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A lot of infrastructure upgrade and algorithms have been developed for the
information technology driven smart grids over the past twenty years, especially
with increasing interest in their system design and real-world implementation.
Meanwhile, the study of detecting and preventing intruders in ubiquitous smart
grids environment is spurred significantly by the possibility of access points on
various communication equipment. As a result, there are no comprehensive
security protocols in place preventing from a malicious attacker’s accessing to
smart grids components, which would enable the interaction of attackers and
system operators through the power grid control system. Recently, dynamics of
time-extended interactions are believed to be predicted and solved by
reinforcement learning technology. As a descriptive advantage of the approach
compared with other methods, it provides the opportunities of simultaneously
modeling several human continuous interactions features for decision-making
process, rather than specifying an individual agent’s decision dynamics and
requiring others to follow specific kinematic and dynamic limitations. In this
way, a machine-mediated human-human interaction’s result is determined by
how control and physical systems are designed. Technically, it is possible to design
dedicated human-in-the-loop societal control systems that are attack-resistant by
using simulations that predict such results with preventive assessment and
acceptable accuracy. It is important to have a reliable model of both the
control and physical systems, as well as of human decision-making, to make
reliable assumptions. This study presents such a method to develop these tools,
which includes a model that simulates the attacks of a cyber-physical intruder on
the system and the operator’s defense, demonstrating the overall performance
benefit of such framework designs.
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1 Introduction

Power systems are among the most highly complex and delicate systems of engineering
around the globe. Power systems have become increasingly complex in recent years since
modern equipment, including distributed generators (DGs), storage devices, and
monitoring equipment, has been incorporated into them. Cyber-Physical Systems (CPS)
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are advanced engineered systems that include computing,
communicating, and controlling functions (Zhang et al., 2022). A
Cyber-Physical Power System consists of a power system combined
with monitoring equipment, creating the Cyber-Physical Power
System (CPPS). There are separate laws for information,
communication, and power in a CPPS. Information technology
boosts the economy and improves the reliability of power
systems (Ponce-Jara et al., 2017). Providing accurate and
trustworthy information improves the performance of electric
utilities (Kirschen and Bouffard, 2008). A greater degree of
precision in fault detection and isolation allows the CPPS to
work more reliably (Butt et al., 2021).

Over the last years, many other works are studied on the security of
CPSs (Wu et al., 2021; Liu et al., 2019), including some human-in-the-
loop considerations with dynamic interaction over the societal control
system. However, the comprehensive modeling of the CPS security
features with power system monitoring physical information linked to
human interaction decision-making process is still under study. In Wu
et al. (2021), several operational objectives of the CPS are described in
light of a range of security concerns. Chang et al. (2021) presents a
mathematical model for analyzing and detecting different threats on a
CPS. Liu et al. (2020) proposes a hierarchical structure for CPS security
and develops a cross-layer method for preventing attacks. Zhang et al.
(2021) focuses on robust denial-of-service control. Liu et al. (2019)
examines cascading failures resulting from malicious intrusions and
proposes defenses for CPS security. Rajasekaran et al. (2023) and Ghiasi
et al. (2023) have both drawn significant attention to the issue of smart
grid security. Rajasekaran et al. (2023) analyzes a variety of security
methods to increase the viability of smart grids in the event of an attack.
Similarly, Ghiasi et al. (2023) analyzes a variety of cyber-attacks against
the smart grid and proposes measures to improve the system’s security.
In spite of the fact that these studies all contribute to smart grid and
cyber security, only a small number take into account attacker-defender
interactions. Typically, attackers aim to cause harm to systems by
selecting an attack method, whereas defenders aim to minimize
damages. CPS attackers and defenders are interconnected, so
studying interactions between them is crucial. As well, it was
presumed that defenders and attackers in Liu et al. (2020) and
Zhang et al. (2021) acted in an optimal and strategic manner as
rational players. Stress, insufficient data, and limitations like time
restrictions and complex situations can limit people’s rationality in
security risks or insufficient data situations (De Neys, 2023). Decision
nodes can be represented by a game-theoretic framework using two
essential elements. First, utility functions or reward functions measure
the related advantages of various decisions based on the individual’s
aims expressed through a decision node. Secondly, solution concepts
determine how humans make decisions. Human behavior can be
precisely represented by a solution concept when it is chosen as a
model. A mathematical model representing the human’s mental
approximations is an integral component of the solution concept
when the human’s decisions cannot be exhaustively explored.

The simplified model of the electric grid is retained in this study,
however, a number of significant improvements are made. To begin
with, the SCADA operator’s certainty is eliminated during an attack,
forcing them to work efficiently regardless of whether they are under
attack or not. Secondly, it is more helpful to use these predictions to
design physical and control systems rather than just predicting the
outcome of an attack. Thirdly, design extensions require numerical

evaluations of a greater number of case studies, and computational
algorithms are being developed to speed up simulations. Therefore,
the designer develops solution concepts and reward functions that
accurately resemble the decision making methods of cyber-physical
attackers as well as SCADA operators. A SNFG contains game
theoretic models within the decision nodes to illustrate how the
physical state evolves and what data human and automation nodes
can access. By using this model, various system designs outcomes
can be predicted by designers. This allows him to enhance his own
“designer’s reward function.” It is similar to mechanism design’s
economic theory (Gao, 2022), in which an external policymaker
designs an equilibrium game for a particular purpose. In contrast to
mechanism design, this study assumes no equilibrium behavior, and
it is therefore possible to employ the standard control methods
mentioned earlier (Wolpert and Bono, 2013; Camerer et al., 2019).
Additionally, this study contributes to research in the field of
network security and game theory (Ezhei and Ladani, 2017).
Assuming that the human operator detects attackers from SCADA
state, the model is related to intrusion detection systems (Paul et al.;
Wang et al., 2021). The human operator is alsomodelled in this study as
a means of mitigating damage following the detection of an attack. In
this way, themodelmakes a contribution to intrusion response research
(Kiennert et al., 2018).

Following is a summary of the remainder of the study. A simplified
electrical distribution circuit and the SCADA that controls it are
described in Section 2. The third part discusses the reinforcement
learning (RL) and game theory solution concept. The simulation
outcomes are described in Section 4 and how they were used to
evaluate design options. The conclusion is presented in Section 5.

2 Simplified electrical grid model

The study retains the simplified electric grid model from prior
work to model adversarial interactions between defenders and
attackers (Frost et al., 2022). Figure 1 shows a schematic of a
radial distribution circuit consisting of three nodes. V1 is
controlled by the SCADA by the tap changer at Node 1 of the
substation, as shown in Figure 1. There is a large aggregate of
reactive q2 and real p2 loads at node 2, although their fluctuation
is limited. There are real p3 and reactive q3 outputs at node three,
which represent a DG. Figure 1 showsVi, qi, andpi as voltage, reactive
and real power injections into the node i. In the circuit segment i, the
real power flow, reactive power flow, resistance, and reactance are
represented as Pi, Qi, ri, and xi. LinDistFlow is used in this simple
setting (Salkuti, 2021) with representation as Eqs (1) and (2).

P2 � −p3, Q2 � −q3, P1 � P2 + p2, Q1 � Q2 + q2 (1)
V2 � V1 − r1P1 + x1Q1( ), V3 � V2 − r2P2 + x2Q2( ) (2)

xi is set to 0.03 and ri is set to 0.03 after normalizing all terms by V0.
Simulation steps representing 1 min are used to model the attacker-
defender game. As a means of simulating consumer real load
fluctuations, p_2 is determined by a uniform distribution within
[p2, min, p2, max], where q2 � 0.5p2. There is a constant amount of
real power injection p3 in node three. The design parameters for the
game are p2, max and p3, which are constant for each game instance,
and the parameters are changed in order to test the effect of these
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parameters on the result of attacker-defender games. Each scenario
sets p2, min 0.05 less than p2, max.

The suggested simplified game involves the SCADA operator
(defender) maintaining voltages V2 and V3 between acceptable
operational limits (explained further here). Operators typically have
two control options: ULTC for adjusting voltage V1, or the DG’s
reactive power output q3. A compromising system was identified, and
the attacker controls q3, whereas the defender controlsV1. The decision
node of the defender is affected by variations ofV1, whereas the decision
node of the attacker is affected by variations of q3. In the following study
of cyber attacking issues, both the action power and reactive power
information might be manipulated by the malicious attacker via
injecting false data samples of itemized apparent power or changing
themonitoring itemized power factor information, indirectly impacting
the original active power and reactive power-relevant physical
information (Regula et al., 2016).

It is possible for the attacker to manipulate q3, change Qi, and
result in a significant deviation from 1.0 p.u for the customer node’
voltage V2. This could result in a loss of revenue if the equipment of
the customer is damaged or if the computers or computer-related
controllers are disrupted (Nelson and Lankutis, 2016). The reward
function models the goals of the attacker as the following Eq (3):

RA � Θ V2 − 1 + ϵ( )( ) + Θ 1 − ϵ( ) − V2( ) (3)

In which, ϵ shows the half width of the allowable limits of
normalized voltage. As a step function, ϵ ~ 0.05. Θ(.) represents the
voltage deviation threshold that must be crossed by the attacker to
cause damage to the distribution system.

The defender, however, maintains V2 and V3 close to 1.0 p.u. In
addition, the defender is capable of responding to small voltage
deviations without benefiting the attackers. The reward function
expresses the goals of the defender.

RD � − V2 − 1
ϵ( )2

− V3 − 1
ϵ( )2

(4)

3 The basics

A basic building block of the suggested game theoretical model is
presented below. RL and game theory are the building blocks. These

pieces are explained below in a very limited manner, using semi-
formal language for ease of comprehension, and with sufficient
detail to enable comprehension of the essential information needed
to comprehend the remainder of this parts.

3.1 Game theory

In game theory, strategic agents interact with each other. As they
make their own decisions, strategic agents consider what other
agents might do and how it might affect the game. Based on
exact calculations, this theory predicts what will happen when
these interactions take place.

A player is an entity that can influence a game by its moves (or
actions, or decisions). Essentially, a player’s tactic is the way in which
he or she determines what actions to take. It is possible to determine
how a game unfolds using a solution approach, which is a well-
known rule. In the same manner as a system dynamics equilibrium,
a Nash equilibrium describes a situation in which different players
are not motivated to depart from the action they have planned.
Thus, Nash equilibrium consists of players choosing the most
effective actions to counteract those of their opponents. The
Prisoner’s Dilemma is a common game in which Nash
equilibrium is visible. The game involves two prisoners, named A
and B, who cannot speak to each other because they are placed in
different rooms. Each of them receives the information: Prisoner A
is freed when confessing the crime, but Prisoner B has to spend
10 years in prison for denying the crime. The same applies to
Prisoner B’s release when he confesses, while Prisoner A will spend
10 years in prison for denying the crime. A 3-year sentence will be
imposed on each of them if they refuse to confess. A 5-year prison
sentence awaits them both for confessing. The game can be
represented as a matrix in Table 1, in which players’ payoffs are

FIGURE 1
The simplified power distribution network feeder line.

TABLE 1 Prisoner’s dilemma.

Case Poisoner-A

Deny Confess

Poisoner-B Deny −3, −3 0, −10

Confess −10, 0 −5, −5
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inversely proportional to their prison sentences. The “Confess,
Confess” option, even though it results in a poor payoff, is the
sole Nash equilibrium because nobody is willing to alter their
decision after reaching it. Several Nash equilibriums might exist
for a given game, and Nash equilibrium differs from game to game.

Quantal response equilibrium is another equilibrium concept in
which rather than responding to other players in the optimal way,
players are more likely to play actions with higher expected payoffs
when they select a probability distribution over their action space.

Equilibrium cannot be predicted by every solution concept.
Accordingly, for instance, level-k thinking identifies various levels of
reasoning to the player in the context of a non-equilibrium game theory
model of strategic interaction (Hough and Juvina, 2022). The model
provides a minimum level of reasoning as level-0, representing non-
strategic thinking, which basically implies the players with this
reasoning ignore other players’ actions when setting their strategies.
When faced with level-0 opponents, a level-1 player will take the most
effective action. In a similar way, a level-k player will respond most
effectively if he believes others have been reasoning at level-(k-1).
Hence, iterated optimal responses are assumed in the model (Jin,
2021). The solution concept’s findings are corroborated with varied
successes by experiments reported in Jiang et al. (2019).

A simple level-k reasoning scheme is illustrated by taking two
people walking in a university corridor along a collision route, Diana
and Ritchie.WhenRitchie chooses to keepmoving regardless of Diana’s
potential actions, he is regarded as a non-strategic thinker at level-0.
Diana can be modeled as a level-1 player if she accepts that Ritchie is a
level-0 thinker and thus steps right. An example such as this illustrates
the challenge of making level-k predictions despite research findings:
players may be misinformed about other players. Moreover, level-0
algorithms affect various levels’ behavior patterns, regardless of whether
players accurately predict the level of their opponents. Because of this,
level-0 has been called the anchoring level. It is true that these
“problems” exist, but in the context of modeling humans, they
might in fact be seen as advantages. As explained earlier, in the case
of CPHS involving several humans, adequate predictions require
models that cannot necessarily predict the best behavior. It is also
possible to view level-k thinking as representing intelligent agents’
interactions without any interaction history, because their
presumptions on the strategies of the other agents cannot be
completely accurate. As a result, human reactions that are not the
best can be observed that provide the most effective responses to what
they believe concerning the surrounding environment around them.

3.2 Reinforcement learning

In reinforcement learning (RL) models, rewards and punishments
are used to represent learning. For the purpose of clarifying the
explanation, and in order to better understand the RL algorithm
applied to the CPHS model structure presented here, it is necessary
to define the essential elements of RL and explain some terms that are
common to most RL techniques. Agents in RL could alter the
environments in which they operate by taking actions. In RL, the
goal is to find the best set of action sequences for one agent for reaching
a particular goal by interacting with the environment, as indicated by
the state of that environment. It may be necessary to make a mobile
robot (agent) move left, right, forward, and backward (actions),

depending upon whether it is going to move left, right, forward, or
backward (goal) in a 10 by 10 grid-world with obstacles. Here, the state
is the grid position where the robot resides.

As the agent (or its designer) learns for achieving a specific goal, RL
describes its preferences using a reward function. When the robot
reaches the goal state of point B, the reward is 0, else a constant negative
value. A policy consists of a probabilistic map between states and
actions.When an agent is operating, the RL algorithm is responsible for
finding a policy maximizing a cumulative discounted reward. The
cumulative reward can be expressed in the following Eq (5):

C � ∑∞
t�0
γtrt (5)

In which, γ shows the discount factor. r shows the reward of each
step t. It has been proposed that different RL methods can be used to
find action sequences that will maximize (1). In accordance with the
policy used, each of the techniques estimates a value function, which
is essentially a measure of the benefits of a certain state. The value
function is expressed in the following Eq (6):

Vπ s( ) � Eπ ∑∞
k�0

γtrt+k st � s|⎧⎨⎩ ⎫⎬⎭ (6)

In which, π shows the used policy. s shows state. The RL method is
characterized by estimating the same function, which represents a
specific action’s (a) value at a particular state. The function has the
following definition Eq (7):

Qπ s, a( ) � Eπ ∑∞
k�0

γtrt+k st � s,| at � s
⎧⎨⎩ ⎫⎬⎭ (7)

RL aims at maximizing (optimizing) the value function by selecting
the optimal policy π*. This optimum value function can be represented
by Vπ*, and it has greater or equal state values than all other value
functions resulting from policies other compared to the optimum one.
A representation of this isVπ*(s)≥Vπ(s),∀π,∀s. The optimum action
value function is expressed asQπ*(s, a)≥Qπ(s, a),∀π,∀(s, a). Having
found the optimum action value function, the policy should:

π* s( ) � argmax
a

Qπ* s, a( ) (8)

Based on the answer of the question “how to find the optimal
value function,” RL algorithm type is determined. Sometimes,
training is used to find the optimum policy. The training
procedure for RL is illustrated in Figure 2. As shown, the agents

FIGURE 2
RL procedure.
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observe the state and perform actions accordingly. As a result, the
environment changes and new states are created. A reward signal has
been generated when the reward function evaluates the new states. This
signal is used by the agent for updating the policy as it is being trained,
and the new action is taken in the next cycle. The paper introduces a
fundamental RL algorithm, Q-learning, and later presents two other RL
techniques used in the game-theoretic model structure.

3.2.1 Q-learning
Q-learning plays an important part in RL (Banik et al., 2021). By

utilizing the update rule, Q-learning realizes incremental estimations
of the optimum action-value function in the following Eq (9):

Qk+1 st, at( ) � Qk st, at( ) + α rt + γmax
a

Qk st+1, at( ) − Qk st, at( )( )
(9)

In which, α shows the step size. γ shows the forgetting factor.
While training, Q-learning does not consider the policy employed
by the agent for exploring the environment, requiring the agent to
move from one state to another. Off-policy techniques refer to RL
algorithms in which exploration and value function updates (or
policy updates) exist independently. As long as all state-action pairs
(s, a) are observed in training, and as the number of observations
approaches infinity, then the learned action value function Q will
converge to the optimum action-value function Q* at a probability
of 1. A variant of stochastic approximation conditions denoted with

∑∞
k�1

αk � ∞,∑∞
k�1

α2k ≤∞, guarantees convergence of the step size

parameter. When the step size parameter is fixed, convergence
occurs in the mean when 0≤ α≤ 1. In general, when there is no
model for the environment, constantly observing the state-action
pairs becomes critical for algorithms designed to reach convergence
to the optimum solution (Arulkumaran et al., 2017). Future rewards
are valued based on the discount factor γ. A zero γ agent, for
example, maximizes solely the immediate rewards. A value of 1
indicates that the agent is becoming more farsighted.

1) Set k equal to zero

2) Initialize the NN

3) While k < N do

4) Produce experience set G � {(inputi,targeti), i �
1,2, . . . ,#E} in which

5) inputi � si ,ai, in which si defines the state, and

also ai defines the action of ith experience

6) targeti � ri + γmin a Qk(s′i ,a), in which ri defines

the transition cost and γmin a Qk(s′i ,a)
defines the weight expected maximum path reward

for the next state s′i

7) Compute the batch error as ∑n
i�1

(Qk(si,ai) − targeti)2, in

which n is referred to the experience set volume

8) Train the network in order to minimize the error of

patch, applying resilient back-propagation and

retrieved Qk+1
9) k � k + 1

10) End while

Algorithm 1. NFQ algorithm.

3.2.2 Neural fitted Q-learning
Many RL approaches estimate Q values rather than maintaining

a table of Q values. In large state spaces, the method can be
particularly helpful. Due to their universal approximation
property, neural networks (NN) offer the best tools for storing
Q-values compactly. As opposed to the traditional Q-learning
approach described earlier, a state-action value is not kept in a
table, but rather calculated using a function derived from the NN
framework: The approximate Q-value is calculated from the NN
output by feeding a state-action pair as input to it. In order to train
the NN, first define an error function representing the difference
between the present and desired Q-values, and later minimize the
function by backpropagation. In spite of the fact that the NN can be
useful for determining the Q-values, failure is possible, either
entirely or by involving impractical convergence times, as a result
of global representation (Fisher et al., 2020): in the training
procedure, NN weights update as every state-action pair is
introduced, as well as affecting other pairs’ Q-values. Other
training gains may be nullified as a result. In contrast, the global
representation increases the generalization power of NNs because it
assigns the same Q-value to similar state-action pairs, thereby
removing the necessity of training NNs for all feasible pairs. It is
consequently necessary to devise a strategy for exploiting and
eliminating the property.

Fisher et al. (2020) proposes neural fitted Q-learning that
combines the generalization power of NNs with its potential
downside effects that store old experiences in the form of 3-
tuples (s, a, s), where s shows the initial state, a shows the action
performed, and s shows the state attained, and reuse them after an
update occurs when new information is added. In Algorithm 1, the
NFQ approach has been presented for a set of experiences denoted
by E. To implement NFQ learning, greedy search, accessible
Q-values, and random exploration should be combined rather
than just collecting experiences at random.

3.2.3 Jaakkola RL
When training by RL, an agent utilizes data from the

environment. The “state” of the environment is usually referred
to as the data. The Markov property refers to a state containing all
related data regarding how the agent and environment have
interacted in the past and in the present (Szepesvári, 2022).
Markov Decision Processes (MDPs) are learning tasks that
involve interactions with Markov-property environments. In
particular, by expressing the probability of moving from state “s”
to state “s′” and receiving a reward “r”, for an action “a” as
P(s′, r|s, a), when the probability is dependent on “s” and “a”
independently of previous actions and states. MDPs are assumed
to be the basis of most RL techniques with guarantees of
convergence. Though the fundamental dynamics in the study are
MDPs, just a few states can be observed by the agents in the
aerospace and automotive applications. As a result, in the agent’s
perspective, the tasks consist of Partially Observable Markov
Decision Processes (POMDP). A RL algorithm such as the
Jaakkola algorithm (Jaakkola et al., 1994) was designed especially
for models of POMDP systems, thus making it an appropriate
approach for the study’s learning tasks. As well as the
Q-function, Jaakkola algorithm likewise uses the value function,
V. In every state-action pair, Q values equal 0 at the start.
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Furthermore, a uniform probability distribution is used for every
state. As a result, for every iteration (s, a, s′), Q and V values change
as follows as the following Eq (10):

βt s, a( ) � 1 − χt s, a( )
Kt s, a( )( )γtβt−1 s, a( ) + χt s, a( )

Kt s, a( )

βt s( ) � 1 − χt s( )
Kt s( )( )γtβt−1 s( ) + χt s( )

Kt s( )

Qt s, a( ) � 1 − χt s, a( )
Kt s, a( )( )Qt−1 s, a( ) + βt s, a( ) Rt − R( )

Vt s( ) � 1 − χt s( )
Kt s( )( )Vt−1 s( ) + βt s( ) Rt − R( )

(10)

In which, s shows the state. a shows the action. t shows the time
step. In addition, χt(s, a)(χt(s)) equals one when the certain state-
action pair (state) has been observed, else, 0.Kt(m, a)(Kt(s)) shows
the number of times the state-action pair (state) has been observed.
Rt shows the reward in time step t. R shows average reward. γt shows
the discount factor. When Q and V functions are calculated,
Jaakkola algorithm would update its trained policy π(a|s) with
the update rule in the following Eq (11).

π a|s( ) � 1 − ϵ( )π a|s( ) + ϵπ1 a|s( ) (11)
In which, ϵ shows the update rate. π1(a|s), the policy that the

trained policy has been altered towards, shows a greedy-policy
according to the computed Q(s, a). Therefore, π1(a|s) � 1 when
the action “a” would have the maximum Q-value in a certain state
“s”. If the condition is met, the average reward will increase with the
policy update (Jaakkola et al., 1994) in the following Eq (12).

max
a

Q[ s, a( ) − V s( )]> 0 (12)

As long as condition (8) is not true, the average reward would
increase until the local optimum is reached.

There are 2 hyper-parameters in the Jaakkola algorithm:
the update rate and the discount factor. It is important to
choose as a number between 0 and 1 at the beginning and to
schedule it so that it would converge to one at the boundary in
order to ensure that convergence is guaranteed. In contrast,
must meet.

4 Simulation outcomes

In the following simulation and discussions, we assume a
simplified power distribution network that support distributed
generation installment with possible false data injection and
cyber-attack changing variables that are described by a zero-
sum attacker-defender game. As a result of space restrictions and
interest in modeling different attacking issues, just level-1
defenders versus level-0 attackers were considered by using
similar analogy and setup of Kiennert et al. (2018) in the
cyber physical system of power distribution network. Frost
et al. (2022) used the level-0 attacker policy. It is assumed that
this level-0 attacker has knowledge regarding interacted smart
grids systems and has an advanced attack method despite
being level-0.

4.1 Level-0 attacker

The level-0 attacker moves 1 step time to higher q3 when V2 < 1
and lower q3 whenV2 > 1. It is a bit random choosingV2 for the drift
direction, but this is just the behavior of a level-0 attacker. The
movement in q3 results in a movement in Q1 and, if the defender
does not compensate, a movement inV2. A level-1 defender which is
unable to detect an attacker compensates by setting V1 oppositely as
V2 for keeping the average of V2 and V3 near 1.0. Continuing this
slow movement, the level-0 attacker forces the unaware level-1
defender for ratcheting V1 close to vmin or vmax. As a result of
understanding the power flow formula and the physical status via
observing the fully transparent voltage and current information, the
level-0 attacker shows the time of “strike,” i.e., an abrupt alteration of
q3 against movement pushes V2 beyond [1 − ε, 1 + ε]. The level-0
attacker policy is described in the following way:

In which, θA shows a threshold parameter triggering the strike.
During the study, θA � 0.07> ϵ is employed for indicating the
timing of attacker strikes that accumulate rewards.

4.2 Level-1 defender—level-0
attacker dynamics

A simulation and modeling procedure are demonstrated in
2 scenarios. According to the 1st scenario, a level-1 defender would
optimize his policy versus a level-0 attacker 50 percent of the time,
i.e., p � 0.5 in the node “A exist” in Figure 3. According to the 2nd
scenario, the level-1 defenderwould optimize his policy versus a “normal”
system, i.e., p � 0 in “A exist.” The repeated SNFG in the figure is
composed of 3 independent SNFGs that are “glued” to each other within
the semi Bayes nodes. Both level-1 defenders do not differ significantly in
the 1st half of the simulations, i.e., p � 0. A level-0 attacker having p � 1
would be presented during time step 50. Accordingly, level-1 defenders
with p � 0 are vulnerable to “drift-and-strike” attacks. A level-1 defender
having a policy with p � 0.5, on the other hand, maintains somewhat
stableV1 even following 50 time steps. There are times whenV3 does not
meet desired limits, but less than previously, and V2 never does.

4.3 Policy dependence on within
defender training

The following section presents some initial research into the
tradeoffs involved in attacker-defender game design. Despite the fact
that policy optimization and policy assessment in reinforcement

Level-0-Attacker()

1) V* � maxq∈DA,t |V2−1|

2) if V*> θA

3) Then return argmaxq∈DA |V2−1|

4) If V2 < 1

5) Then return q3,t−1 + 1

6) Return q3,t−1 − 1
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learning are closely connected, they are two separate methods. A
constant set of parameters is used in training, including attacker
presence probability p and the game parameters p2, max and p3, max.
The policy evolves through a number of training runs until it reaches
a constant reward at each time step. It is then possible to evaluate the
converged policy versus the conditions trained for, as well as for
conditions other than those for which it was trained.

There are seven possible values of p, distributed
logarithmically between 0.01 to 1.0. If individual learnt
policies in different reinforcement learning algorithm are
optimized versus level-0 attackers at probability p, a set of
7 level-1 defenders can be generated. After that, the defenders
will be simulated 7 times, versus the similar level-0 attacker with
a similar range of p similar to the training process. Here,
p2, max � 1.4 and p3, max � 1. Measurement of level-1 defender
efficiency at each time step is calculated in simulation, in other

words, ∑N
i�1
Ri
D/Np, and normalized by the p in the simulation.

Figure 4 shows the outcomes.
When a sufficient number of Monte Carlo examples is possible,

and p is small in the policy optimization process (that is, training), the
majority of system states S rarely or never are observed, especially
those involving an attacker. Policy optimization outcomes are
unreliable since RL algorithms fail to estimate Q values accurately
either for Q-learning or Jaakkola learning algorithm. As a result, the

state-action policy mapping is replaced with the level-0 defender
policy. The level-1 defenders trained with p< 0.1 continue to function
ineffectively. The level-1 defender efficiency improves as a result of
sufficient states being observed sufficiently in p≥ 0.2. The rest of the
study uses p � 0.2 as the level-1 defender training threshold.

4.4 Design procedure and social
welfare (SW)

When V2 or V3 are significantly deviated from 1.0 p.u., it can
result in damage to devices or decreased efficiency as a result of
malfunctioning computers or computer-related industrial
controllers (Regula et al., 2016). A distributed generation attack
at each single node can increase the probability of these voltage
deviations. Additionally, the generator feeds energy into the grid,
resulting in a benefit to society. Larger generators (higher p3, max)
contribute a greater amount of power and are generally beneficial to
society. Large generators, though, may cause large voltage deviations
and substantial financial damage if they are damaged.

In order to assess energy costs versus productivity loss, dollars
are used as a measurement. Electricity’s SW is reasonably predicted
since its value, despite being unpredictable both in time and place, is
estimated with a fairly precise average value. A flat-rate customer
cost approximates electric energy’s value. With highly regulated

FIGURE 3
The repeated semi net-form game (SNFG) applied for modeling attackers and defenders/operators in a CPS.
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markets, energy prices are prone to distortion, and they may not
accurately reflect the true power cost. Although cost provides an
accurate estimate of monetary value in the model, market distortions
due to cyber attackingmight need to be adjusted for each case. This study
involves virtually installing a generator at one single node of a distribution
network and estimating its energy value in CE � $80/MW − hr.
According to Nelson and Lankutis (2016), users with greater
sensitivity dominate the price, which is likewise affected by grid
position and time - these customers’ locations and their usage patterns
determine the price. CPQ � $300/sensitive consumer/per power quality
event is an estimate of the average price of a power quality event.

4.4.1 Level-1 defender efficiency
versus p2,max,p3,max

By refreshing the attacker-defender game in Figure 3, it shows an
iterated SNFG whose output node “A exist” would fix the likelihood
of the attacker being present for the remainder of the N steps in the
Q-learning process, making the outcomes of all episode simulations
independent from one another. The average reward of the level-1
defender for being subjected to attack 100% of the time (p � 1) and
0% of the time (p � 0), is determinable for all intermediate values of
p. This is the basis for the following discussion. Based on Figure 4,
level-1 defenders trained versus level-0 attackers (with p � 0.2) for

FIGURE 4
Level-1 defender reward at each time step of level-0 attacker presence in simulation (∑N

i�1
Ri
D/Np) versus the probability of attacker which are

in training.

FIGURE 5
The level-1 defender’s mean reward entire simulation time steps as a function of p3,max for a 1% likelihood of an attack on one single node. Each
curve defines a different amount of p2,max amongst [0.2~2.5].
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an array of p2, max, p3, max) restrictions. Following that, the level-1
defenders are simulated using p � 1 and p � 0 for calculating their
average reward. Figure 5 shows the outcomes of (p2, max, p3, max)
restrictions with p � 0.01. There are 2 critical thresholds where the
average reward of the level-1 defenders drops sharply, that is, at
p3, max > 1.5 and at p2, max > 1.9. Subsequent analysis focuses on the
area p3, max < 1.5 prior to the sharp decline in the average reward.

4.4.2 Level-1 defender p3,max sensitivity
A SW surface plot can be generated from the power quality and

energy price estimations in Figure 5. Nonetheless, the variety of
variables can result in a multidimensional set of graphic plots that

would make interpreting the outcomes challenging. As a result,
reducing the dimensionality and generating results with a stronger
sense of imagination would be the goal. In general, level-1 defenders’
rewards decrease linearly using p3, max with p3, max < 1.5. This is the
slope of the curve that represents the level-1 defenders’ average
reward versus p3, max, and Figure 6 shows these sensitivities against
p2, max.

A more detailed analysis of Figure 6 requires relating defenders’
average rewards to power quality events, and later converting those
costs into SW costs with CPQ. The reward RD of a defender is
expressed by Eq. 4 by adding 2 smooth functions (from V2 and V3).
Each individual contribution equals one if V2 or V3 equals 1 + ϵ or

FIGURE 6
The slope of the datum in Figure 5 with p3,max ≤ 1.5.

FIGURE 7
The price of a power quality event yielding a 0 SW contribution at one single node versus p2,max .
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1 − ϵ. In spite of the fact that the deviations do not seem serious, it
can be deemed a power quality event, and the SW price can be
estimated with RDCPQ. As voltage deviations increase (decrease), RD

rises (falls), and correspondingly, SW costs rise (fall) as deviations
increase (decrease). The slope of ~ 0.006/(MWof p3, max) in Figure 6
indicates a SW price of $108/(MW of p3, max)/hr with a
CPQ � $300/sensitive consumer/per power quality event based
on Regula et al. (2016) and social welfare increasement of
protection of power system operation, with 1 min simulation
time steps, and with 1 sensitive consumer on the distribution
network. The social welfare monetary value of the energy of $80/
MW-hr exceeds the SW price resulting from reduced power
quality under CPG. Figure 7 shows the break-even power
quality price against p2, max. Positive SW is contributed by
points of CPQ and p2, max to the left of the curve, while
negative welfare is contributed by those to the right.

5 Conclusion

This paper proposes a new game-theoretic framework of
human-human cyber-attack interaction with reinforcement
learning technology, which aims to prevent intruders from
maliciously interacting with SCADA operators. Using the
proposed model and method, an adversarial interaction’s
result is estimated, and their social welfare gains is estimated
accordingly. As a summary, there are numerous interesting
features of modeled interactions that can be found in the
studied framework. Firstly, there is an asymmetric interaction
since the SCADA operator cannot be confident whether the
attacker is available, and rather employs an easy statistical
analysis of memory as a means of determining the presence of
the attacker. Secondly, a considerable amount of automation
mediated the interaction, and the outcomes of the suggested
scheme or relevant schemes are used to design this automation in
a way that maximizes the social welfare increasement caused by
the reasonable protection of the smart grid environment. In the
future work, it is possible to extend and improve the schemes
presented here in a variety of manners. There are several benefits
to expanding the scheme to include larger, more accurate grid
models, including transmission grids and feeder-level
distribution network, in which meshed systems have a greater
complicated impact. In contrast to the setting up of this paper,

complex power grid model will support several points for cyber
intruders to conduct attacks, and defenders have more
sophisticated reward functions and memories by using more
advanced reinforcement learning solution methods.
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