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To promote the application of nanorefrigerant in Organic Rankine Cycle and
Integrated Energy System a reliable model with simple structure and favorable
accuracy for predicting the flow boiling heat transfer coefficient (HTC) of
nanorefrigerant is essential. In this work, four intelligence models—the radial
basis function (RBF), multilayer perceptron (MLP), least squares support vector
machine (LSSVM), and adaptive neuro fuzzy inference system (ANFIS)—were
developed to predict the flow boiling heat transfer coefficient using
nanorefrigerants, based on 765 experimental samples. The performances of
these artificial intelligence models were comprehensively evaluated through
accuracy analysis, variation trend analysis, and sensitivity analysis. Results
indicated that the comprehensive performance of the RBF model was
superior than those of other intelligence models and the existing empirical
models. The RBF model accurately captured the variation trend of the output
as the input variables were varied. Meanwhile, the impact degrees of all input
variables in decreasing order were nanoparticle concentration (φ), mass flux (G),
thermal conductivity of nanoparticle (kp), and vapor quality (x).
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Highlights

(1) Four intelligence models—RBF, MLP, LSSVM, and ANFIS—for predicting the flow
boiling HTC of nanorefrigerants with satisfactory performance, are developed based
on 765 experimental data samples.

(2) The RBF model outperformed all of the other intelligence and empirical models.
(3) The RBF model accurately captured the variation trends of the output as the input

parameters.
(4) The impact degrees of each independent input on the output of the model

is evaluated.
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1 Introduction

As an effective method to reduce the energy consumption and
carbon emissions, the Integrated Energy System (IES) has been paid
attention by more and more countries during the past several
decades. As the advanced technical and management approaches
are being adopted, the different types of energy, such as coal, oil,
natural gas, electricity and heat, can be utilized effectively and
economically in IES (Ngangu’e et al., 2023). In China, the
development of IES technology is of great significance to achieve
carbon neutrality (Kang et al., 2023). For IES and CCHP (Combined
Cooling, Heating, and Power) systems, the commonly used
subsystems are the Organic Rankine Cycle (ORC) and the Vapor
Compression Refrigeration Cycle (VCR). The ORC systems are
composed of an evaporator, turbine, condenser, and working
fluid pump, and typically utilize the organic fluid with low
boiling points, such as refrigerants and hydrocarbons, as the
working fluid. This allows for the effective extraction of heat
from moderate to low-grade heat sources, to produce the
electricity effectively (Feng et al., 2024). Similarly, VCR systems
consist of an evaporator, compressor, condenser, and expansion
valve, facilitating the continuous cyclic motion and phase transitions
of the refrigerant, which enables heat exchange with the external
environment. Nonetheless, the heat transfer efficiency in ORC and
VCR systems is significantly hindered by the relatively low thermal
conductivity of the organic media (or refrigerants), which stands at
merely one-tenth that of water, particularly impacting the
performance of evaporators. This poses a considerable challenge
to enhancing the technical and economic feasibility of IES systems.
Given that both ORC and VCR systems can operate using various
refrigerants (e.g., R123, R245fa, R141b, R600a) as the working fluid
and share similarities in system composition, it is projected that
utilizing advanced technical methods to enhance the heat transfer
coefficients of the working fluid could lead to simultaneous
enhancements in the energy efficiency and techno-economic
performance of both ORC and VCR systems (Kumar et al., 2022).

Flow boiling heat transfer is widely applied in the fields of power
generation, VCR, ORC, thermal management, steam generation,
ultra cooling, chemical engineering, and nuclear reactors. With the
continuous advancement in nanotechnology and the rising demand
for heat transfer enhancement, nanofluid was proposed by Choi and
Eastman from the U. S. Argonne National Laboratory in 1995 (Choi
and Eastman, 1995). Similar to that of nanofluid, nanorefrigerant is
a mixture of solid nanoparticles and liquid refrigerants, such as
HFC-245fa, HCFC-141b, HCFC-123, et al. (Yilmaz et al., 2024).
Relevant investigation on the thermophysical properties (Said et al.,
2023), flow boiling heat transfer (Peng et al., 2009; Sun and Yang,
2013; Akhavan-Behabadi et al., 2014; Baqeri et al., 2014; Sun and
Yang, 2014; Yang et al., 2015; Zhang et al., 2016; Sheikholeslami
et al., 2019), flow condensation (Kumar et al., 2024) and practical
applications (Kosmadakis and Neofytou, 2020; Dey and Mandal,
2021) of nanorefrigerants has demonstrated their potential to
enhance the heat transfer while reducing the power consumption
of fluid pump.

Grasping the knowledge of the flow boiling heat transfer
coefficient (HTC) of nanorefrigerants is essential for promoting
the application of nanorefrigerants in IES. To date, relevant research
results have indicated that the flow boiling HTC of nanorefrigerants

are significantly higher than those of pure refrigerants. Meanwhile,
the flow boiling HTC is mainly influenced by the nanoparticle
volume concentration (φv), mass flux (G), vapor quality (x),
thermal conductivity of nanoparticles (kp), and et al. (Peng et al.,
2009; Sun and Yang, 2013; Akhavan-Behabadi et al., 2014; Baqeri
et al., 2014; Sun and Yang, 2014; Zhang et al., 2016). The
experimental measurements have proved to be a reliable research
method in the field of nanofluid, however, the experimental process
is costly and extremely time-consuming (Hemmati-Sarapardeha
et al., 2018; Huang et al., 2024). For this reason, it is necessary to
establish a mathematical correlation for predicting the flow boiling
HTC of nanorefrigerants with high accuracy.

In the existing relevant research literature, two correlations were
proposed by researchers to predicate the flow boiling HTC of
nanorefrigerants (Peng et al., 2009; Zhang et al., 2016). Based on
the experimental results of flow boiling using CuO-R113
nanorefrigerant, Peng proposed an empirical correlation for
predicting the flow boiling HTC of nanorefrigerants within the
deviation of ±20% (Peng et al., 2009). Peng’s correlation can be
expressed as:

hfb,nf � Fht · hfb,bf (1)

Fht � exp φv 0.8
kp
kbf

− 39.94
ρp · Cp,p( )
ρbf · Cp,bf( ) − 0.028G − 733.26x 1 − x( )⎡⎢⎣ ⎤⎥⎦⎧⎨⎩ ⎫⎬⎭

(2)

where, hfb, nf and hfb, bf denote the flow boiling HTC of
nanorefrigerant and pure refrigerant, respectively (W/m2·K); Fht
denotes the nanoparticle impact factor, defined as the ratio of HTC
between the nanorefrigerants and pure refrigerant (Fht = hfb,nf/hfb,bf);
k, ρ, φ, and Cp denote the thermal conductivity (W/m·K), density
(kg/m3), nanoparticle concentration, and specific heat (J/kg·K),
respectively; the subscripts p, bf, and nf denote the nanoparticle,
pure refrigerant, and nanorefrigerant, respectively; G denote the
mass flux (kg/m2·s); and x denote the vapor quality.

Zhang et al. (Zhang et al., 2016) proposed a modified correlation
to predict the flow boiling Fht of nanorefrigerants, based on the
experimental data of multiwalled carbon nanotubes (MWCNTs)–
R123 nanorefrigerants. Zhang’s correlation can be expressed as:

Fht � exp φv 894.3
knf
kbf

( )0.6
μnf
μbf

( )−0.4 ρnf · Cp,nf( )
ρbf · Cp,bf( )⎛⎝ ⎞⎠0.4⎡⎢⎢⎢⎣⎧⎪⎨⎪⎩

+ 1171x 1 − x( ) − 0.011Re − 908.3⎤⎦} (3)

where, μ denote the dynamic viscosity (Pa·s); and Re denote the
Reynolds number.

However, the application scope of the above two correlations is
very limited, due to the complexity of the nanoparticle–liquid
suspensions. Meanwhile, both of the correlations were proposed
based on limited experimental conditions and experimental data.
Whether these correlations can be applied to other conditions and
different nanofluid type with acceptable accuracy, is still a question.

In the last few decades, intelligence models have been proved to
be an effective method in dealing with the complex non-linear
problems due to the advantages of high accuracy, favorable speed,
broad applicability, feature extraction, adaptive, fault tolerance, and
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simple structure (Hemmati-Sarapardeh et al., 2020; Zarei et al.,
2020). The flow boiling heat transfer of nanofluids is suitable for
computation with intelligence model. The frequently used
intelligence models are Radial Basis Function (RBF), Multi-Layer
Perceptron (MLP), Least‒Squares Support‒Vector Machine
(LSSVM), and Adaptive Neuro Fuzzy Inference System (ANFIS).
In the study of Zarei et al. (Zarei et al., 2020), an MLP model with
various training algorithms were developed to predict the pool
boiling HTC of nanorefrigerants. A total of 1,342 experimental
data were used. Results indicated that the root mean square error
(RMSE) between the predicted value and the experimental one was
0.01529. The optimum structure was one hidden layer which
contained 19 neurons, trained by the Levenberg-Marquardt (LM)
algorithm. In the study of Hemmati‒Sarapardeh et al. (Hemmati-
Sarapardeh et al., 2020), the MLP, RBF, and LSSVM models were
developed to predict the thermal conductivities of nanofluids. A
total of 3,200 experimental data were utilized. Dadhich et al.
(Dadhich et al., 2020) developed an MLP model to predict the
nanoparticle impact factor (Fht) of water-based nanofluids
containing TiO2 and Al2O3 nanoparticle flow boiling inside an
annulus copper tube. The results showed that the accuracy of the
MLP model were superior to the empirical correlations. Kanti et al.
(Kanti et al., 2022) utilized the RBF based neural network to predict s
dynamic viscosity and thermal conductivity of fly ash-copper (80:
20% by vol.) hybrid nanofluid. The results indicated that the RBF
model optimizes the viscosity and thermal conductivity of the
hybrid nanofluid with R2 values 0.9963 and 0.9962, respectively.
In the study of Ghadery-Fahliyany et al. (Fahliyany et al., 2024),
three optimized intelligent models on the basis of multilayer
perceptron (MLP), two radial basis function (RBF) models
(including RBF- particle swarm optimization (PSO) and RBF-
farmland fertility algorithm (FFA)), and a committee machine
intelligent system (CMIS) were used to estimate thermal
conductivity of hybrid nanofluids. A total number of
504 experimental data points for 26 hybrid nanofluids were
collected from the existing literature. The results indicated that
the CMIS model emerged as the most accurate model for predicting
thermal conductivity of hybrid nanofluids.

According to the literature review, most of previous studies were
focused on the thermophysical properties and heat transfer using the non-
refrigerants (water, EG, acetone, and et al.) based nanofluids. Predicting
theflowboilingHTCof nanorefrigerants bymeans of artificial intelligence
approach, has not been reported at present. Owing to the intrinsic
complexity of flow boiling heat transfer using nanorefrigerants,
experimental data which covered a wide range of experimental
conditions are necessary to develop a reliable model. Further, to
promote the application of nanorefrigerant in ORC, refrigeration, and
IES, a reliable model with simple structure and favorable accuracy for
predicting the flow boiling HTC of nanorefrigerant is essential.

In this work, for the first time, artificial intelligence models
including RBF, MLP, LSSVM, and ANFIS were proposed to predict
the flow boiling HTC of nanorefrigerants. A total number of
765 experimental samples relevant to flow boiling heat transfer
using nanorefrigerant were collected from the published literature.
To comprehensively assess the reliability of the models, the
accuracies of the proposed intelligence models and the existing
empirical correlations were analyzed from several aspects.
Meanwhile, variation trend and sensitivity were analyzed to

assess the impact of each input parameter on the output. It is
believed that the results of this work will lay a certain foundation for
practical applications of nanorefrigerants in the ORC, refrigeration,
and IES. The research approach of this work is shown in Figure 1

The novelties of this work were highlighted as follows:

(1) A new thought for improving the heat transfer performance
and the total energy efficiency of ORC and IES by utilizing the
nanorefrigerants, was proposed.

(2) Novel prediction methods for predicting the heat transfer
coefficient of nano-refrigerants under flow boiling condition
based on the intelligence models (RBF, MLP, LSSVM, and
ANFIS), were developed, optimized and compared, for
the first time.

(3) Dataset with a total number of 765 experimental data samples
which covering a wide range of nanoparticle material,
nanoparticle concentration, mass flux, and vapor quality
from various existing literature were collected.

(4) The comprehensive performances including accuracies,
robustness, physical variation, and sensitivity of the four
intelligence models were assessed and compared in detail,
and the model with the best performance was selected.

2 Data processing

2.1 Data collection

In this work, a total of 765 experimental data samples were
gathered from 10 available research literature [2, 7, 11‒14, 17, 24‒
26]. The type of refrigerants collected in this work included R113,
R123, R134a, R141b, and R600a. The type of nanoparticles collected in
this work included Al, Al2O3, Cu, CuO, SiO2, TiO2, and MWCNTs.
The concentration of the nanoparticle (φ), mass flux of the
nanorefrigerant (G), vapor quality (x), and thermal conductivity of
the nanoparticle (kp) were considered as the input parameters. The
nanoparticle impact factor Fht (Fht = hfb,nf/hfb,bf) was considered as the
output targe. Relevant parameters in the reference literature are
tabulated in Table 1. The statistic description of the data samples
used for developing the intelligence models are tabulated in Table 2.

In the modeling process, the initial data samples should be
normalized by employing the following formula:

x′ � x − xmin

xmax − xmin
(4)

where, x′ and x denote the normalized data and the initial data,
respectively; the subscript of max and min denote the maximum
values and the minimum values, respectively.

Meanwhile, to prevent excessive aggregation of data in local
area, 574 data samples (75%) were randomized to the training set,
and 191 data samples (25%) were randomized to the testing set.

2.2 Performance evaluation parameter

To comprehensively assess the developed intelligence models
quantitatively, the following performance evaluation parameters
were utilized and were given as follows:
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FIGURE 1
The research approach of this work.

TABLE 1 Relevant parameters of flow boiling HTC using nanorefrigerants in the literature.

Authors Nanoparticle Refrigerant Nanoparticle
concentration (%)

Mass flux
(kg/m2·s)

Amount of
data

Peng et al. (Peng et al., 2009) CuO R113 0–0.5 100–200 54

Sun and Yang (Sun and Yang, 2014) Cu, Al, CuO, Al2O3 R141b 0–0.3 120–300 132

Sun and Yang (Sun and Yang, 2013) Cu, Al, CuO, Al2O3 R141b 0–0.3 120–300 76

Yang et al. (Yang et al., 2015) MWCNTs R141b 0–0.3 180–490 42

Behabadi et al. (Akhavan-Behabadi
et al., 2014)

CuO R600a–oil 0–1.5 50–400 52

Baqeri et al. (Baqeri et al., 2014) CuO R600a–oil 0–2 50–700 58

Henderson et al. (Henderson et al.,
2010)

SiO2, CuO R134a,
R134a–POE

0.02–0.5 100–400 36

Zhang et al. (Zhang et al., 2016) MWCNTs R123 0.02–0.2 300–500 72

Sheikholeslami et al. (Sheikholeslami
et al., 2019)

CuO R600a–Oil 0–1 155–265 132

Tazarv et al. (Tazarv et al., 2016) TiO2 R141b 0–0.03 192–480 111

TABLE 2 Statistic analysis of the collected experimental samples.

Parameter Input parameters Output parameters

φ (%) G (kg·m‒2·s‒1) x kp (W·m‒1·K−1) Fht

Maximum 2.0 488 0.81 2,200 1.6441

Minimum 0.01 58.7 0.08 21 1.0032

Mean 0.3472 245.26 0.4642 626.406 1.1584

Standard deviation 0.474 125.98 0.2262 765.838 0.1117
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Determination Coefficient (R2)

R2 � 1 −
∑N
i�1

Fht, exp ,i − Fht,pre,i( )2
∑N
i�1

Fht, exp ,i − �Fht, exp( )2 (5)

Root-Mean-Squared-Error (RMSE)

RMSE �

��������������������
1
N
∑N
i�1

Fht, exp ,i − Fht,pre,i( )2√√
(6)

Mean-Squared-Error (MSE)

MSE � 1
N
∑N
i�1

Fht, exp ,i − Fht,pre,i( )2 (7)

Mean-Absolute-Percentage-Error (MAPE, %)

MAPE% � 100
N

∑N
i�1

Fht, exp ,i − Fht,pre,i

Fht, exp ,i

∣∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣∣ (8)

where, Fht, exp and Fht, pre denote the experimental value and the
predicted value of nanoparticle impact factor, respectively. Fht, exp
denote the average value of the nanoparticle impact factor, and N
denote the total number of the data samples. In simple terms, the
best fit between the experimental and predicted values would have
R2 = 1, RMSE = 0, MSE = 0, and MAPE% = 0.

3 Modeling process

3.1 Radial basis function (RBF)

As a typical artificial neural network based on the function
approximation method, RBF model high convergence rate, good
precision, and simply form. The basic structure of RBF is consisted
of three fixed layers: an input layer, a hidden layer, and an output
layer (Yu et al., 2008). Each layer contains a different number of
neurons and is connected by weights and bias. The number of
neurons in the input layer (l) is equal to the number of input
variables in the model (l = 4). The input layer first receives the input
vectors and then transmits them to the hidden layer. Then, the data
from the input layer are activated, processed and transmitted to the
output layer, by means of an activation function in the hidden layer.
Finally, the output of the kth neurons in the output layer yk, can be
expressed as:

yk � ∑m
j�1
wjkϕj r( ), k � 1, 2, . . . , n( ) (9)

where wjk denotes the weight connecting the jth neuron in the
hidden layer and the kth neuron in the output layer, which can be
determined in the training process; m denotes the number of
neurons in the hidden layer, and n denotes the number of
neurons in the output layer, which is equal to the number of
outputs in the model (n = 1); ϕ denotes the activation function
in the RBF model, which is selected as a Gaussian function and is
expressed as:

ϕj rE( ) � ϕ rE,j( ) � e
−rE,j

2

2σj
2( )

(10)

where σ denote the Spread coefficient, and rE denotes the Euclidian
distance. The Euclidian distance between the ith neuron in the input
layer (xi) and the jth neuron in the hidden layer (cij), can be
calculated as:

rE,j � xi − cij
"""" """" � �����������∑l

i�1
xi − cij( )2√√

i � 1, . . . , l, j � 1, 2, . . . , m( )
(11)

So far, the basic structure of the developed RBF model can be
obtained as 4−m−1. To achieve the optimum performance of the
RBF model, it is critical to determine the values ofm, σ, weights, and
bias. By comprehensive comparison, trial and error is utilized to
determine the optimum values ofm and σ. Meanwhile, to determine
the optimum combinations of weights and biases, the Orthogonal
Least Squares (OLS) and an Adaptive Gradient Descent Algorithm
are utilized for training the RBF model. Variations of the
performance parameters in the training and testing process are
tabulated in Table 3.

According to Table 3, although increasing the value of m would
decrease the error in the training dataset, the error in the testing
dataset would be increased, especially when the value of m excessed
53. This phenomenon is called local optimal which needs to be
careful avoided in the modeling process (Bahiraei et al., 2019; Jamei
et al., 2020). Meanwhile, the larger them was, the more complicated
the model structure was, lead to a longer computing time. By
comprehensive consideration of the accuracy, complexity, and
practicability, the optimum values of m and σ were determined
as 53 and 0.49, respectively. The optimum values of weights and bias
for the RBF model are tabulated in Supplementary Appendix Table
A2. At this point, the final structure of the developed RBF model is
given in Figure 2.

3.2 Multilayer perceptron (MLP)

Similar to the structure of the RBF model, the MPL model is
consisted of one input layer, one output layer, and at least one
hidden layer. The neuron in each layer is connected by weights (w)
and bias (b). The main difference between the MLP and RBF are the
way that the neurons process data and the selection of activation
function (Hemmati-Sarapardeha et al., 2018; Zendehboudi et al.,
2019). The output of the jth neurons in the output layer can be
expressed as:

yj � f ∑n
i�1
wjixi + bj⎛⎝ ⎞⎠ (12)

where yj denotes the output of the jth neuron in the output layer, f
denotes the activation function, n denotes the number of neurons in
the hidden layer, wji denotes the connection weight between the jth
neuron in the hidden layer and the ith neuron in input layer, xi
denotes the output of the ith neuron in the input layer, and bj
denotes the bias of the jth neuron. Based on a comprehensive
literature review, the linear function (Purelin) and the tangent
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sigmoid function (Tansig), respectively, were selected as the
activation functions for the output layer and the hidden layer.
The expressions of these functions are given as:

Purelin: f x( ) � x (13)

Tansig: f x( ) � ex − e−x

ex + e−x
� 2
1 + e−2x

− 1 (14)

In the MLP model, the number of neurons in the input layer is
equal to the number of input variables (=4), and the number of

TABLE 3 Variations of the performance parameters in the training and testing process.

Parameters Training Testing Computing times (s)

m σ R2 RMSE MAPE (%) R2 RMSE MAPE (%)

108 0.14 0.993 0.0448 3.658 0.997 0.0323 3.063 8.86

100 0.16 0.992 0.0472 3.043 0.997 0.0276 3.007 7.14

95 0.19 0.993 0.0506 4.062 0.996 0.0302 2.978 6.21

92 0.23 0.991 0.0428 4.147 0.996 0.0317 2.864 5.87

80 0.34 0.994 0.0493 3.581 0.996 0.0308 3.265 4.74

75 0.36 0.985 0.0472 4.462 0.995 0.0414 3.117 4.52

70 0.39 0.992 0.0458 3.788 0.996 0.0323 3.315 4.17

65 0.42 0.988 0.0408 3.235 0.994 0.0403 3.084 3.94

60 0.44 0.993 0.0431 3.852 0.996 0.0358 3.106 3.57

58 0.45 0.990 0.0443 3.425 0.994 0.0387 2.962 3.33

55 0.47 0.988 0.0498 3.921 0.995 0.0372 3.132 3.08

53 0.49 0.986 0.0466 3.864 0.994 0.0357 3.015 2.89

51 0.50 0.982 0.0482 4.025 0.994 0.0393 3.304 2.75

49 0.52 0.982 0.0459 3.813 0.993 0.0419 3.454 2.68

47 0.53 0.978 0.0514 3.928 0.991 0.0418 3.206 2.54

20 0.71 0.954 0.0823 4.782 0.962 0.0723 5.563 1.94

15 0.73 0.958 0.0878 6.274 0.951 0.1046 9.207 1.82

aThe optimal values are marked in bold.

FIGURE 2
The final structure of the RBF model.
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neurons in the output layer is equal to the number of output variable
(=1). To determine the structure of the MLP model, the Levenberg
Marquardt (LM) algorithm was utilized to train the model (Khalifeh
and Vaferi, 2019). Meanwhile, the trial-and-error method was
utilized to determine the number of neurons in the hidden layer.
The optimum values of n, w, and b for the MLP model are tabulated
in Supplementary Appendix Table A2. The optimum structure of
the MLP model developed in this work was determined as 4–32–1.

3.3 Least‒squares support‒vector
machine (LSSVM)

The support vector machine (SVM) was proposed in 1964, and has
been widely used in question classification, pattern recognition, and
nonlinear regression (Hemmati-Sarapardeh et al., 2020; Huang et al.,
2024). With the continuous development of technology, the traditional
SVM have expressed frustration in solving the complicated problems
with large amount of data samples (Zendehboudi and Saidur, 2018). To
overcome this issue, the LSSVM model was developed on the basis of
SVM, by adding a regression error in the optimization constraints. In
the LSSVM model, the mathematic relation between the input vectors
X = {x1, x2, . . ., xn} (where n is the number of points) and the output
vectorsY = {y1, y2, . . ., yn} can be described by the penalty function. The
penalty function can be expressed as follows:

QLSSVM � 1
2
wTw + 1

2
γ∑n
i�1
e i
2 (15)

subjected to the following equality constraints:

yi � wTg xi( ) + b + ei, i � 1, 2, 3, . . . , n (16)
where T denotes the transpose matrix, γ denotes the summation of
regression errors, ei denotes the regression error between the
predicted and actual values, g (x) denotes the mapping function,
w denotes the weight, and b denotes the bias.

To solve the aforementioned optimization problems, the
corresponding Lagrange function is proposed and can be
expressed as (Hemmati-Sarapardeh et al., 2020):

L w, b, α, e( ) � 1
2
wTw + 1

2
γ∑n
i�1
e2i −∑n

i�1
αi w

Tg xi( ) + b + ei − yi[ ]
(17)

where αi denotes the Lagrange multiplier.
By setting the derivatives of w, b, α, and e to zero, an optimal

solution to the problem can be obtained as:

∂L w, b, α, e( )
∂ei

� 00αi � γ · ei (18)
∂L w, b, α, e( )

∂w
� 00w � ∑n

i�1
αig xi( ) (19)

The LSSVM model can be expressed as follows:

y � ∑n
i�1
αix

T
i x + b (20)

For nonlinear regression problems, the Kernel function is
introduced to combine with Eq. 17

y � ∑n
i�1
αiK xi, x( ) + b (21)

Owing to the higher accuracy, better convergence and simplicity,
the radial basis function (RBF) has been widely used as kernel
function in LSSVM which can be given as follows:

K xi, x( ) � exp − xi − x‖ ‖2
σ2

( ), i � 1, 2, 3, . . . , n (22)

where σ2 denote the bandwidth of the RBF.
The values of the hyper-parameters (σ2 and γ) are very

important for the performance of LSSVM. According to the
cross-validation method, the optimum σ2 and γ were determined
as 0.2916 and 40.723, respectively.

3.4 Adaptive neuro fuzzy inference
system (ANFIS)

The adaptive neuro fuzzy inference system (ANFIS) is a new kind
of inference system which combines the artificial neuron network
(ANN) and fuzzy logic algorithms (Bahiraei et al., 2019). For a first-
order Takagi–Sugeno ANFIS model with two input variables (x1 and
x2) and one output variable (y), the model can be constructed by the
following If–Then rules (Aminossadati et al., 2012):

Rule 1 If x1 is A1 and x2 is B1 then y1 = p1x1 + q1x2 + r1
Rule 2 If x1 is A2 and x2 is B2 then y2 = p2x1 + q2x2 + r2
where Ai and Bi denote the fuzzy sets of x1 and x2, respectively,

pi, qi, and ri denote the designing parameters.
In simple terms, ANFIS is a multilayer network which is consists

of five layers: fuzzified layer, rule layer, normalized layer, output layer,
and summing layer (Mehrabi et al., 2011). In the first fuzzified layer of
the ANFIS, the input variables are fuzzified by the membership
function. Next, each neuron is processed by relevant rules and the
firing strength of each rule is obtained. In the third layer, the firing
strength of each rule is normalized. In the fourth output layer, the
output of each rule is obtained by multiplying the normalized value of
firing strength. In the final layer, the overall output of the model is
determined by the weighted average output of all rules.

By comprehensive considering of the number of samples and the
capability of the ANFIS model, the subtractive clustering method
(SCM) and the least squares-back propagation algorithm were
selected to train and optimize the ANFIS model (Tatar et al.,
2016). Through compare and analysis, the Gaussian function and
the linear function were selected as the membership function,
respectively, for the input layer and the output layer. Meanwhile,
the optimum number of membership function, fuzzy rule, linear
parameter, and nonlinear parameter were determined as 22, 36, 146,
and 48, respectively.

4 Results and discussion

4.1 Accuracy analysis

To comprehensively assess the accuracy of the developed
intelligence models, the deviation between the experimental and
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the predicted values, for the RBF, MLP, LSSVM, and ANFIS, are
given in Figure 3, Figure 4, Figure 5, and Figure 6, respectively. In
these figures, the red triangle and the yellow circular, respectively,
represent the training data and the testing data.

As shown from Figure 3–6, the deviation for the RBF, MLP,
LSSVM, and ANFIS were within the range of ±8%, ±10%, ±12%,
and ±10.3%, respectively. For the training data, the prediction errors
by the RBF, MLP, LSSVM, and ANFIS were −7.42%–
7.56%, −9.86%–9.92%, −11.96%–11.81%, and −9.94%–9.93%,
respectively. While for the testing data, the prediction errors
were −7.06%–7.68%, −9.65%–9.50%, −11.33%–11.42%,
and −9.91%–9.76%, respectively. It can be seen that the

accuracies of the developed intelligence models can meet the
requirements of industrial application.

To further quantification and comparison of the accuracy of the
intelligence models, the performance parameters of the intelligence
models and the empirical correlations, were tabulated in Table 4.

As can be clearly seen from Table 4, the highest value of R2 and
the lowest values of RMSE andMAPE were found in the RBFmodel.
The performance of the RBF model was superior than those of other
models. Meanwhile, the intelligence models exhibited better
performances than the empirical correlations significantly, with
much lower RMSE and MAPE values. This was mainly because
the empirical correlations were derived based on the common

FIGURE 3
Deviation of the developed RBF models. (A) Cross plot, and (B) Error distribution plot.

FIGURE 4
Deviation of the developed MLP models. (A) Cross plot, and (B) Error distribution plot.
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regression techniques and limited experimental data. In rank order
of best to worst, the accuracies of the model were: RBF > MLP >;
LSSVM > ANFIS > Zhang’s > Peng’s.

4.2 Variation trend analysis

The accuracy of the developed RBF model has been confirmed.
In order to check whether the RBF model could predict the variation
trend of the output (Fht) with the inputs (φ, G, x, and kp), a
comprehensive variation trend analysis was conducted. Variations
of the Fht with φ, G, x, and kp are presented in Figure 7, Figure 8, and

Figure 9, respectively. In these figures, the scatter symbols represent
the experimental results, and the solid line represent the predicted
ones by the RBF model, respectively.

Figure 7A,B shows the variations of the Fht with respect to the
vapor quality (x) under different nanoparticle concentration (φ),
respectively, for Cu‒R141b nanorefrigerant and Al2O3‒R141b
nanorefrigerant. As can be seen in Figure 7 that the variation
trends of the Fht with x and φ, predicted by the RBF model, were
in consistency with the experimental observation. For a given
nanoparticle concentration, Fht increased firstly, continuously
came up to a “peak value”, and then decreased as the vapor
quality (x) increased. A similar phenomenon was observed in the

FIGURE 5
Deviation of the developed LSSVM models. (A) Cross plot, and (B) Error distribution plot.

FIGURE 6
Deviation of the developed ANFIS models. (A) Cross plot, and (B) Error distribution plot.
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experiment researches by Akhavan‒Behabadi et al. (Akhavan-
Behabadi et al., 2014) and Zhang et al. (Zhang et al., 2016). This
can be attributed to the fact that the nanoparticles during flow
boiling significantly promoted the flow pattern toward the annular
flow regime at the middle vapor quality. With further increasing
vapor quality, the liquid content of refrigerant decreased and the
annular flow regime disappeared, thereby deteriorating the heat
transfer coefficient. For Cu‒R141b nanorefrigerant, the RMSE
between the experimental Fht and predicted ones for φ = 0.1%,
0.2%, and 0.3%, respectively, were 0.006, 0.0141, and 0.009. For
Al2O3‒R141b nanorefrigerant, the RMSE between the experimental
Fht and predicted ones for φ = 0.1%, 0.2%, and 0.3%, respectively,
were 0.0072, 0.0094, and 0.02311.

Figure 8A,B shows the variations of the Fht with respect to the
mass flux (G) under different nanoparticle concentration (φ),
respectively, for MWCNTs‒R123 and CuO‒R600a
nanorefrigerants. The predicted variation trends of the Fht with G
and φ, predicted by the RBF model, were consistent with the
experimental observation. The nanoparticle impact factor Fht

decreased with increasing mass flux for a given nanoparticle
concentration. This can be explained by the fact the heat transfer
enhancement can be induced by increasing mass flux, while the
contribution of nanoparticle to the heat transfer enhancement is
gradually inhibited with the increase of mass flux (Peng et al., 2009;
Sun and Yang, 2013).

In Figure 9, the variation trends of the Fht with φ, predicted by
the RBF model, were consistent with the experimental observation.
The HTC of the nanorefrigerant increased with the increase of the
thermal conductivity of nanoparticle. For Cu‒R141b, Al‒R141b,
Al2O3‒R141b, and Cu‒R141b nanorefrigerants, the RMSEs between
the experimental Fht and predicted ones, respectively, were 0.0166,
0.0145, 0.0134, and 0.0172.

In order to quantitative investigate the error distribution of the
RBF model with the variations of different types of inputs, the
deviation distribution of the present RBF model in different ranges
of φ, G, x, and kp are, respectively, given in Figure 10A–D. In this
figure, the red bars represent the values of RMSE, and the blue bars
represent the values of MAPE. As can be seen from Figure 10 that

TABLE 4 Performance parameters of the developed intelligence models.

R2 RMSE MAPE (%) Rank

Training Testing Total Training Testing Total Training Testing Total

RBF 0.986 0.994 0.988 0.0466 0.0357 0.0438 3.864 3.015 3.65 1

MLP 0.982 0.968 0.977 0.0475 0.0572 0.0499 4.456 3.623 4.23 2

LSSVM 0.962 0.976 0.965 0.0528 0.0491 0.0519 4.817 5.022 4.86 3

ANFIS 0.971 0.982 0.974 0.0523 0.0576 0.0536 5.44 6.04 5.92 4

Peng et al. (Kang et al., 2023) 0.684 0.253 15.76 6

Zhang et al. (Zhang et al., 2016) 0.772 0.175 9.83 5

FIGURE 7
Variations of the nanoparticle impact factor (Fht) with respect to the vapor quality (x) under different nanoparticle concentration (φ) using: (A) Cu‒
R141b, and (B) Al2O3‒R141b.
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the error distributions by the RBF model were relatively uniform in
different ranges of φ, G, x, and kp, while no obvious local error
aggregation was found. Therefore, it is demonstrated that the RBF
model can effectively predict the variation trend of the output (Fht)
with the inputs (φ, G, x, and kp).

To now, the developed RBF model was proven to be a
favorable tool for predicting the flow boiling HTC of
nanorefrigerant in many common experimental conditions
and practical scenarios, based on the results given in
Figure 3-10.

FIGURE 8
Variations of the nanoparticle impact factor (Fht) with respect to themass flux (G) under different nanoparticle concentration (φ) using: (A)MWCNTs‒
R123, and (B) CuO‒R600a.

FIGURE 9
Variations of the nanoparticle impact factor (Fht) with respect to the nanoparticle concentration (φ) for the R141b based nanorefrigerant containing
Cu, Al, CuO, and Al2O3 nanoparticles.
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4.3 Sensitivity analysis

To promote the application of nanorefrigerant, a thorough
understanding on the impact degree of each input variable (φ, G,
x, and kp) on the output (Fht) is essential. For this purpose, a
sensitivity analysis was carried out using the correlation proposed by
Pearson (Mohagheghian et al., 2015). The Pearson’s correlation has
been widely used for sensitivity analysis in the existing literature and
can be expressed as (Khalifeh and Vaferi, 2019):

r inpk, Fht( ) � ∑n
i�1

inpk,i − inpk( ) Fht ,i − Fht( )�������������������������∑n
i�1

inpk,i − inpk( )2 Fht ,i − Fht( )2√ (23)

where, r denotes the relevancy factor, which ranged between −1 and
+1; inpk,i denotes the ith value of the kth input variable; inpk denote
the average value of the kth input variable; Fht, i denote the ith value
of the output, and Fht denote the average value of the output. It is

worth mentioning that the sign of r directly reflects the proportional
relation between the output variable and the input variables. In
simple term, a positive r indicated that the relation between the
input variable and output variable is proportional, whereas a
negative r indicated that the proportional between the input and
output is inversely. Meanwhile, the larger the absolute value of r is,
the greater the impact degree of input variable on output is.

According to Eq. 23, the relevancy factor of each input variable
on the output are presented in Figure 11.

As can be seen from Figure 11 that the impact degrees of all
input variables in decreasing order are: |r|(φ) = 0.506, |r|(G) = 0.232,
|r|(kp) = 0.188, and |r|(x) = 0.074. Among all the input variables, the
nanoparticle concentration (φ) has the greatest impact degree on the
output. Meanwhile, the r values for φ and kp were positive, which
indicated that the increase of φ and kp resulted in the increase of Fht.
On the other hand, the r values for G and x were negative, which
indicated that the increase of G and x resulted in the decrease of Fht.
The above results are consistent with the results of previous
variation trend analysis.

FIGURE 10
The error distribution of the RBF model in different ranges of. (A) nanoparticle concentration, (B)mass flux, (C) vapor quality, and (D) nanoparticle’s
thermal conductivity.
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5 Conclusion

In order to explore the feasibility of employing the
nanorefrigerant in the ORC and IES, four intelligence
models—RBF, MLP, LSSVM, and ANFIS—for predicting the flow
boiling heat transfer coefficient of the nanorefrigerants, were
developed based on 765 experimental data samples. The
comprehensive performances of the models were analyzed in
detail, including accuracy, physical variation trend, and
sensitivity. The following conclusions were drawn from the study:

(1) The predicted values by the RBF, MLP, LSSVM, and ANFIS
were in good agreement with the experimental values.
According to the comprehensive statical analysis (R2,
RMSE, and MAPE) for the training, testing and total
dataset, the RBF model was superior than those of other
intelligence models and the existing empirical models in
predicting the flow boiling heat transfer coefficient of
nanorefrigerants.

(2) According to the variation trend analysis, the RBF model
accurately captured the variation trend of the output (Fht)
with the inputs (φ, G, x, and kp). Fht increases with increasing
φ and kp, while decrease with G and x.

(3) The impact degrees of all input variables in decreasing order
were nanoparticle concentration (φ), mass flux (G), thermal
conductivity of nanoparticle (kp), and vapor quality (x).
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