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In order to fully exploit the relationship between temporal features in
photovoltaic power generation data and improve the prediction accuracy of
photovoltaic power generation, a photovoltaic power generation forecasting
method is proposed based on a hybridmodel of the convolutional neural network
(CNN) and extreme gradient boost (XGBoost). Taking the historical data of China’s
photovoltaic power plants as a sample, the high-dimensional mapping
relationship of photovoltaic power generation variables is extracted based on
the convolutional layer and pooling layer of the CNN network to construct a
high-dimensional time-series feature vector, which is an input for the XGBoost. A
photovoltaic power generation prediction model is established based on CNN-
XGBoost by training CNN and XGBoost parameters. Since it is difficult for a single
model to achieve optimal prediction accuracy under different weather
conditions, the k-means clustering algorithm is used to group the power
datasets and train independent models to improve prediction accuracy.
Through the actual data verification of photovoltaic power plants, the
proposed photovoltaic power generation prediction model can accurately
predict the power, which shows high prediction accuracy and generalization
ability compared with other methods.
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1 Introduction

Under the guidance of China’s national policy of “striving to reach the peak of carbon
dioxide emissions by 2030 and striving to achieve carbon neutrality by 2060,” controlling of
industrial carbon emissions is imminent, and developing new energy is an effective way. It is
an important guarantee for realization of the “dual carbon” goal to increase the proportion
of new electric energy in the terminal consumption in the power system, improve energy
utilization efficiency, and greatly reduce energy consumption and CO2 emissions.
Photovoltaic power generation is an important part of new energy power generation
and bears irreplaceable power generation tasks (Zhao et al., 2019; Lv et al., 2019; Sun et al.,
2022). However, photovoltaic power generation is affected by many factors, such as
weather, light intensity, and ambient temperature, resulting in considerable volatility,
instability, and randomness of its output power (Antonio and Ana, 2023;Wang et al., 2023).
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Blind grid connection will seriously threaten the safe and stable
operation of power grids. Therefore, it is of great strategic
significance to improve the prediction accuracy of photovoltaic
power generation (Hamdi et al., 2020; Yang et al., 2022).

Photovoltaic power prediction mainly relies on data quality and
algorithm modeling performance. With the rapid development of
artificial intelligence, Big Data, computer storage, and other
technologies, many researchers have established photovoltaic
power generation prediction models based on traditional
machine learning and deep learning (Almonacid et al., 2014;
Wang et al., 2019; Honghai et al., 2021; Hui et al., 2022). A
photovoltaic power generation prediction model is established by
analyzing the characteristics of light intensity, panel temperature,
and field temperature (Peng et al., 2019). The gray correlation
method is used to select the day with high similarity to the
forecast day’s meteorological characteristics; a short-term
photovoltaic power generation output prediction method is
proposed based on particle swarm optimization and deep belief
network (Zhengming et al., 2020). By analyzing and mining data
such as light intensity and temperature in the process of photovoltaic
power generation, a slip algorithm for predicting DC side power
output combined with lifting wavelet transform and BP neural
network is proposed (Ding et al., 2017). Through analysis and
mining of historical power generation data and meteorological
information, a photovoltaic power generation prediction model is
established based on support vector machines (SVMs) (Yu et al.,
2016). The data on solar radiation intensity, temperature, and
historical sequence information of photovoltaic output are
extracted, and a photovoltaic power prediction model is
established based on the adaptive neuro-fuzzy inference system
(ANFIS). The prediction accuracy of the model was found to be
relatively high through testing (Shi et al., 2019). In summary, the
forecasting of photovoltaic power generation power is closely related
to weather factors and historical sequence working conditions, and
the existing literature fails to fully mine the variables. Therefore, this
paper will study the algorithm with strong feature extraction ability
and strong modeling ability for photovoltaic power generation to
improve its prediction accuracy.

The convolutional neural network (CNN) is considered to be a
relatively successful algorithm in the field of deep learning because of
its excellent variable feature extraction ability, and it is widely used
in image recognition, speech recognition, text recognition, power
systems, and other fields (Yao et al., 2020; Zhang et al., 2020; Miao
et al., 2023). The extreme gradient boosting (XGBoost) is a machine
learning algorithm based on gradient boosting trees, which is widely
used in classification, regression, prediction, and other fields due to
its unique modeling performance (Chen and Tong, 2015; Liu et al.,
2020). Similarly, it has been gradually applied in the field of power
systems. A power system transient stability prediction model is
established based on the XGBoost algorithm, which greatly
improves the prediction accuracy (Chen M. et al., 2020; Singh
and Shelly, 2022). The short-term power load forecasting model
is established based on the combined model of long and short-term
memory network (LSTM) and XGBoost, which has higher
forecasting accuracy than other models (Chen Z. et al., 2020; Xue
et al., 2022).

It is considered that the CNN has significant advantages in data
feature extraction and dimensionality reduction, and XGBoost has a

strong ability to predict sequence feature data. A photovoltaic power
generation prediction method is proposed based on the
CNN–XGBoost hybrid model, which fully considers the prior
information of photovoltaic power generation data to build a
model training sample set based on historical photovoltaic power
plant data and meteorological data. The CNN is used to map the
data variables to the high-dimensional space, and the feature
relationships of the variables are extracted to construct the
training sample feature vector, which is input into the XGBoost
for parameter training, and the photovoltaic power generation
hybrid prediction model is established.

2 Convolutional neural network

The CNN is widely used in the field of deep learning (Zhou et al.,
2017). It has achieved remarkable application effects in the fields of
image recognition, speech recognition, text classification, and so on.
The CNN consists of an input layer, a convolutional layer, a pooling
layer, a fully connected layer, and an output layer. The convolutional
layer is usually used for feature extraction of the input data of the
input layer, an abstraction of the implicit correlations in the original
data by means of a convolutional kernel matrix. The role of the
pooling layer is to filter the features in the sensory domain and
extract the most representative features in the region, which can
effectively reduce the output feature scale, and thus reduce the
number of parameters required by the model. The fully connected
layer is responsible for summarizing the features extracted from the
CNN learning and mapping the multidimensional feature input to a
two-dimensional feature output. In general, the convolution and
pooling layers are used for feature engineering. The fully connected
layer is used for feature weighting, which is equivalent to the
“classifier” of the CNN. The CNN has the characteristics of
“local link” and “weight sharing,” which simplifies the complexity
of network links and improves the model’s ability to extract abstract
features. To a certain extent, it alleviates the problems of slow
training of the fully connected network and easy to fall into
overfitting. The structure of the CNN is shown in Figure 1.

The convolutional layer of the CNN is equivalent to “filtering”
the input data, and the modeling features in the input data set are
proposed through convolution network calculations. The
relationship between the input data feature vectors is mined in a
high-dimensional space. The pooling layer in the CNN is equivalent
to a down-sampling operation. It reduces the spatial dimensions of
the input data, thus reducing the number of parameters and
computation in the network, while also helping make the learned
features more invariant to small translations and distortions in
the input.

The calculation formula of the convolutional layer is as follows:

F ⊗ w � ∑C
k�1

∑Wf

j�1
∑Hf

i�1
Fk i, j( )wk i, j( )( ). (1)

Eq. 1 describes the convolution operation in the CNN, which
generates a corresponding feature map by multiplying the
convolution kernel with the input data element by element and
summing the result of the product. Each element of the feature map
represents a feature value at the corresponding position, where ⊗
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represents convolution calculation; F represents the input data of the
convolutional layer; w represents the weight parameter of the
convolution kernel; and C, Hf, and Wf, respectively, indicate the
number of channels, height, and width of the convolution kernel.
The CNN pooling layer further extracts features on the basis of the
features obtained after the convolution layer, which retains the main
features after convolution, reduces network complexity, and
improves the effect of model feature extraction. The pooling layer
effectively reduces the network parameters while also preventing
overfitting phenomena. Generally, the data feature is compressed by
obtaining the maximum or average value of the target area.

Convolutional and pooling layers have some structural
similarity, in that they both extract features in the sensory
domain and obtain outputs of different dimensions according to
the step size settings, but their intrinsic operations are
fundamentally different. The convolutional layer is used to
extract features, and the pooling layer is used to reduce the
dimensionality of the data. The convolutional layer extracts

features through filters, while the pooling layer reduces the size
of the feature map through a maximum or average operation.

3 XGBoost

XGBoost is an extreme boosting tree that integrates multiple
weak classifiers to form a strong classifier (Chen and Carlos, 2016).
The basic principle is to add different trees to the model in turn to
generate different forms of tree models by splitting features. Each
addition of a tree is equivalent to learning a new function to fit the
residual of the previous prediction. Therefore, the prediction
accuracy is improved, and it is suitable for dealing with power
load forecasting problems. XGBoost uses a basic regression tree
model, and the expression is as follows:

ŷi � ∑K
k�1

fk xi( ) fk ∈ R, (2)

where K represents the number of trees; fk represents a function
of function space R; ŷi represents the regression tree prediction
value; xi represents input data; and R represents a collection of all
possible regression tree models.

The model is not affected in each iteration; that is, the original
model remains unchanged and a new function is added to themodel.
A function corresponds to a tree, and the newly generated tree fits
the residual of the last prediction. Assume that the predicted value at
step t is ŷi

(t), the iteration process is as follows:

ŷi
0( ) � 0

ŷi
1( ) � f1 xi( ) � ŷi

0( ) + f1 xi( )
ŷi

2( ) � f1 xi( ) + f2 xi( ) � ŷi
1( ) + f2 xi( ).

..

.

ŷi
t( ) � ∑t

k�1
fk xi( ) � ŷi

t−1( ) + ft xi( )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(3)

The objective function expression of XGBoost is as follows:

f t( )
obj � ∑n

i�1
l yi, ŷ

t( )
i( ) +∑t

i�1
Ω fi( )

� ∑n
i�1
l yi, ŷ

t−1( )
i + ft xi( )( ) +Ω ft( ) + constant

, (4)

FIGURE 1
CNN structure.

FIGURE 2
Hybrid model structure.
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where ∑n
i�1l(yi, ŷ

(t)
i ) is used to describe the difference between

the predicted value of the model and the true value; ∑t
i�1Ω(fi)

represents the regularization term for the objective function; from
the forward stage-wise algorithm, the structure of the first t-1 trees is
constant. In the general case, by generalizing the Taylor series of the
loss function to order 2 and shifting out the constant term, the
objective function at step t becomes

f t( )
obj � ∑n

i�1
gift xi( ) + 1

2
hif

2
t xi( )( ) + Ω fi( )

gi � ∂ŷ t−1( )
i

l yi, ŷ
t−1( )
i( )

hi � ∂2
ŷ t−1( )
i

l yi, ŷ
t−1( )
i( )

, (5)

where gi and hi are the first- and second-order derivatives,
respectively.

The regularization penalty function is used to prevent the model
from overfitting during the training process. The expression is as follows:

Ω f( ) � γT + λ
1
2
∑T
j�1
ω2
j , (6)

where T represents the number of leaf nodes; γ represents the
penalty function coefficient;w represents the score of the leaf node; and λ
is used to ensure that the leaf node score is not too large.∑T

j�1ω
2
j denotes

the sum of the squares of the values of each leaf node, i.e., the l2 regular
term. The role of the regular term is to prevent overfitting, such as the
number of leaf nodes T more and more times; it means that the tree is
getting deeper and deeper, so it is more likely to overfitting and needs to
be a penalty, which penalizes the strength of the hyperparameter γ

control. Similarly, when the leaf node value is larger, it represents that
this regression tree accounted for a larger proportion in all the regression
tree values so that the whole model overfitting risk is higher, so you need
to penalize the leaf node value of the tree. When the regularization
parameter is 0, XGBoost degenerates into a traditional boosting model.

The final objective function is obtained as

fobj � −1
2
∑T
j�1

G2
j

Hj + λ
+ γT

Gj � ∑
i∈Ij

gi, Hj � ∑
i∈Ij

hi

, (7)

where I is defined as the set of samples on each leaf, Ij � i|q(xi) � j{ },
Ij is the set of samples on the jth leaf, and the structure function q
denotes themapping relation between the input samples to the leaf index
numbers, and q(xi) � j denotes that the index number of the sample xi

at the leaf node in the corresponding tree is j.
From Eq. 7, the smaller the target value, the better the structure

of the whole tree.

4 Photovoltaic power generation
prediction based on CNN-XGBoost

4.1 CNN-XGBoost hybrid model structure

In order to better integrate the advantages of the CNN and
XGBoost, the basic structure of the CNN-XGBoost hybrid model is

proposed, as shown in the Figure 2. The CNN is used to extract the
characteristics of the input variables of the photovoltaic power
generation model and construct the temporal feature vector of
the high-dimensional mapping space. The CNN-XGBoost hybrid
model contains three convolutional layers, which are used to extract
key local and global features from the data, such as short-term
trends, periodic fluctuations, and anomalous patterns. The first
convolutional layer captures local features, the second further
extracts complex patterns, and the third extracts more abstract
and advanced features. Finally, the results are fed into
XGBoost training.

The nine-dimensional variables under each photovoltaic power
generation condition are constructed as a 2 × 2 matrix vector and
input to the CNN network. In the CNN, the number of
convolutional layers and pooling layers is 3 and 1, respectively.
In view of the low dimensionality of the input matrix, 3-layer
convolution is calculated by the same method. The 3-layer
convolution kernel is set to 2 × 2×1 × 4, 2 × 2×4 × 8, and 2 ×
2×8 × 16, and the pooling core is set to 2 × 2. The moving steps of the
convolutional layer and the pooling layer are both set to 1, and the
activation function is the ReLU function. The pooling layer reduces
dimensionality by taking the maximum value. According to the
above convolution and pooling principles, the 16-channel 2 ×
2 feature matrix is calculated through the CNN network, and a
one-dimensional vector of 64 is generated by stretching. This vector
is the input variable of the XGBoost.

The XGBoost in the proposed CNN-XGBoost hybrid model is
used to predict photovoltaic power generation. In the XGBoost
algorithm, the parameters that can be optimized include the depth of
the tree, the number of iterations, and the learning rate. In the
process of using the XGBoost algorithm to train the photovoltaic
power generation prediction model, the depth of the tree is set to 5,
and the learning rate range is set to 0.01–0.9; the iteration number
range is set to 100–1000.

4.2 Prediction model clustering of
photovoltaic power generation

Considering that different weather and irradiance lead to
differences in sample characteristics in the training sample set of
photovoltaic power; in order to improve the prediction effect of
photovoltaic power, the k-means clustering method is used to cluster
the training samples of photovoltaic power. The clustering
algorithm in the k-value on the clustering effect has a greater
impact; this paper combined the field staff experience and data
analysis effect to determine the k-value. The meteorological factors
are the main basis for determining the k-value, and by using the
sample distance sum of squares as a measure of the clustering effect
of the photovoltaic power clustering index, the sample distance sum
of squares is calculated, as shown in Eq. 8:

Sq � ∑n
i�1

∑
q∈Ci

q − oi
∣∣∣∣ ∣∣∣∣2, (8)

where n is the total number of sample points; Ci is the training
sample set; q is the center of mass of the training sample set; oi is the
samples in the training set.
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The k in the clustering algorithm is set to 5, and the
corresponding photovoltaic power prediction model is trained
using each of the clustered samples, and the photovoltaic power
is predicted based on each of the clustered training models. In
the prediction process, the test samples are input into the five
established prediction models, and the prediction value with the
smallest error among the five models is taken as the
corresponding photovoltaic power generation prediction value
of the test sample. The prediction effect is evaluated by the root
mean square error.

5 Example analysis

5.1 Research objects

The 130 MW photovoltaic power station data and weather
forecast data in a region of China are selected as the data set,
and the historical operating data unit of 2018 is collected as the test
sample. In addition, 1,500 sets of data of 30 days at 15-min intervals
are collected as training samples, and 100 sets of data are collected at
the same time interval as test samples. Using the feature selection
algorithm, nine meteorological features that most affect photovoltaic
power generation are selected as the input variables of the model,
namely, total solar irradiance, direct irradiance, scattered irradiance,
ambient temperature, photovoltaic panel temperature, ambient
humidity, and season. Among them, four seasons are represented
by numbers 1, 2, 3, and 4. The photovoltaic power generation is
determined as an output variable. The fluctuation range of various
related variables of photovoltaic power generation data is shown
in Table 1.

5.2 Model evaluation index

This paper selects the mean absolute percentage error and root
mean square error as the evaluation indicators of each model. The
evaluation error expression is as follows:

EMAPE � 1
n
∑n
t�1

yt − ŷt

∣∣∣∣ ∣∣∣∣
yt

× 100%, (9)

ERMSE �
������������
1
n
∑n
t�1

yt − ŷt( )2,√
(10)

where yt represents actual photovoltaic power generation; ŷt

represents the photovoltaic power generation predicted by the
model; and n represents the number of power generation data
working conditions.

5.3 Photovoltaic power generation
modeling effect

In order to cluster the set of training samples for photovoltaic
power generation, we use the k-means method to classify the
training samples into five categories. k-means is a commonly
used unsupervised learning algorithm for dividing a data set into
k distinct clusters, where k is a predefined parameter, which is set to
5 in the experiment. The method is computed iteratively to assign
data points to their nearest categories until convergence conditions
are reached.

The photovoltaic power generation prediction model is trained
based on the above five kinds of training samples, which predicts the
data for 2 days. The daily photovoltaic power generation power is
50 sets of data, a total of 100 sets of data. The characteristics of the
selected 2-day test data are different. The change of photovoltaic
power generation on the first day is relatively mild, which is a typical
process of sunlight from weak to strong to weak. The data on the
second day generally are conformed to the characteristics of light
from weak to strong to weak, but the intensity of light in it is affected
by other factors and fluctuated drastically, which led to fluctuations
in photovoltaic power generation. The 50 sets of test samples are
divided as input into the five trained models on the first day, and the
predicted value of the model with the smallest root mean square
error is chosen as the predicted value of photovoltaic power
generation. The forecasting effect of photovoltaic power
generation on the first day is shown in Figure 3. It can be seen
from Figure 3 that the prediction curve of the joint model is very
consistent with the true value of photovoltaic power generation, and
the trend is consistent. For the 50 sets of test samples on the first day,
the mean absolute percentage error is 6.29% and the root mean
square error is 3.12 MW, which has high prediction accuracy and
strong generalization ability.

The 50 sets of test samples are divided as input into the five
trained models on the second day, and the predicted value of the
model with the smallest root mean square error is chosen as the
predicted value of photovoltaic power generation. The forecast effect
of photovoltaic power generation on the second day is shown in
Figure 4. As shown in Figure 4, for the 50 sets of test samples on the
second day, the mean absolute percentage error is 7.11% and the
root mean square error is 4.66 MW, which also has high prediction
accuracy, indicating that the proposed joint model still has high
prediction accuracy under the condition of large load fluctuations
and is suitable for engineering applications.

Based on the above analysis, the proposed CNN-XGBoost
photovoltaic power generation prediction model predicts the
photovoltaic power when the load changes smoothly and when
the load changes drastically. The prediction results on the first day

TABLE 1 Fluctuation range of each variable data.

Variable data Unit Fluctuation range

Season - Zhao et al. (2019), WANG et al. (2023)

Total solar irradiance Wm−2 [1, 1206]

Direct irradiance Wm−2 [37, 938]

Scattered irradiance Wm−2 [1, 1013]

Ambient temperature °C [6, 34.4]

Photovoltaic panel temperature °C [4.6, 37.7]

Ambient humidity gm−3 [14.9, 97.7]

Photovoltaic power generation MW [0.07, 108.91]
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are almost the same as the real values, which are significantly better
than those on the second day. Analyzing the reasons, it is concluded
that the light intensity data on the second day fluctuate greatly,
which directly leads to rapid changes in photovoltaic power
generation. The proposed model has a certain predictive ability
for such rapid changes in power generation, but the effect is slightly
worse than the relative load changes.

To further verify the clustering effect of the photovoltaic
power generation prediction model, the 2-day test sample set is
input into five different types of training models, and the root
mean square error of each prediction model is calculated to be
4.85 MW, 5.38 MW, 6.76 MW, 6.32 MW, and 5.29 MW, and
the root mean square error of the photovoltaic power
generation prediction clustering model is 4.27 MW. The
comparison effect between the five models and the
photovoltaic power generation prediction clustering model
is shown in Figure 5.

It can be clearly seen from Figure 5 that the prediction accuracy
of the photovoltaic power generation prediction clustering model is
significantly higher than that of other models, which indicates that
the clustering model has integrated the best predicted points of the
100 predicted conditions. At the same time, it also shows that the
photovoltaic power generation prediction clustering method is
effective and can greatly improve the prediction accuracy and
generalization ability of the photovoltaic power generation
prediction model.

5.4 Model comparison

We further illustrate the prediction effect of the established
CNN-XGBoost model, which is compared with that of other models
trained by algorithms such as least square support vector machine
(LSSVM), XGBoost, and partial least squares-XGBoost (PLS-

FIGURE 3
Forecast effect of photovoltaic power generation on the first day.

FIGURE 4
Forecast effect of photovoltaic power generation on the second day.
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FIGURE 5
Comparison of the prediction effect of each model.

TABLE 2 Comparison of different models.

Algorithm Test samples on the first day Test samples on the second day

EMAPE/% ERMSE/MW EMAPE/% ERMSE/MW

LSSVM 40.12 9.35 55.28 13.09

XGBoost 16.18 5.86 20.15 8.32

PLS-XGBoost 7.31 4.68 17.09 6.21

CNN-XGBoost 6.29 3.12 7.11 4.66

FIGURE 6
Comparison of model prediction effects.
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XGBoost). Partial least squares is a linear regression method that has
been widely used in various fields. In recent years, some studies have
used it for variable feature selection, and the effect is remarkable
(Zhang and Zhang, 2017; Yang et al., 2020). In this paper, PLS is
used to extract the characteristics of photovoltaic power-related
variables, and the effect is compared with that of the CNN network.
The model modeling variables are extracted based on the PLS
method including total solar irradiance, direct irradiance,
scattered irradiance, and photovoltaic panel temperature. The
results are shown in the following Table 2.

As can be seen from the data in Table 2, the prediction error of the
CNN-XGBoost model on the test sample is significantly lower than that
of other models. The prediction effect of the CNN-XGBoost hybrid
model is better than that of LSSVM and XGBoost, which shows that the
CNN can effectively extract the feature vector of the high-dimensional
space of photovoltaic power-related variables. The prediction effect of the
CNN-XGBoost hybrid model is better than that of the PLS-XGBoost,
which shows that the variable feature extraction effect of the CNN is
superior to the PLS method.

By calculating the absolute error of the 2-day test sample
predicted by the above model, the distribution of the prediction
error of each model is obtained. The absolute error distribution of
the model prediction is shown in Figure 6.

From the description of the error box plot of the above
model, it is obvious that the relative error value of the informer
algorithm prediction result is closer to the zero error bar than
other algorithms.

The prediction effect of each model on the 2-day test data is
further compared, and the root mean square error of each model
on the 2-day test sample is calculated. The four photovoltaic
power generation power prediction models established based on
LSSVM, XGBoost, PLS-XGBoost, and CNN-XGBoost have root
mean square errors of 11.67 MW, 7.31 MW, 5.83 MW, and

4.27 MW, respectively. The comparison effect is shown
in Figure 7.

6 Conclusion

In order to improve the accuracy of photovoltaic power generation
prediction, a photovoltaic power generation prediction method based
on the CNN-XGBoost hybrid model is proposed. The CNN is used to
extract the feature vectors of the input variables related to photovoltaic
power generation in the high-dimensional space, and the constructed
time-series feature vectors are used as the input variables of the
XGBoost to establish a photovoltaic power generation prediction
model based on CNN-XGBoost. Through the verification of
photovoltaic power generation data in a certain area, the established
hybrid prediction model can integrate the advantages of CNN and
XGBoost and more completely extract the feature relationship of
modeling variables in high-dimensional space. Considering the
images of photovoltaic power under different meteorological
conditions, the k-means clustering method is used to cluster the
photovoltaic power data and train the respective power prediction
models. The experimental results show that clustering of photovoltaic
power can substantially improve the accuracy of power prediction.
Compared with LSSVM, XGBoost, PLS-XGBoost, and other
algorithms, it has higher prediction accuracy and generalization ability.

Data availability statement

The data analyzed in this study is subject to the following
licenses/restrictions: confidential data, not open to the public.
Requests to access these datasets should be directed to:
18800109756@163.com.

FIGURE 7
Error comparison of each model on the 2-day test sample.
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