cost of individual operation, thereby
encouraging DSAs to participate in energy interactions. The
purchasing cost of a DSA in an energy interaction must equal
be to the selling income of neighbors, as represented by the
constraint in Equation 4c. Additionally, the contribution of
each participant is calculated using the coefficient αi, and the

expression is

αi =
1
W∑

W
w=1
∑T

t
|Pi,t,wTra |

1
W∑

W
w=1
∑M

i
∑T

t
|Pi,t,wTra |
, (5)

where the bargaining power αi is determined by the ratio of net
energy transmission of a DSA to the total energy transmission of
all participants.

3.5 Decomposition and solution of the
general Nash bargaining problem

According to the proposition put forward by Wang and
Huang (2016), the optimal solution of the Nash bargaining
problem is equivalent to the cost minimization of DSAs. By
combining the individual rationality condition with the constraint
in Equation 4b, a feasible payment allocation CeiPay always exists,
which enhances cost reduction. Consequently, the general Nash
bargaining-based energy interaction problem can be decomposed
into two subproblems: the operation cost minimization problem
(P1) and the bargaining problem (P2) (Kim et al., 2019). The
optimal results are obtained by solving these two subproblems
sequentially. Considering whether DSAs participate in energy
interaction or not, the operation cost minimization problem
(P1) encompasses both the individual operation model (1)
and the cooperative operation model (3). Since the operation
optimization problem (P1) consists of a quadratic objective and
linear constraints, the optimal solution can be obtained by directly
solving the convex problem. This optimal solution is then used
to calculate the bargaining problem (P2), utilizing the value
of αi in (5):

max
M

∏
i
(ηi∗ −CeiPay)

αi

s.t. (4b) , (4c) ,
(6)

where ηi∗ = Ci∗
Non −C

i∗
Tra represents the cost saving of cooperative

DSA i through energy interaction. To allocate the benefits, the
bargaining problem (P2) is transformed into a convex problem by
taking the logarithm of (6):

min
M

∑
i
−αiln(η

i∗ −CeiPay)

s.t. (4b) , (4c) .
(7)

According to Zhong et al. (2020), since the objective function
ln(•) increases monotonically, the optimal solution can be obtained
by solving the model (7). An improved alternating direction
multiplier method (ADMM) algorithm is proposed to solve
the energy interaction problem in a distributed manner. To
avoid updating the multiplier in a centralized way, each DSA
interacts with its neighbors to share local information. For
operation problem (P1), it is decomposed by introducing auxiliary
variables Pj,t,wTra,i and Pi,t,wTra,j. The details of the algorithm are
shown in Algorithm 1. The couple constraint in Equation 3c is
decomposed as:

Pi,t,wTra = P
j,t,w
Tra,i : λ

i,t

Pj,t,wTra = P
i,t,w
Tra,j : λ

j,t,
(8)
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Input: Set iteration index k ∈ [0,K], primal residue

ϵPri, dual residue ϵDual, and step size ρi(k).

1:repeat

2:   Each DSA solves the local energy

interaction problem (9).

3:   Update the multipliers λi,t(k) in (10).

4:   Each DSA i computes the primal and dual

residues. If the stopping criteria are

satisfied, terminate; otherwise,

repeat Step 4.

5:until Stopping criteria (11) are satisfied,

terminate.

Algorithm 1. An improved ADMM algorithm for solving the energy
interaction problem of the DSA.

where λi and λj represent the Lagrangianmultipliers.The augmented
Lagrangian function of the energy interaction model is then
expressed as follows:

LDSAi = C
i
Tra +

M

∑
j

T

∑
t
λi,t (Pi,t,wTra − P

j,t,w
Tra,i)

+
M

∑
j
ρj/2

T

∑
t
‖Pi,t,wTra − P

j,t,w
Tra,i‖

2
2,

(9)

where ρj is the penalty parameter for DSA i. After each iteration, the
updated expression of λi,t at iteration k is

λi,t (k) = λi,t (k− 1) + ρi (k)(P
i,t,w
Tra − P

j,t,w
Tra,i) . (10)

The iteration converges when the primal and dual residues satisfy
the following conditions (ϵPri and ϵDual):

Pi,t,wTra − P
j,t,w
Tra,i ≤ ϵ

Pri,

Pi,t,wTra (k− 1) − P
i,t,w
Tra (k) ≤ ϵ

Dual.
(11)

FIGURE 2
TOU price scenario with the distribution network.

FIGURE 3
Forecast of renewable generations and loads.

4 Case study

Numerical simulations are conducted in a distribution network
to evaluate the effect of the demand response and uncertain prices
on energy interaction. The system aims to verify the performance
of the operation strategy based on the general Nash bargaining
game theory. In the case study, simulations are performed on
an IEEE 33-bus system with three DSAs located at buses 11,
23, and 29. The operation data, including the forecast value
of price, generation, and load demand, are obtained from the
study by Chen et al. (2017) and Lu et al. (2020). All simulations
are solved using the Gurobi solver (Gurobi Optimization,
2020) in the Python environment on an Intel Core i7
computer.

4.1 Operation cost considering the
stochastic prices and demand response

The effect of stochastic prices on the operation strategy is
analyzed by comparing the operation costs under multiple price
scenarios with the forecast value. The fluctuation in the market
prices is modeled using the given probability distribution function,
which is assumed to obey the Gaussian distribution. As shown in
Figure 2, the forecast values of TOU prices are selected as the mean
value with a variance of 1× 10−4. Although large-scale scenarios
are necessary to characterize random factors, they impose a heavy
computational burden. To address this, a scenario reductionmethod
is applied to decrease the number of scenarios. A total of 1,000
scenarios are generated by using Monte Carlo sampling, and K-
means-based clustering reduction is utilized to generate 10 typical
scenarios (Wang et al., 2021). The expected values of these multiple
scenarios are selected as a result of the stochastic optimization,
while the cost in the deterministic optimization is determined
by the reaction of the DSAs to the predictable price. A general
Nash bargaining-based interaction scheme is adopted to allocate the
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TABLE 1 Operation costs without the demand response (CNY).

Congestion Price Cost DSA 1 DSA 2 DSA 3 Total

No Deterministic

Ci
Non 655.35 196.49 −322.42 529.42

Ci
Tra 146.05 88.82 166.42 401.28

CeiPay 456.37 91.31 −547.69 \

Ci
Total 602.42 180.13 −381.27 401.28

Yes Deterministic

Ci
Tra 73.49 80.76 93.65 247.90

CeiPay 443.64 89.46 −533.09 \

Ci
Total 517.12 170.22 −439.44 247.90

No Stochastic

Ci
Non 647.84 195.57 −332.25 511.16

Ci
Tra 319.15 461.45 −297.26 483.34

CeiPay 314.76 −271.59 −43.17 \

Ci
Total 633.91 189.86 −340.43 483.34

Yes Stochastic

Ci
Tra 21.54 308.46 154.18 484.19

CeiPay 612.48 −115.66 −496.82 \

Ci
Total 634.03 192.80 −342.64 484.19

TABLE 2 Operation costs with the demand response (CNY).

Congestion Price Cost DSA 1 DSA 2 DSA 3 Total

No Deterministic

Ci
Non 622.26 177.55 −348.17 451.64

Ci
Tra 53.00 61.59 51.46 166.04

CeiPay 433.49 73.79 −507.28 \

Ci
Total 486.49 135.37 −455.82 166.04

Yes Deterministic

Ci
Tra 35.58 50.85 59.58 146.01

CeiPay 432.35 83.45 −515.81 \

Ci
Total 467.93 134.30 −456.22 146.01

No Stochastic

Ci
Non 618.43 177.22 −356.44 439.21

Ci
Tra 151.21 135.41 125.54 412.16

CeiPay 455.30 40.18 −495.48 \

Ci
Total 606.51 175.59 −369.94 412.16

Yes Stochastic

Ci
Tra 140.86 133.07 137.88 411.81

CeiPay 465.05 42.55 −507.60 \

Ci
Total 605.92 175.62 −369.73 411.81
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FIGURE 4
Interaction between the distribution network and DSAs ignoring the
demand response. (A) DSA 1, (B) DSA 2, and (C) DSA 3.

benefits when DSAs participate in energy interaction. To analyze
the effect of the price on energy interaction, as shown in Figure 3,
we assume that the predicted values of renewable generation and
load demand are accurate. Since two important factors, energy
interaction and demand response, affect the operation strategy,
this paper analyzes the impact of these factors on the optimal
operation strategy.

FIGURE 5
Interaction between the distribution network and DSAs considering
the demand response. (A) DSA 1, (B) DSA 2, and (C) DSA 3.

The deterministic and stochastic optimization results
without/with the demand response are shown in Tables 1, 2,
respectively. A negative value indicates the benefit that DSAs gain
from selling energy to the distribution network or neighbors.
It can be observed that DSAs reduce their operation cost when
they participate in energy interaction. Considering the stochastic
prices given in Table 1, the total operation cost of three DSAs is
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TABLE 3 Total interaction quantity between DSAs and the distribution
network (kWh).

Cooperation Demand response

No Yes

No
Buy 1,584.09 1,626.33

Sell 732.95 775.18

Yes
Buy 1,208.73 1,262.64

Sell 357.58 411.49

reduced by 24.20% under deterministic pricing, while the cost
is reduced by 5.44% under uncertain pricing. In other words,
compared with deterministic pricing, cooperative profit in energy
interaction decreases by 16.98% in stochastic scenarios. The
reason may be that, compared to deterministic prices, cooperative
costs vary with the price scenarios, ultimately increasing the
expected costs.

Considering the demand response, DSAs shift loads to periods
of plentiful generation or lower demand through price adjustments
or monetary incentives. They also enhance the efficiency of
renewable energy utilization by coordinating the charging and
discharging decisions of energy storage systems. As shown in
Table 2, DSAs respond to prices through peak shaving and valley
filling, which decreases the load demand during peak price
periods. Consequently, operation costs—whether for individual
or cooperative operations—significantly decrease compared to
those given in Table 1. In other words, energy interaction among
multiple DSAs enhances adaptable performance when considering
the demand response.

The operation costs in energy interaction among DSAs will vary
if the transmission lines have limitations within the distribution
network. For simplicity, a maximum capacity of 100 kWh is
considered for the line between nodes 2 and 3. This constraint
causes decision changes for DSAs during the process of energy
transactions with the distribution network and their neighbors. It
can be observed that cooperative costs are always less than those
of individual operations, and the demand response further reduces
these operation costs.

Congestion impacts the operation decisions and, subsequently,
the cooperative costs of DSAs. It restricts energy transmission for
DSAs regardless of whether the demand response is considered.
For deterministic prices, DSAs schedule battery usage to alleviate
congestion, resulting in lower operation costs. However, stochastic
prices compel DSAs to respond dynamically, leading to similar
final operation costs with normal energy interaction since the total
demand remains consistent.

4.2 Energy interaction with the distribution
network

Figures 4, 5 illustrate the energy interaction results between
the distribution network and DSAs over the course of a day.

FIGURE 6
Scheduling result of the energy storage without the demand response.
(A) DSA 1, (B) DSA 2, and (C) DSA 3.

The positive/negative values represent the energy purchased/sold
from/to the distribution network, respectively. We comparatively
analyze the interaction quantities between the distribution
network and multiple DSAs, regardless of their participation
in energy interaction. Given the price scenarios, DSAs adjust
their demand for purchasing/selling electricity to achieve cost
minimization.
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FIGURE 7
Scheduling result of the energy storage with the demand response. (A)
DSA 1, (B) DSA 2, and (C) DSA 3.

Figure 4 shows the comparison of the effects of individual versus
cooperative operation among DSAs on energy interactions with the
distribution network. An individual DSA satisfies power balance
by leveraging the distribution network and energy storage. Due to
the scheduling limitation of the battery, the individual DSA may
need to purchase electricity at a high price, increasing the operation
costs. In contrast, cooperative DSAs form a group and share idle

energy to balance their energy needs. DSAs purchase energy at
0:00–5:00 and 20:00–24:00 while selling energy at 10:00–15:00 to
maximize their cooperative benefits during energy interactions.The
load regulation capability ofDSAs is enhancedwhen considering the
demand response. As shown in Figure 5, DSAs achieve peak shaving
and valley filling by leveraging the demand response and energy
interactions.

To further analyze the energy interaction, the total interaction
quantity between DSAs and the distribution network is
summarized in Table 3. The data show that the interaction
between DSAs and the distribution network is influenced by
both the interactive behavior of DSAs and demand response. We
observed that the energy interaction among DSAs can reduce their
dependence on the distribution network, enhancing their ability
to cope with price uncertainty. To maintain energy balance, they
purchase less energy from the distribution network and reduce the
quantity of energy sold. Since the demand response is closely tied to
electricity prices, DSAs increase their demand when the prices are
lower, effectively responding to price uncertainties.

4.3 Analysis of optimal results of the
energy storage

The scheduling results of energy storage without/with the
demand response are given in Figures 6, 7, respectively.The positive
values represent storage discharging, while the negative values
indicate storage charging. These figures demonstrate that energy
storage can be utilized to satisfy the supply–demandbalance through
an internal scheduling strategy. As shown in Figure 6, the depth
of charge/discharge is higher for the DSA operating individually
without a demand response as energy storage is the primary means
of shifting energy demand to other periods. This is particularly
evident forDSA 1 at 10:00 andDSA 3 at 19:00. Although cooperative
DSAs reduce the depth of charging/discharging, energy storage
still works in conjunction with energy interaction to maintain
energy balance.

The scheduling results of the energy storage considering the
demand response are shown in Figure 7. We can observe that the
reliance on energy storage decreases as supply–demand balance
can be achieved through load shifting. Consequently, the charging
and discharging depth of the energy storage for DSA 1 and DSA
3 is reduced, which, in turn, lowers the degradation costs in the
objective function.

4.4 Analysis of energy interaction among
DSAs

The energy interaction quantities among DSAs
are given in Figure 8 when they cooperate with neighbors to share
idle energy. The positive values indicate DSA i purchasing energy
from neighbors, while the negative values represent selling energy
to others. Compared to individual operation, DSAs achieve energy
balance by combining energy interaction, load shifting, and energy
storage scheduling. This approach enhances energy self-sufficiency
through energy interaction, potentially reducing the reliance on the
distribution network.
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FIGURE 8
Interaction among DSAs. (A) DSA 1, (B) DSA 2, and (C) DSA 3.

4.5 Distribution of the node voltage

Thenode voltage varies with the energy interaction and demand
response. Nodes 11, 23, and 29, connected to DSAs, serve as
examples, and their voltages are shown in Figure 9. Although
the voltage fluctuates across various simulation scenarios and
periods, it always remains within the boundary limits. DSA 1,
which has the highest load demand, experiences the largest voltage

FIGURE 9
Voltage of the node connected to multiple DSAs. (A) DSA 1, (B) DSA 2,
and (C) DSA 3.

fluctuation, ranging from 0.986 p.u. to 1.001 p.u. Conversely, DSA
2, with the smallest load demand, exhibits relatively smooth voltage
fluctuations. The demand response also leads to significant voltage
fluctuations at different times. As shown in Figures 9A, C,DSAs shift
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loads to maintain the supply–demand balance, thereby altering the
voltage distribution within the network.

5 Conclusion

This paper presents an energy interaction framework for DSAs
to enhance the local consumption of renewable generation. A
general Nash bargaining theoretic model is established, taking into
account the effect of uncertain prices and demand response. The
typical price scenarios are depicted via Monte Carlo sampling
and clustering. Given the price scenarios, DSAs make the optimal
decisions by shifting loads to the plentiful generation or lower
demand time through prices or monetary incentives. To solve the
energy interaction model, it is decomposed and transformed into
a traceable problem by leveraging the logarithmic transformation.
In addition, the optimal power flow constraints are incorporated
to improve the model’s practicality. The limitation of transmission
capacity alters the operation strategies, which affects the operation
costs. It decreases the energy exchangewith the distribution network
and increases the energy interaction among DSAs. An improved
ADMM is proposed to solve the energy interaction problem using
local information. Numerical simulations are conducted on an
IEEE-33 bus system, demonstrating that uncertain prices may
increase the total operation costs, while the demand response
improves scheduling flexibility. Futureworkwill focus on addressing
energy transmission insufficiency due to capacity limitations during
energy interactions.
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Nomenclature

Indices

i Index of DSAs

t Index of hours

w Index of scenarios

Sets

M Set of DSAs

Ω Set of price scenarios

T Set of time intervals

Parameters

Pi, t
load,Pre Predictable load at time slot t (kW)

Pi, t, w
Gen Generation output at time slot t (kW)

Pmax
Pb ,P

max
Ps Limitation of purchasing/selling power to the main grid (kW)

Pmax
Ec ,P

max
Ed Maximum charging/discharging power of the battery in DSA i

SOCmin
i ,SOC

max
i Minimum/maximum limitation of the SOC in DSA i (%)

U i
min,U

i
max Minimum/maximum limitation of voltage in bus i

Pi,j
max,Q

i,j
max Active/reactive power limitation of branch (i, j)

Pi
g ,max,Qi

g ,max Active/reactive power limitation of the distribution network

Capi Capacity of a battery in DSA i (kW)

ciE Degradation cost of a battery in DSA i (CNY/kW)

ηiEc,η
i
Ed Charging/discharging efficiency of a battery in DSA i

SOCi
exp Expected state of a battery at t = 24

αi Bargaining power of DSA i

αL Ratio of load shifting (%)

μt,wPb ,μ
t,w
Ps Price at which DSA i purchases/sells energy from/to the main grid (CNY/kW)

cLoad Comfortable penalty cost in DSA i

Variables

Ci
Non Operation cost of DSA i without energy interaction (CNY)

Ci
Tra Operation cost of DSA i with energy interaction (CNY)

CeiPay Net payment of DSA i for energy interaction among DSAs (CNY)

Pi,t,w
Pb DSA i purchases power from the main grid (kW)

Pi,t,w
Ps DSA i sells power to the main grid (kW)

Pi,t,w
Ec Charging power of a battery in DSA i at time slot t (kW)

Pi,t,w
Ed Discharging power of a battery in DSA i at time slot t (kW)

SOCi,t,w State of charge of a battery in DSA i(%)

Pi,t,w
Tra DSA i purchases power from neighbors

pi,t,w,qi,t,w Active/reactive power injection on bus i at time t

Pi,j,t,w,Qi,j,t,w Active/reactive power flow on branch (i, j)

Pi,t,w
g ,Q

i,t,w
g Active/reactive power provided by the distribution network

U i,t,w Squared voltage magnitude of bus i at time t

λi Lagrangian multipliers

Pi,t,w
Tra,i Auxiliary variables of energy interaction
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