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As a deep connection between agriculture and energy, the rural integrated
energy system (RIES) is a micro-scale supply–distribution–storage–demand
network, which provides an important means to realize the utilization of rural
clean energy. This paper proposes a day-ahead scheduling model of the RIES to
improve its economical effectiveness, where three energy carriers, namely,
biogas, electric power, and heat, are integrated. To address the source and
load uncertainties composed of photovoltaic power, power load, and heat load,
this paper develops a constrained distributionally robust optimization (CDRO),
which optimizes the cost expectation related to the extreme distribution to
enhance the robustness, while limiting the loss of cost expectation in the
historical distribution to ensure economical effectiveness. In addition, an
ambiguous set of the source and load uncertainties incorporating 1-norm and
infinity-norm constraints is established, which realizes a flexible adjustment for
the conservativeness of CDRO. The distributionally robust dispatch is formulated
as a deterministic programming in a two-stage solving framework, where the
subproblem uploads its extreme probability distribution to the master problem,
and these two problems are iteratively optimized until the convergence. Finally,
the numerical simulations in a modern farm park prove the performance of the
constructed dispatch model and the flexibility of CDRO in balancing the
economical effectiveness and robustness of the dispatch.
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1 Introduction

To meet the national strategical demand of rural revitalization, clean, low-carbon, and
rich-reserve biomass energy is being rapidly developed and utilized in China. It is estimated
that in China, by 2030, the installed capacity of biomass plants will reach 52 GW, which can
provide more than 330 billion KWh of clean electric power every year (Liang et al., 2024). In
addition, the distributed rooftop photovoltaic power generation has also developed into a
new trend of rural green development. As a deep connection between agriculture and
energy, the rural integrated energy system (RIES) is a micro-scale
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supply–distribution–storage–demand system, which provides an
important means to realize the utilization of rural clean energy.
Day-ahead optimal dispatch (Seyednouri et al., 2023) which plays a
crucial part in decreasing the operating cost of the RIES and
enhancing use of biomass and renewable energies needs
more attention.

Recently, many scholars have studied the optimal operation of
the RIES. Ma and Fu (2021) studied the coupling principle of
agriculture, meteorology, and energy and introduced the
advanced applications corresponding to the coupling. Fu et al.
(2020) explores the security problems caused by the connection
of energy and agriculture and summarizes the security technology to
ensure the double security of energy and food. The above research
studies conclude the current construction status and development
trend of the RIES; however, these research studies have not discussed
the technical details for the optimal operation of the RIES. Zhou
et al. (2018) established a multi-energy coupling model to clarify the
effect of fermentation under external energy injection. Wu et al.
(2021) established a novel model for a biogas–solar–wind-based
integrated energy system and developed an improved realization of
the multitasking paradigm using multiobjective optimization. Yu
and Yin (2023) promoted carbon capture technologies for waste
power generation in the RIES. Yu et al. (2022) developed a three-
participator game mechanism for the RIES considering the interests
of the government, farmers, and new energy enterprises to realize
optimal and clean operation of the system. However, the
aforementioned studies are deterministic optimization that
ignores the randomness of photovoltaic power, power, and heat
load. The above source and load uncertainties directly influence the
intraday power balance, and the dispatch plan obtained from the
deterministic dispatch model cannot guarantee the economy of the
RIES in intraday operation.

With the deployment of renewable energies, the optimization of
integrated energy systems combined with multiple uncertainties has
gradually attracted the attention of scholars. Currently, the strategies
to cope with uncertainties mainly include stochastic optimization
(SO)-based methods and robust optimization (RO)-based methods.
SO randomly extracts scenarios with respect to the empirical
probability distribution of uncertainty conditions and then
establishes the security constraints for each sample scenario and
optimizes the operating cost expectation of these sample scenarios
(Xu et al., 2017). Jani et al. (2022) adopted the probability
distribution function to describe the uncertainty, and the
scenario-oriented SO is applied. The scenario-oriented stochastic
method is also adopted by Eghbali et al. (2022) to deal with the
uncertainty of electric vehicles. However, discrete sample scenarios
cannot cover the continuous uncertainty distributions, and it is hard
for SO to guarantee secure operation in all scenarios. In addition, the
true distribution of the source and load uncertainties does not
precisely obey the empirical probability distribution, and, as a
result, the robustness of SO under other distributions is affected.

RO models uncertainty conditions using continuously
distributed maximum domains and deals with extreme
uncertainty conditions using dual theory to ensure the robustness
of the dispatch plan. Traditional RO establishes the uncertainty set
to formulate the maximum domain of uncertain scenarios and
optimizes the operating cost of microgrids under extreme
scenarios (Liu et al., 2018; Bolurian et al., 2022; Tan et al., 2022).

The widely adopted modeling methods for the uncertainty set
include box-based and polyhedron-based sets (Bertsimas et al.,
2013). In addition, Zhao et al. (2021) developed an ellipsoid-
based uncertainty set to reduce the conservativeness of TRO.
Nevertheless, since the probability of extreme scenarios is
extremely low, RO is generally very conservative. Compared to
RO, the recent widely used distributionally robust optimization
(DRO) is less conservative (Zuo et al., 2023). DRO uses the
ambiguous set to describe the maximum domain of uncertain
probability distributions and minimizes the operating cost
expectation under extreme distributions. Siqin (2022) established
an ambiguous set for wind and photovoltaic power based on
Wasserstein distance and developed a DRO operation of the
microgrid considering both power-to-gas and CHP units. Zhang
(2022) utilized the multiorder moment information to formulate the
ambiguous set of uncertain variables and established a
distributionally robust economic operation model for a multi-
energy coupled microgrid. Zhai et al. (2022) proposed a DRO-
based chance-constrained model for the multi-energy microgrid,
and an optimal additional approximation is developed to convert the
model to a tractable form. However, the above studies approximate
the second-stage decision of microgrids as the affine policy (Qu
et al., 2022) to make the DRO tractable; the affine policy restricts the
optimization space of recourse actions and significantly affects the
economical effectiveness of the dispatch decision. To achieve the
optimum, Wei et al. (2016) proposed a dual vertex generation-based
two-stage method for adaptive optimization-based distributionally
robust optimization, and Zheng et al. (2021) developed an extreme
distribution generation-based solution for the complex DRO.
However, the solution process of the dual vertex generation-
based method or the extreme distribution generation-based
method is too complicated, and nonlinear constraints will be
generated by the product of uncertain parameters and dual variables.

Recently, a new data-driven DRO method is being developed
rapidly, which extracts a certain number of reference samples from
the large-scale available historical data and establishes the 1-norm
and infinity-norm-based probability density sets to describe the
distribution of the uncertainties (Ding et al., 2017). The method has
the below advantages: 1) it directly makes full use of the historical
observation, rather than the moment information representing the
overall performance. 2) The dualization is not required, and thus,
the solution procedure is relatively effortless. However, the existing
probability density set-based method only focuses on the expected
objective under the extreme distribution. The historical distribution
generated from the historical observation probably approaches the
real distribution of uncertainties, and hence, the cost expectation
under the historical distribution deserves more attention. This paper
combines the principle of SO and DRO, and the contributions are
listed as follows:

1) A novel day-ahead dispatch model of the RIES is established.
Three energy carriers, namely, biogas, electric power, and heat,
are integrated in the RIES. In addition, the economic operation
of the RIES is realized through cooperative regulation of
photovoltaic power, biogas generator, heat pump, electric
boiler, transferable power load, power, and heat storage,
where the diversified regulation resources are modeled
accurately.
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2) A novel constrained distributionally robust optimization
(CDRO) is developed to address source and load
uncertainties in the RIES. The principle is to minimize the
operating cost expectation in the extreme distribution to
enhance the robustness, while further limiting loss of cost
expectation in the historical distribution to ensure economical
effectiveness. The balance between the robustness and
economical effectiveness can be realized through reasonably
setting an equilibrium coefficient.

3) A tailored two-stage solution procedure is developed for the
proposed distributionally robust dispatch. First, the absolute
value constraint in the ambiguous set is convexified. Then, a
column and constraint generation (C&CG) method is
introduced to solve the convexified problem. The master
problem determines the day-ahead decision variables
against all known extreme distributions of the probability
density. The subproblem receives the obtained decision
variables and determines an extreme distribution of the
probability density and adds it to the master problem.

The rest of this paper is organized as follows: Section 2 models
the distributionally robust day-ahead dispatch of the RIES. Section 3
presents the tailored two-stage solution procedure to solve the
dispatch problem. Section 4 describes the numerical simulations
and analysis on a modern farm park. Section 5 provides the
conclusion of this paper.

2 Distributionally robust day-ahead
dispatch of the RIES

The frame of the constructed RIES is displayed in Figure 1. The
energy carrier in the system contains electric power, heat, and
biogas. The biogas is generated by the biogas digester and can be
stored in the biogas storage. The biogas is fed into the biogas
generator to produce electric power and heat. The electric power
is produced from the power grid, photovoltaic power, and biogas
generator and fed into the heat pump and electric boiler to generate

heat, and it can be stored in power storage. The heat is produced by
waste heat recovery of the biogas generator and electric boiler and
can be stored in heat storage. Finally, the demand of the system
includes power load and heat load.

2.1 Day-ahead and intraday
operation problem

The distributionally robust day-ahead dispatch is a typical two-
stage problem. The day-ahead problem in the first stage is a pre-
decision problem, which determines the trading power from the
power grid. The intraday operation in the second stage is a
regulation problem, which adjusts the intraday trading power
and the scheduling plan of the regulating resources to minimize
the intraday operating cost.

First stage (day-ahead): in this stage, the RIES trades power from
the operator, and the power transaction cost is minimized, i.e.,

F1 � min∑
t
ptP

tr
t , (1)

P tr ≤Ptr
t ≤ �P

tr
, (2)

where Pt
tr is the day-ahead trading power, pt is the power price, and

�Ptr/P tr are the upper/lower restrictions of Pt
tr, respectively.

The first-stage problem can be refined as follows:

min
x∈X

c⊤x, (3)

where x∈χ are decision variables in the first stage, i.e., the day-ahead
trading power Pt

tr, and c are day-ahead cost coefficients.
Second stage (intraday operation): in this stage, the RIES adjusts

the intraday trading power and the dispatch plan of power storage,
transferable power load, biogas generator, biogas storage, heat
pump, electric boiler, and heat storage. The intraday operating
cost includes the intraday power trading cost, material cost of the
biogas generator, and the cost of the transferable power load:

F2 � min ∑t b+t ΔPtr,+
t + b−t ΔPtr,−

t( ) +∑tb
g
tGt

+∑t d+
t ΔPdr,+

t + d−
t ΔPdr,−

t( ), (4)

FIGURE 1
Framework of the rural integrated energy system.
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where ΔPtr,+
t /ΔPtr,−

t are the intraday purchase and sell power from/to
the power grid, respectively; Gt is the biogas input of the biogas
generator; ΔPdr,+

t /ΔPdr,−
t are the upward and downward regulated

power of transferable power load, respectively; b+t /b
−
t are the

transaction price for the intraday purchase and sell power,
respectively; bgt is the material cost coefficient of the biogas
generator, and d+t /d−t are the upward and downward cost
coefficients of the transferable power load, respectively.

The following security constraints need to be met for the second-
stage intraday operation of the RIES.

2.1.1 Photovoltaics and demands

Pv
t � ~P

v

t + uv
t

Pd
t � ~P

d

t + up
t

Hd
t � ~H

d

t + uh
t

⎧⎪⎪⎨⎪⎪⎩ , (5)

where the real photovoltaic power output Pt
v, power load Pt

d, and
heat load Ht

d equal the sum of the forecast value and power/heat
fluctuation.

2.1.2 Biogas generator

Pg
t � ηpHGt,H

g
t � ηhHGt, (6)

P g ≤Pg
t ≤ �P

g
, (7)

whereH is the calorific value of biogas; Pt
g andHt

g are the power and
afterheat produced by the biogas generator, respectively; and ηp and
ηh are the power generating efficiency and afterheat efficiency of the
biogas generator, respectively. �Pg/P g are the upper/lower
restrictions of Pt

g.

2.1.3 Waste heat recovery
The heat export of the device does not exceed the afterheat of the

biogas generator.

0≤Hw
t ≤Hg

t , (8)
where Ht

w is the heat export of the waste heat recovery.

2.1.4 Electric boiler

Hb
t � ηbPb

t , (9)
0≤Hb

t ≤ �H
b
, (10)

where ηb is the conversion efficiency and Ht
b and Pt

b are the heat
output and power input of the electric boiler, respectively.

2.1.5 Transferable power load

0≤ΔPdr,+
t ≤Δ�P

dr,+
t

0≤ΔPdr,−
t ≤Δ�P

dr,−
t ,∀t ∈ Ti,A,

⎧⎨⎩ (11)

ΔPdr,+
t � 0,ΔPdr,−

t � 0,∀t ∈ Ti,B, (12)
Pdr,0
t + ΔPdr,+

t − ΔPdr,−
t ≥ 0, (13)

∑
t
ΔPdr,+

t − ΔPdr,−
t( ) � 0, (14)

where ΔPdr,+
t and ΔPdr,−

t are the upregulated and downregulated
power of transferable power load, respectively. Ti,A is the set of
transferable periods, Ti,B is the set of non-transferable periods, and
Equation 14 shows that the summation of transferred power load
equals the original demand.

2.1.6 Power storage

0≤Ps,+
t ≤ �P

s,+
, (15)

0≤Ps,−
t ≤ �P

s,−
, (16)

Spt � Spt−1 + ηp,+Ps,+
t Δt − Ps,−

t

ηp,−Δt, (17)

S p ≤ Spt ≤ �S
p
, (18)

SpT � Sp0 , (19)
where Ps,+

t , Ps,−
t are the charge–discharge power of the power

storage, �Ps,+/�Ps,− are the upper restrictions of the
charge–discharge power, St

p is the stored power, ηp,+/ηp,− are the
charge–discharge efficiency, and �S

p/S p are the upper/lower
restrictions of the stored power, respectively; Equation 19
indicates that the stored power after the dispatch is resumed to
the initial state.

2.1.7 Heat storage

0≤Hs,+
t ≤ �H

s,+
, (20)

0≤Hs,−
t ≤ �H

s,−
, (21)

Sht � 1 − ρ( )Sht−1 + ηh,+Hs,+
t Δt − Hs,−

t

ηh,−Δt, (22)

S h ≤ Sht ≤ �S
h
, (23)

ShT � Sh0 , (24)
where Hs,+

t , Hs,−
t are the charge–discharge heat of the heat storage,

�Hs,+/ �Hs,− are the upper restrictions of the charge–discharge heat, Sht
is the stored heat, ρ is the heat loss rate, and �S

h/Sh are the upper/
lower restrictions of the stored heat, respectively; Equation 24
indicates that the stored heat after the dispatch is resumed to the
initial state.

2.1.8 Power and heat balance

Ptr
t + ΔPtr,+

t − ΔPtr,−
t + Pv

t + Pg
t � Pd

t + Pb
t + Pdr,0

t + ΔPdr,+
t − ΔPdr,−

t

+ Ps,+
t − Ps,−

t ,

(25)
Hw

t +Hb
t � Hd

t +Hs,+
t −Hs,−

t , (26)

The second-stage problem is refined as follows:

Q x, u( ) � min
y

f ⊤y

s.t. Gy ≤ g
Ax + By + Cu � d

, (27)

where y is the intraday decision variables; f is intraday cost
coefficients; and G, A, B, C, g, and d are the constant matrices
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and vectors, respectively. The intraday decision y includes the power
and afterheat produced by the biogas generator (Pt

g;Ht
g), heat export of

the waste heat recoveryHt
w, heat output and power input of the electric

boiler (Ht
b; Pt

b), upregulated and downregulated power of transferable
power load (ΔPdr,+

t ; ΔPdr,−
t ), charge–discharge power and stored power

of the power storage (Ps,+
t , Ps,−

t , Spt ), and charge–discharge heat and
stored heat of the heat storage (Hs,+

t ,Hs,−
t , Sht ).

2.2 Robust form of the dispatch model

In the proposed dispatch model of the RIES, the photovoltaic
power output fluctuation ut

v, the power load ut
p, and the thermal

load fluctuation ut
h are uncertain variables, and they constitute the

source and load uncertainties. The day-ahead scheduling model is
essentially a two-stage problem, which optimizes the day-ahead
operating cost in the first stage and the expectation of the intraday
cost in the second stage. In addition, since the possibility for the
occurrence of the extreme distribution is relatively low, we further
limit the loss of the cost expectation in the historical distribution to
reduce the conservativeness of the distributionally robust dispatch.
The constrained distributionally robust day-ahead dispatch can be
refined as shown below:

min
x∈X

max
p∈P

c⊤x + Ep Q x, u( )[ ]
s.t. c⊤x + pk,0Q x, uk( )≤ �F

, (28)

where P and P are the probability and the ambiguous set of the
source and load uncertainties, respectively; pk,0 is the baseline
probability density of the kth reference sample uk; and �F is the
allowed maximum for the cost expectation in the historical
distribution.

The maximum limit �F can be predefined as shown below:

�F � F
emp + λ �Femp − F

emp
( )

F
emp

: min
x∈X

c⊤x + pk,0Q x, uk( )
�Femp: min

x∈X
max
p∈P

c⊤x + Ep Q x, u( )[ ]

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
, (29)

where F emp is the empirical cost expectation obtained by SO, while
�Femp is the empirical cost expectation obtained by DRO without
the constraint of the empirical cost expectation, and λ is the
equilibrium coefficient. The equilibrium coefficient λ locates
within [0, 1], which means that the robustness of CDRO is
between DRO and SO. The CDRO is close to DRO and pursues
the robustness in extreme distributions when λ moves toward 1,
while the CDRO is close to SO and pursues the economical
effectiveness in the historical distribution (the common
distributions) when λ moves toward 0. Therefore, the
equilibrium coefficient λ can be set reasonably to achieve a
tradeoff between the robustness and economical effectiveness.

We formulate the ambiguous set for the source and load
uncertainties according to the confidence set theory. K discrete
reference samples can be selected from the M historical
observations to characterize the possible value of the source
and load uncertainties, and the corresponding baseline
probability density is obtained. However, the actual
probability distribution values of each reference sample are
still uncertain, and we can use the probability density
uncertainty to describe the uncertainty of the source–demand
distribution. We can construct a set with the baseline density of
reference samples as the center and the two sets of 1-norm
and infinity-norm as the constraints to restrict the actual
probability density of source–demand scenarios. Therefore,
the ambiguous set of the source and load uncertainties is
formulated as follows:

P pk

0≤pk ≤ 1,∀k∑kpk � 1
pk − pk,0

∣∣∣∣ ∣∣∣∣≤ θ∞,∀k∑k pk − pk,0

∣∣∣∣ ∣∣∣∣≤ θ1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎫⎪⎪⎪⎬⎪⎪⎪⎭, (30)

where pk is the actual probability of the reference sample k and
θ∞ and θ1 are the maximum gap of the probability
density under the infinity-norm and 1-norm restrictions,
respectively.

The maximum gap of the probability density θ∞ and θ1 can
be determined according to the confidence level (Ding
et al., 2017).

Pr pk − pk,0

∣∣∣∣ ∣∣∣∣≤ θ∞,∀k{ }≥ 1 − 2Ke−2Mθ∞ , (31)
Pr ∑

k
pk − pk,0

∣∣∣∣ ∣∣∣∣≤ θ1{ }≥ 1 − 2Ke−
2Mθ1
K , (32)

Let α∞ and α1 denote the confidence level associated with the
right hand of the above equations, and then:

θ∞ � 1
2M

ln
2K

1 − α∞
, θ1 � K

2M
ln

2K
1 − α1

. (33)

Since the scenarios of the source and load uncertainties are
denoted with the reference samples, while the probability
density of these reference samples is uncertain, the
distributionally robust dispatch Equation 28 is reformulated
as follows:

min
x∈X

c⊤x +max
pk∈P

∑
k
pkQ x, u( ){ }

s.t. c⊤x + pk,0Q x, uk( )≤ �F
. (34)

FIGURE 2
Computing framework of the two-stage solution.
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3 Solution method

3.1 Linearization for the absolute value
constraint

First, we introduce auxiliary variables to linearize the absolute
value constraint in the ambiguous set:

pk − pk,0

∣∣∣∣ ∣∣∣∣≤Δpk

↓ , (35)
−Δpk ≤pk − pk,0 ≤Δpk,Δpk ≥ 0, (36)

where Δpk is the introduced auxiliary variable.
Therefore, the ambiguous set is reformulated into

P pk

0≤pk ≤ 1,Δpk ≥ 0,∀k
−Δpk ≤pk − pk,0 ≤Δpk,∀k∑kpk � 1
Δpk ≤ θ∞,∀k∑kΔpk ≤ θ1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
. (37)

3.2 Two-stage optimization procedure

The constrained distributionally robust dispatch in
Equation 28 is a typical two-stage optimization problem, and
we develop a C&CG-based decomposition solution for the
problem. The principle of the method is to split the two-
stage optimization to independently solve the master
problem and subproblem. The master problem determines
the day-ahead decision variables against all known extreme
distributions of the probability density. The subproblem
receives the obtained decision variables and determines an
extreme distribution of the probability density and adds it to
the master problem. These two problems are computed
alternately, and hence, the extreme distribution set in the
master problem will cover enough extreme distributions to
ensure the robustness of the dispatch. The
computing framework of the two-stage solution is presented
in Figure 2.

FIGURE 3
Day-ahead power price.

FIGURE 4
Prediction of photovoltaic power, power load, and heat load.
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1) Master problem: the problem obtains the optimal solution
against all known extreme distributions of the
probability density.

fmaster � min
x∈χ

c⊤x + π

s.t. π ≥∑kpi,kQ x, uk( ),∀i ∈ Λv−1
, (38)

where Λv-1 is the extreme distribution set revised from the previous
step. Then, the optimal x is sent to the subproblem. The obtained
objective is denoted as the lower bound (LB).

2) Subproblem: The problem determines an extreme distribution
of the probability density with given x*. The solution of the

subproblem contains two steps. First, the optimal intraday cost
of each reference sample is calculated:

Q x*, uk( ) � min
y

f ⊤y

s.t. Gy ≤ g
Ax* + By + Cuk � d

. (39)

Second, the expected intraday cost is maximized to determine an
extreme distribution of the probability density:

fsub � max
pk∈P

∑
k
pkQ x*, uk( ). (40)

Then, the extreme distribution p of the probability density is
added to the extreme distribution set, and the updated extreme
distribution set is uploaded to the master problem. c⊤x* + fsub is
denoted as the upper bound (UB).

3) Convergence criterion check: end the iteration until the
following convergence criterion; otherwise, go back to step
1 and modify v = v+1.

UB − LB( )≤ εLB, (41)
where ε is a very small constant.

4 Numerical simulations

We take a modern farm park in Tsingtao city to validate the
superiority of the constrained distributionally robust dispatch of the
RIES. The day-ahead dispatch is performed for the next 0–24 h. All
the programs are calculated with the CPLEX solver on a computer
with an i7-1360P CPU. The power price in the day-ahead stage is
displayed in Figure 3. The forecast information of photovoltaic
energy, electric power, and heat load is presented in Figure 4, where
the maximum prediction error is ±30% of the forecast value. The
remaining parameters of the modern farm park are given in Table 1.
Finally, the operational effectiveness of the dispatch plan is tested
using the expected value of reference samples.

TABLE 1 Key parameters of the modern farm park.

Regulating resources Parameters Value

Day-ahead power trading [P tr , �Ptr]/MW [0, 2]

Intraday power trading bt
+,bt

−(¥/MWh) 1.5pt, 0.5pt

Biogas generator [P g , �Pg]/MW [0, 1.2]

bg t/(¥/MWh) 80

ηp, ηh 0.45, 0.351

Electric boiler �Hb/MW 0.8

ηb 0.9

Transferable power load dt
+,dt

−(¥/MWh) 10, 10

Δ�Pdr,+
t ,Δ�Pdr,−

t /MW 1, 1

Ti,A/h 13:00–17:00

Power storage �Ps,+ , �Ps,−/MW 0.3, 0.3

S p , �S
p
/MWh [0, 0.6]

Heat storage �Hs,+ , �Hs,−/MW [0.3, 0.3]

S h , �S
h/MWh [0, 0.6]

FIGURE 5
Day-ahead trading power and power output of the biogas generator.
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4.1 Analysis for the dispatch plan

In the proposed dispatch model of the RIES, the decision
variable x in the day-ahead stage is the trading power, while the
intraday decision variables y is constituted by the dispatch plan of
power storage, transferable power load, biogas generator, biogas

storage, heat pump, electric boiler, and heat storage. Note that the
following analysis for the intraday operation is presented with the
expected value of the reference samples.

Figure 5 shows the day-ahead trading power and power export
of the biogas generator. Due to the low power generation cost of the
biogas unit, the power output of the biogas generator is always

FIGURE 6
Distribution of transferable power load.

FIGURE 7
Charge–discharge state of power and heat storage.

TABLE 2 Comparison of the methods for uncertainty.

Methods Optimized results Monte Carlo simulation results

Cost/¥ Time/s Empirical distribution cost/¥ Extreme distribution cost/¥

SO 12,935 2 12,935 13,497

RO 26,374 11 17,096 17,367

DRO 13,418 24 13,004 13,418

CDRO 13,461 20 12,943 13,461
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maintained at a high level. At the dispatch periods t = 10:00–12:00,
the power load is at the valley, while the available photovoltaic power
output is at a relatively high level, which means that the net power

load is at the lowest level during these periods, and hence, the power
export of the biogas generator does not reach the maximum.
Similarly, the RIES purchases very little electric power at the
dispatch periods t = 8:00–16:00, with relatively lower net power
load and heat load. During the dispatch periods t = 00:00–7:00 and
17:00–24:00, the power load and heat load are both at the peak while
the photovoltaic power output is at the valley, and hence, the RIES
purchases much electric power from the power market.

Figure 6 illustrates the distribution of transferable power load
whose transferable periods are t = 13:00–17:00. The transferable
power load is mostly transferred to t = 13:00–14:00 with lower power
price, and thus, the operating cost of the RES is decreased.

Figure 7 shows the charge–discharge state of the power and heat
storage, respectively. The power price is relatively low during the
dispatch periods t = 1:00–6:00 and 23:00–24:00, and so, the power
storage charges power. While the power price is relatively high
during the dispatch periods t = 7:00–9:00 and 19:00–21:00, the
power storage discharges power to supply the demand. Finally,
during the dispatch periods t = 10:00–12:00, the power load is at the
valley while the photovoltaic power output is at a relatively high
level, and hence, the power storage charges power to accommodate
photovoltaic power. As indicated from the above analysis, the energy
storage flexibly charges and discharges power according to the
power price, and hence can decrease the operating cost of the
RIES. While for the heat storage, its charging and discharging
status is similar to that of the power storage since the heat load
is supported by the waste heat of the biogas generator and the
electric boiler.

4.2 Comparison between different
uncertainty methods

To verify the economy and robustness of the CDRO, this
subsection compares the proposed method and the commonly
used uncertainty methods, including SO, RO, and DRO. SO
minimizes the operating cost expectation corresponding to the
historical distribution of the source and load uncertainties, RO
minimizes the operating cost corresponding to extreme scenarios,

TABLE 3 Comparison of the methods for uncertainty under different uncertainty degrees.

Uncertainty degree Methods Optimized results Monte Carlo simulation results

Cost/¥ Time/s Empirical distribution cost/¥ Extreme distribution cost/¥

0.75 SO 12,731 2 12,731 13,045

DRO 13,014 28 12,761 13,014

CDRO 13,030 14 12,734 13,030

1.00 SO 12,935 2 12,935 13,497

DRO 13,418 24 13,004 13,418

CDRO 13,461 20 12,943 13,461

1.25 SO 13,052 2 13,052 13,630

DRO 13,559 23 13,104 13,559

CDRO 13,592 16 13,057 13,592

TABLE 4 Optimization results related to the number of historical scenarios.

M Obj./¥ Time/s

50 13,968 33

100 13,743 16

500 13,158 20

1,000 13,050 20

5,000 12,959 14

10,000 12,947 16

TABLE 5 Optimization results related to the number of reference samples.

K Obj./¥ Time/s

10 12,811 8

30 13,046 10

50 13,461 20

100 14,020 40

150 14,139 42

200 14,350 45

TABLE 6 Optimization results related to the confidence degree.

α∞ α1

0.8 0.9 0.99

0.9 13347 13348 13348

0.95 13377 13384 13384

0.99 13436 13451 13463
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and DROminimizes the operating cost corresponding to extreme
distributions. The proposed CDRO minimizes the operating cost
expectation corresponding to extreme distributions while
restricting the sacrifice of the operating cost expectation in the
historical distribution. The comparison results related to these
methods are shown in Table 2. As displayed in the table, SO has
the lowest operating cost expectation in the historical
distribution, while it is significantly less robust than DRO and
CDRO under some extreme distributions. RO minimizes the
operating cost corresponding to extreme scenarios, which is
very conservative and relatively uneconomical since the
probability of extreme scenarios is extremely low. Although
the historical distribution cost of the CDRO is slightly higher

than that of SO, its economical effectiveness under extreme
distributions is significantly better than that of SO. Compared
to SO, the historical distribution cost of CDRO is slightly
sacrificed by 6.18E-04, while the cost efficiency under extreme
distributions is significantly improved by 2.7E-03. In view of that
the practical distribution of the source and load uncertainties
does not strictly obey the empirical value, it is essential to address
the distributional deviation and enhance the robustness of the
dispatch plan.

To further verify the performance of the CDRO, we change the
fluctuation degrees of source and load uncertainties, i.e., change to
0.75–1.25 times of the original. Since RO is very conservative, we
compare the optimization results of SO, DRO, and CDRO. As
shown in Table 3, no matter how the uncertainty degree changes,
CDRO always achieves a tradeoff between the economical
effectiveness and robustness, i.e., it sacrifices the historical
distribution cost slightly to significantly improve the robustness.
In addition, as the uncertainty degree increases, the advantage of
CDRO in balancing the economical effectiveness and robustness
becomes more obvious.

4.3 Sensitivity analysis related to the
ambiguous set

The ambiguous set of the source and load uncertainties is
related to the amount of historical scenarios (M), the amount of
the reference sample (K), and the confidence degree (α∞ and α1).
The default setting of M, K, θ∞, and θ1 in this paper is 200, 50,
0.99, and 0.95, respectively. This subsection will study the impact
of these parameters on the optimization performance.

First, we study the influence of the amount of historical
scenarios M on the optimization results. The optimization results
with different M from 50 to 10,000 are displayed in Table 4. The
results in the table reveal that the objective decreases with the

FIGURE 8
Optimization results related to the equilibrium coefficient.

TABLE 7 Computational efficiency of the two-stage solution.

Case Iterations Time/s

M 50 5 33

1,000 4 20

10,000 3 16

K 10 3 8

100 4 40

200 4 45

TABLE 8 Optimization results with different convergence gaps.

Convergence gap Obj./¥ Iterations Time/s

1e-3 13,460 3 17

1e-4 13,461 4 26

1e-5 13,461 4 26
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increase of the scale of historical observation. The reason is that the
increase of historical observation limits the allowable gap of the
probability distribution, and hence decreases the conservativeness of
the proposed CDRO. It should be noted that the optimization results
of CDRO actually approach that of SO with the increase of the scale
of the historical observation, which further validates the flexibility of
the proposed CDRO.

Second, we study the impact of the amount of reference samples
K on the optimization results. The optimization results with
different K from 10 to 200 are shown in Table 5. As K increases,
the possible scenarios in the probability distribution of the source
and load uncertainties are more dispersed, and hence, the maximum
possible range of the probability distribution widens. Therefore, the
optimized objective increases with the increase in the number of
reference samples.

Finally, we study the impact of the confidence degree on the
optimization performance, and the simulation results are
displayed in Table 6. With the increase in the confidence
degree α∞ and α1, the allowable gap of the probability density
θ∞ and θ1 widens, and hence, the maximum possible range of the
probability distribution widens. Therefore, the optimized
objective increases with the increase in the confidence degree.
It is worth noting that when α∞ = 0.9, the optimized objectives
are the same for α1 = 0.9 and α1 = 0.99. As shown in Equations
30–33, only the infinity-norm works if the infinity-norm and 1-
norm share the same confidence degree. At this time, even though
the confidence degree for the 1-norm increases, the ambiguous
set of the source and load uncertainties remains the same, and so,
the optimized objective will not change.

4.4 Influence of the equilibrium coefficient

In the proposed CDRO, the equilibrium coefficient λ plays a
crucial part in coordinating the economical effectiveness and the
robustness of the dispatch plan. Figure 8 presents the operating
cost expectation in the historical distribution and extreme
distribution associated with the equilibrium coefficient within
[0, 1]. As shown in the figure, if the equilibrium coefficient
approaches 1, the operating cost expectation in the historical
distribution increases, while the expected cost in extreme
distribution decreases, which means that the CDRO pays more
attention to the robustness than to economical effectiveness.
When the equilibrium coefficient λ approaches 0, the
operating cost expectation in the historical distribution
increases and the expected cost in extreme distribution
decreases, which means that the CDRO pays more attention to
economical effectiveness than to robustness. In addition, when
the equilibrium coefficient locates between 0 and 0.2, the
expected cost in the extreme distribution significantly
decreases with a very small loss of the operating cost
expectation in the historical distribution, which means that
the robustness can be ensured with a very slight sacrifice of
economical effectiveness in common distributions. The above
numerical results reveal that the CDRO can acquire a tradeoff
between the robustness and economical effectiveness through a
reasonable setting of the equilibrium coefficient. In practical
applications, considering that historical distributions are more

likely to occur while extreme distributions are less likely to occur,
the proposed CDRO shall give priority to economical
effectiveness in the historical distribution. Therefore, the
equilibrium coefficient can be set within [0.1, 0.3] in practical
applications.

4.5 Computational efficiency of the solution

The tailored two-stage solution procedure splits the dispatch
problem to independently solvable master and subproblems.
The master problem determines the day-ahead decision
variables, and the subproblem determines an extreme
distribution of the probability density. The iteration steps
and computing time with different number of historical
scenarios (M) and amount of reference samples (K) are
displayed in Table 7. As indicated in the table, the iteration
times of the proposed solution are few, and the calculation time
is only tens of seconds, which validates the computational
efficiency of the solution. In addition, the convergence of the
two-stage solution is related to the convergence gap ε. We
change the convergence gap and compare the optimization
results. As shown in Table 8, the optimized objective
descends when the convergence condition becomes strict.
Although the iteration times and calculation time increase
correspondingly, the computational efficiency of the
proposed algorithm is still very high.

5 Conclusion

In this work, a constrained distributionally robust day-
ahead dispatch model of a rural integrated energy system is
developed, and a tailored two-stage solution is developed for the
model. The rural system effectively coordinates the
regulation resources such as trading power, biogas
generator, electric boiler, transferable power load, power
storage, and heat storage to reduce its operating cost. As
indicated in the comparison with other uncertainty methods,
the proposed constrained distributionally robust
optimization (CDRO) sacrifices historical distributional cost
slightly to improve its robustness. The ambiguous set of the
source and load uncertainties influences the optimization
performance of the proposed CDRO. When the scale of
historical observation is large, the probability
distribution range decreases, and the CDRO approaches SO.
In addition, by reasonably setting the confidence level in the 1-
norm and infinity-norm constraint, the conservativeness of
CDRO can be reduced. The proposed CDRO fully combines
the economical effectiveness of SO with the robustness of DRO
and can achieve a tradeoff between economical effectiveness and
robustness through a reasonable setting of the equilibrium
coefficient.

Our future work will consider more regulating devices such
as electricity-to-hydrogen devices and interruptible power load
to improve the integrality of RIES modeling. In addition, the
coordinated operation of the distribution network and multiple
RIESs will be studied in the future.
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Nomenclature

Indexes and sets

t Index of dispatch periods

k Index of the reference sample

v Step index in two-stage optimization

P Ambiguous set of source–demand uncertainty

Λv Worst-case distribution set

Ti,A Set of transferable periods

Ti,B Set of non-transferable periods

Parameters

pt Day-ahead power price

P tr/�Ptr Lower/upper restriction of day-ahead trading power

bt
+/bt

− Intraday purchase/sale power price

btg Material cost coefficient of the biogas generator

dt+/dt− Upward/downward cost coefficient of transferable power load

~P
v
t

Forecast value of photovoltaic power

~P
d
t

Forecast value of power load

~H
d
t

Forecast value of heat load

H Calorific value of biogas

ηp, ηh Generation efficiency and afterheat efficiency of the biogas
generator

�Pg/P g Upper/lower bound of power output of the biogas generator

ηb Conversion efficiency of the electric boiler

Δ�Pdr,+
t

Limit for upward regulation of transferable power load

Δ�Pdr,−
t

Limit for downward regulation of transferable power load

Pdr,0
t

Base value of transferable power demand

�Ps,+ , �Ps,− Upper restriction for charging and discharging power of power
storage

S p/�Sp Lower/upper restrictions for stored power of power storage

ηp,+/ηp,− Charging/discharging efficiency of power storage

Sp0 Initial state of power storage

�Hs,+ , �Hs,− Upper limit for charging/discharging heat of heat storage

S h/�Sh Lower/upper restrictions for stored heat of heat storage

ηh,+/ηh,− Charging/discharging efficiency of heat storage

ρ Heat loss rate of heat storage

Sh0 Initial state of heat storage

�F Allowed maximum for the expected cost in the historical
distribution

λ Equilibrium coefficient

uk The kth reference sample

F emp Empirical cost expectation obtained by SO

�Femp Empirical cost expectation obtained by DRO

θ∞, θ1 Maximum gap in infinity-norm and 1- norm

α∞, α1 Confidence level in infinity-norm and 1- norm

M Amount of historical scenarios

K Amount of reference samples

pk,0 Baseline probability density of the reference sample

ε Convergence gap

Decision variables

Pttr Day-ahead trading power

ΔPtr,+
t Intraday purchase power

ΔPtr,−
t Intraday sale power

ΔPdr,+
t

Upward regulation of transferable power load

ΔPdr,−
t

Downward regulation of transferable power load

Gt Biogas input of the biogas generator

Ptg, Ht
g Power and afterheat produced by the biogas generator

Ht
w Heat output of waste heat recovery

Ht
b, Ptb Heat output and power input of the electric boiler

Ps,+
t /Ps,−

t Charging/discharging power of power storage

Stp Stored power in power storage

Hs,+
t /Hs,−

t Charging/discharging heat of heat storage

Sth Stored heat in heat storage

x Day-ahead decision variables

y Intraday decision variables

Uncertain
variables

uvt Fluctuation of photovoltaic power

upt Fluctuation of power load

uht Fluctuation of heat load

pk Actual probability density of the kth reference sample

Acronyms

RIES Rural integrated energy system

CDRO Constrained distributionally robust optimization

SO Stochastic optimization

RO Robust optimization

DRO Distributionally robust optimization

C&CG Column and constraint generation
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