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1 Introduction

With the high-proportion integration of distributed energy sources such as
renewable energy and energy storage systems, the traditional distribution network
has evolved from a passive power supply network to an active network with the
bidirectional power flow (Sheng et al., 2021). The operation and scheduling of active
distribution networks (ADNs) have undergone great challenges due to intrinsic
intermittence and volatility from renewable energy resources (Xiang et al., 2017;
Li et al., 2023). This has led to the necessity to fully utilize support and adjust the
capability of flexibility resources such as distributed energy storage and electric
vehicles for reliable power supply (Xu et al., 2022; Lu et al., 2023).
Considering the properties of large quantities, decentralized locations, and diverse
stakeholders for heterogeneous flexibility resources, the traditional centralized
control strategy faces various challenges in the form of system reliability, mass
communication, and information privacy (Hu et al., 2018). Hence, distributed
optimization is proposed to purge the globally unified control of distribution
networks that would enable the efficient management of flexibility resources
through distributed clustering (Zhou B. et al., 2021; Fu et al., 2022; Zhong et al.,
2023). However, conventional distributed algorithms have slow convergence
properties, owing to the gradient-based update process and communication delays
(Zhang et al., 2022), which cannot satisfy the fast real-time scheduling of ADNs.
Therefore, this paper focuses on providing insightful perspectives and discussions on
the fast distributed optimization for large-scale scheduling of heterogeneous
flexibility resources.

The main contributions of this paper are two-fold: (1) a bi-level distributed
scheduling model of large-scale heterogeneous flexibility resources is proposed to
minimize the overall operational cost of ADNs and promote the accommodation of
renewable energy resources and (2) a fast distributed asynchronous optimization
method is presented to accelerate the convergence speed for the real-time
scheduling of ADNs, and the correctness and superiority of the proposed method
are demonstrated by case studies.
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2 Distributed scheduling model of
large-scale heterogeneous
flexibility resources

Optimized scheduling of ADNs needs to take into account
potential benefits of different dispatching entities such as
distribution networks and diversified flexibility resources for
minimizing the overall operational costs while stimulating the
incorporation of renewable energy. The objective function aims
to minimize the costs associated with purchasing electricity,
renewable energy curtailment, and dispatching flexibility
resources for the purpose of economy enhancement as follows:

minF � ∑T
t�1
⎡⎢⎣λbuyt Pbuy

t + ∑
i∈ΩRES

λRES.curti,t PRES.curt
i,t + ∑

i∈ΩDR

λDR PL.O
i,t − PL

i,t

∣∣∣∣ ∣∣∣∣
+ ∑

i∈ΩESS

λESS ηci P
c
i,t +
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ηdci
( )⎤⎥⎦Δt,

(1)
whereT denotes the total number of scheduling periods;Δt denotes the
duration of each scheduling period; λbuyt , λRES.curt, λDR, and λESS

represent the purchase price of electricity in time period t, the cost
coefficient for the penalty of renewable energy curtailment, the unit
dispatch cost of controllable loads, and the cost coefficient for the
charging and discharging of the energy storage system, respectively;
ΩRES, ΩDR, and ΩESS represent the set of renewable energy, demand
response, and energy storage system in ADNs, respectively; Pbuy

t

denotes the purchased active power from the main grid in time
period t; PRES.curt

i,t denotes the renewable energy curtailment at node
i in time period t; PL

i,t and PL.O
i,t denote the actual dispatch power and

original power of controllable load i in time period t, respectively; ηci
and ηdci denote the charging and discharging efficiencies of energy

storage unit i, respectively; and Pc
i,t and Pdc

i,t denote the charging and
discharging power of energy storage unit i in time period t, respectively.

A bi-level distributed scheduling strategy is proposed to minimize
the overall operational cost of ADNs, which is poised to meet the needs
of individual economies and privacy preservation for agents with diverse
flexible resources (Cao et al., 2024). At the upper level, the scheduling
and control center of ADNs serves as a decision-maker to achieve
synergies among multiple flexibility resources via information and
energy exchange, thereby maximizing the overall economics of
scheduling for distribution networks with high renewables. At the
lower level, nodes integrated with controllable flexibility resources
achieve autonomous operation through the full utilization of the
inherent adjustment capacity. The proposed hierarchical optimization
scheduling model can be solved by the alternating direction method of
multipliers (ADMM) algorithm, which is a popular and efficientmethod
to deal with distributed optimization problems with stable robustness
and convergence (Gao et al., 2020; Qi et al., 2023). The distributed
scheduling model of large-scale heterogeneous flexibility resources can
be decomposed into the master problem of distribution networks at the
upper level and subproblems of controllable flexibility resources at the
lower level based on the ADMM, as shown in Figure 1A.

The objective function can be separated according to the bi-level
distributed optimization scheduling strategy as follows:

F � FADN + ∑
i∈ΩN

FN,i, (2)

FADN � ∑T
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(4)

FIGURE 1
Distributed scheduling model and fast optimization method for active distribution networks (ADNs). (A) Distributed scheduling model of flexibility
resources (B) Comparison of synchronous and asynchronous distributed ADMM algorithms (C) Illustration of feasibility domains reduction via cutset
constraints.
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where ΩN denotes the set of nodes integrated with flexibility
resources; FADN is the objective function of the master problem
for the ADN; and FN,i is the objective function of subproblem for
node i. The optimization variables for the master problem mainly
comprise the power purchased from or sold to the main grid. The
optimization variables for the subproblems include multiple
heterogeneous flexibility resources dispatching power, which
consist of the energy storage system, photovoltaic generation,
wind turbine generation, micro-gas turbine, and demand
response resources. Furthermore, there are coupling relationships
between the nodes integrated with controllable flexibility resources
and ADNs due to their energy interaction. Hence, the power injected
to nodes integrated with controllable flexibility resources X̂i,t �
Pi,t, Qi,t|i ∈ ΩN{ } is used as coupling variables, and the expected
power from the distribution network to nodes Ẑi,t �
P̂i,t, Q̂i,t|i ∈ ΩN{ } is proposed as virtual decoupling variables to
establish the consistency coupling constraints as follows (Zhou X.
et al., 2021):

X̂ i,t − Ẑi,t � 0. (5)

The variables X̂i,t and Ẑi,t are solved separately at the upper and
lower levels, respectively, and the optimization results are delivered
iteratively between the two levels to solve the model. A Lagrange
penalty function is added to the objective functions of the master
problem and subproblems as follows:

X̂
k+1
i � min FN,i + ρ

2
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���������
���������
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2
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i,t( )
���������

���������
2

2

⎛⎝ ⎞⎠, (7)

where k denotes the iteration number; ρ is the penalty coefficient;
and uji,t is the Lagrange multiplier. The proposed distributed
scheduling model is solved by optimizing the coupling variables
through continuous iterations between the master problem and
subproblems. Relevant information about the expected interaction
energy for ADNs and nodes integrated with controllable flexibility
resources is delivered mutually at the two levels. The Lagrange
multipliers will be updated after each iteration step as follows:

uk+1
i,t � uk

i,t + X̂
k+1
i,t − Ẑ

k+1
i,t . (8)

The primal residual rk and dual residual sk are introduced as
convergence criteria (Xu et al., 2018), which are calculated after each
iteration step as follows:

rk � ∑
i∈ΩN

∑T
t�1

X̂
k

i,t − Ẑ
k

i,t( )
���������

���������
2

≤ εr, (9)

sk � ∑
i∈ΩN

ρ ∑T
t�1

X̂
k

i,t − X̂
k−1
i,t( )

���������
���������
2

≤ εs, (10)

where εr and εs refer to the convergence threshold for the primal
residual and dual residual, respectively. If the convergence criterion
is not satisfied, the next iteration will continue with updated
Lagrange multipliers along with the latest data on coupling and
decoupling variables. Otherwise, the iteration process will be
terminated to obtain the optimal scheduling determination of

heterogeneous flexibility resources with minimal operational
costs for ADNs.

3 Fast distributed asynchronous
optimization for real-time scheduling
of ADNs

Considering the time-varying nature of communication
networks and the varied responsiveness of heterogeneous
flexibility resources (Cao et al., 2024), traditional synchronized
computation is insufficient to satisfy the fast real-time scheduling
of ADNs, owing to the increased communication overhead and
limited convergence speed. Specifically, under the synchronous
protocol, the optimization model for the master problem is
triggered at each iteration only if the scheduling center of ADNs
receives the information from all nodes (Zheng et al., 2018). The
master problem and computationally fast subproblems will remain
idle most of the time, thereby impeding the full utilization of parallel
computing resources. Hence, the distributed asynchronous
optimization is adopted to improve the convergence efficiency,
which allows the master problem to execute the next iterative
updates without the reception of complete information from all
nodes (Chang et al., 2016), as shown in Figure 1B. Initially, Dk is
proposed to denote the index set of nodes from which the scheduling
center receives coupling information during iteration k. The variable
information of node i is uploaded to the scheduling center if i ∈ Dk.
If a node fails to deliver information promptly due to
communication delays or slow response speed, the data of the
last iteration will be used instead to execute the next
optimization updates for the master problem as follows:

X̂
k

i,t �
X̂

k

i,t, i ∈ Dk

X̂
k−1
i,t , i ∉ Dk

⎧⎨⎩ . (11)

Two asynchronous constraints are set in the computation
process to guarantee the convergence of the asynchronous
optimization algorithm (Chang et al., 2016). On one hand, to
ensure the efficacy of each iteration, the master problem proceeds
to the next iteration only if the number of nodes inDk is larger than
the set threshold κ≥ 1. On the other hand, taking into account the
hazard of unbounded delays on algorithm convergence (Chang
et al., 2016; Bastianello et al., 2021), the inactive iteration of
every node, as well as i ∉ Dk, must be less than the set maximum
tolerable delay τ. This means that the coupling variable information
per node used by the center must be, at most, τ iterations old
(Mohammadi and Kargarian, 2022). The variable dki is introduced to
count the delays of node i. If i ∈ Dk at the current iteration k, then dki
is set to 0; otherwise, dki is increased by 1 as follows:

dk
i � 0, i ∈ Dk

dk−1
i + 1, i ∉ Dk{ . (12)

When both conditions cannot be satisfied simultaneously, the
scheduling center must wait until the updated information from the
unusual nodes is received. The master problem and subproblems,
with smaller idle time, are frequently updated compared with the
synchronous optimization. However, the benefit of the improved
update frequency can outweigh the cost of the increased number of
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iterations, enabling the asynchronous algorithm to converge in the
shortest possible time (Bastianello et al., 2021).

In order to further accelerate convergence speed, this paper
also proposes a method to curtail the feasibility domains of
the master problem (Wu et al., 2018; Hua et al., 2023), as
shown in Figure 1C. The feasibility of interactive power
information delivered by the master problem is examined
during the subproblem of nodes at the lower level. The
optimization model of the subproblem for node i can be
expressed as follows:

min FDS,i Mi( )
s.t. Gi Mi( )≤ 0
Hi,t X̂ i,t, Ẑi,t( ) � 0 : μi,t

, (13)

where Mi denotes the optimization variables for the subproblem
of node i; Gi(Mi) denotes inequality constraints set for the
subproblem of node i; Hi,t(X̂i,t, Ẑi,t) denotes the coupling
equational constraints of the two levels; and μi,t denotes the
dual multipliers of coupling equational constraints. If the
expected interaction power delivered by the scheduling center
of the master problem is not feasible for the subproblem of node i,
the relaxation factor Si is introduced to transform the subproblem
as follows:

min Si
s.t. FDS,i − Si ≤ 0, Si ≥ 0
Gi Mi( )≤ 0
Hi,t X̂i,t, Ẑi,t( ) � 0 : μi,t

. (14)

With the optimization solution of the relaxed subproblem, the
node i can provide feedback on feasible cutset constraints to the
master problem as follows (Wu et al., 2022):

Ŝi +∑T
t�1
μi,t

THi,t X̂ i,t, Ẑi,t( )≤ 0, (15)

where Ŝi denotes the optimal value of the objective function of
the relaxed subproblem. Otherwise, no constraints are returned to
the master problem if the subproblem is found to be feasible.
Therefore, the objective function and constraint conditions are
both restricted through the feedback of feasible cutset constraints
after feasibility examination. Consequently, an improvement in the
convergence speed was observed, owing to a reduction in the
feasibility domains of the master problem.

4 Case studies

To validate the effectiveness of the proposed fast distributed
optimization method for large-scale scheduling of heterogeneous
flexibility resources in this paper, the IEEE33 bus distribution system
is used as a specimen for case studies. The quantity of energy storage
systems, photovoltaic generation, wind turbine generation, micro-
gas turbine, and demand response resources in the distribution
system is defined to be 2, 2, 1, 1, and 2, respectively. The proposed
model is solved by the centralized algorithm, general synchronous
distributed algorithm, and fast distributed asynchronous algorithm,
respectively, to verify the preeminence of the presented method
through comparative analysis. The comparison between the results
of the operational costs for ADNs and convergence properties under
different algorithms is shown in Table 1.

It can be seen that the operational cost results of ADNs obtained
by centralized and distributed algorithms are almost the same,
proving the correctness of the proposed method in this paper.
Since the serial simulation is performed on a single computer, the
distributed optimization time shall be the average optimization time
of a single node integrated with controllable flexibility resources.
Therefore, the average time used for one node by the general
synchronous distributed algorithm and fast distributed
asynchronous algorithm is 150.75 and 120.875 s, respectively. It
shows that the fast asynchronous distributed methods have
computational efficiency superior to the centralized and general
synchronous distributed algorithms. The model convergence speed
can be enhanced by 40.7% and 19.8% through asynchronous iteration
and feasibility domain reduction via cutset constraints, respectively.

5 Discussion and conclusion

A fast distributed optimization method for the large-scale
scheduling of heterogeneous flexibility resources is presented in
the paper. The key conclusions can be summarized as follows: 1) the
proposed bi-level distributed scheduling model coordinates multiple
heterogeneous flexibility resources to enhance the operational
economy of ADNs and facilitate the accommodation of
renewable energy resources; 2) compared to the centralized and
general synchronous distributed algorithm, the model convergence
speed can be enhanced by 40.7% and 19.8%, respectively, through
the proposed fast asynchronous distributed optimization method to

TABLE 1 Comparison of the operational costs for active distribution networks (ADNs) and convergence properties.

Algorithm Total
cost/¥

Cost of
ADNs/¥

Cost of flexibility resources/¥ Iteration Time/s

Electricity
purchase

Energy
storage
system

Demand
response

Renewable energy
curtailment

Centralized
algorithm

27,903.4 24,216.3 1,950.6 432.6 1,303.9 - 204

General distributed
algorithm

27,904.0 24,216.8 1,950.6 432.8 1,303.8 108 1,206

Fast distributed
algorithm

27,904.0 24,216.8 1,950.6 432.8 1,303.8 83 967
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satisfy the fast real-time scheduling of ADNs; and 3) further research
will focus on the distributed economic optimization of ADNs
integrated with heterogeneous flexibility resources, considering
the uncertainties of renewable energy resources and load demand.
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