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To address the fault identification challenge in distribution networks, a method
leveraging a mixture of the von Mises–Fisher (mov-MF) distribution model for
fault probability identification is proposed. Initially, the synchronous phasor
measuring unit is employed to gather the post-fault steady-state voltage
phase quantities, and then, the voltage phase angle values are combined to
form a three-dimensional feature quantity. Subsequently, the mov-MF
distribution model is initialized through the spherical K-means algorithm and
the minimum message length algorithm. This model is further refined via the
expectation–maximization algorithm to iteratively optimize distribution
parameters. The test set data are input into the mov-MF distribution model,
which has been constructed using typical fault data, to discern fault types. Finally,
the efficacy of the proposed method is validated through simulation verification
conducted on the IEEE 33-node distribution system. The analysis of the examples
demonstrates the accuracy of the mov-MF distribution model-based fault
identification method in identifying single-phase ground, two-phase ground,
two-phase interphase, and three-phase short-circuit faults.
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1 Introduction

The requirements for ensuring power supply quality and reliability of modern
distribution networks as the terminal facing users are gradually increasing (Sheng et al.,
2023). Currently, the main grounding methods for distribution networks in China are either
ungrounded neutral points or grounding through arc suppression coils. Due to the complex
structure of distribution networks, various types of faults are likely to occur in practical
operation. Single-phase grounding short circuit is the most common type of short circuit
fault. If the short circuit is caused by the contact between the line and tree branches or the
ground, the transient resistance of this short circuit is high, resulting in a weak fault
electrical quantity that is difficult to detect, thereby affecting the normal operation of the
distribution network. When faults occur in distribution networks, the primary task is to
identify the faults. Therefore, efficient and reliable methods for fault identification in
distribution networks are of great significance for the safe operation of distribution
networks (Peng et al., 2023).

Zhu et al. (2020) utilized current, voltage, and power data at the maximum power point
in the time domain as feature quantities, combined with Pearson’s coefficient similarity and
relative Euclidean distance deviation for fault-type differentiation. Jiang et al. (2021) used
dynamic time warping (DTW) similarity and electrical volume data sequence similarity,
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and the combination of both inputs into a classifier significantly
outperformed single features. Zhang et al. (2022a) proposed a
waveform similarity-based identification method to construct two
reconstructed currents by comparing the one-dimensional time-
domain sampled values of the currents at the two ends of a
transmission line and used the Kendall’s tau coefficient (KTC)
waveform similarity algorithm to achieve reliable fault
identification. Zhang et al. (2022b) proposed a sparse
representation method based on one-dimensional time-domain
current signals to construct a fault feature dictionary and
calculate the feature residuals to determine the fault category. Liu
et al. (2020) built a support vector machine model for high-
resistance grounding fault identification using time-domain
current-voltage magnitude and frequency as features. Ghaemi
et al. (2022) used an integrated learning approach combined with
multiple classifiers to accurately identify the fault type and location
using one-dimensional time-domain voltage and current
measurements, which maintains high classification accuracy even
in the presence of measurement errors.

In contrast to the previous paper, which proposes to judge the
fault type by constructing the signal similarity or deviation value as a
one-dimensional feature quantity, another class of methods
automatically proposes multi-dimensional feature quantities and
makes the fault-type judgment through intelligent algorithms. Yang
and Yu (2022) used a discrete wavelet transform to decompose
three-phase voltage and zero-sequence sequences and constructed
multidimensional time–frequency matrices to input into the ResNet
network, which improved the effect of fault-type identification in
distribution networks. Xingquan et al. (2022) converted the time-
domain three-phase voltage and current data during faults into a
multidimensional time–frequency spectral gray scale map,
combined with SVM and a deep convolutional neural
network, to improve the accuracy of high-resistance fault
classification. Biswas et al. (2023) used variational mode
decomposition (VMD) to quickly extract different frequency
components of the fault current signal, which is input into the
CNN for fault-type identification in the frequency domain to
shorten the detection time and ensure the accuracy. Azizi and
Seker (2022) processed the current time-domain signal through
the Hilbert–Huang transform, formed the multidimensional
feature quantity of the frequency-domain signal combination
under different frequencies, and used BrownBoost algorithm to
classify the data space, which improved the accuracy of fault-type
classification. Feng et al. (2022) used the linear discriminant
analysis (LDA) algorithm to incorporate the frequency-domain
optimal fault features, which constitute two-dimensional and
three-dimensional feature quantities, into the Bayesian
classification model based on the kernel distribution to
achieve fault location identification, in which the three-
dimensional feature quantities are better than the two-
dimensional feature quantities.

The fault identification methods mentioned in the literature can
be broadly categorized into two types:

1. Extraction of time-domain electrical quantities: In this
category, time-domain electrical quantities such as voltage
and current amplitudes are extracted as one-dimensional
features to represent fault types. Fault identification is

achieved through methods such as constructing similarity or
deviation values and comparing them against thresholds.

2. Time-frequency transformation methods: This category
involves transforming the collected time-domain signals into
multidimensional time–frequency matrices or forming
grayscale images using time–frequency transformation
methods. Intelligent algorithms are then employed to
automatically extract multidimensional feature sets for fault
type identification, resulting in improved accuracy compared
to the first category. However, establishing time–frequency
matrices or forming grayscale images requires complex
preprocessing of time-domain signals, leading to longer
computation times. Compared to one-dimensional features,
multidimensional feature sets contain richer fault information
and exhibit better classification performance. It is worth noting
that the signals processed in the literature mostly consist of
phasor magnitudes, overlooking the fault information
contained in phase angles.

Wang et al. (2021a) utilized an improved VMD combined with
fuzzy c-means (FCM) to achieve classification and identification of
rolling bearing fault types through FCM clustering. Qi et al. (2021)
utilized the von Mises–Fisher (v-MF) distribution combined with
the standard Euclidean distance to analyze the similarity between
different samples for sample selection. Initialization of different
groups requires pre-setting a lower limit for the grouping values but
does not implement merging of similar groups. Chen et al. (2015)
proposed the combination of the expectation–maximization (EM)
algorithm and the v-MF algorithm. By selecting the positioning data
on crystal positions to form a v-MF distribution and using cosine
similarity as the clustering basis, crystal-type identification is carried
out. However, the consideration for the number of groups in mixed
distributions is not addressed. Garcia-Fernandez et al. (2019) utilizes
the v-MF distribution to construct Gaussian filters for target
direction measurement. Angle information is used to form two-
dimensional and three-dimensional vectors for tracking target
directions, but the establishment of distributions for multiple
targets is not implemented. Data clustering is a fundamental step
in data analysis. The application of von Mises–Fisher (v-MF)
distribution-based clustering methods has shown good utility in
sample selection (Qi et al., 2021), crystal-type identification (Chen
et al., 2015), direction measurement tracking (Garcia-Fernandez
et al., 2019), and other areas.

1.1 Contributions

The main contributions of this paper are summarized below.

• In this paper, we propose a probabilistic fault identification
method based on the mixed von Mises–Fisher (v-MF)
distribution. The mov-MF distribution of sample data is
established, and fault probability is calculated by integrating
the data to be measured into the established mov-MF
distribution. Fault-type identification is then achieved based
on the resulting probability magnitude. The biggest
innovation of the mov-MF-based probabilistic fault
identification method for distribution networks proposed in
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this paper is the fault-type identification by establishing the
clustering distribution of 3D vector data on the spherical
space. In power systems, there are a large number of 3D
vectors, so the method is suitable for power system data
analysis. Compared with the two types of fault
identification methods introduced in the previous paper,
the method proposed in this paper can make the accuracy
of fault identification higher by using 3D vectors; the use of 3D
eigenvectors in the time domain to establish the mov-MF
distribution without complex data preprocessing makes the
algorithm more concise, ensures accuracy, and at the same
time, improves the computational efficiency.

• To establish the mixed von Mises–Fisher (v-MF) distribution
of sample data more accurately, we employ the spherical
K-means algorithm and minimum message length (MML)
for parameter initialization. Subsequently, these parameters
are iteratively optimized using the expectation–maximization
(EM) algorithm to refine the accuracy of the mov-MF
distribution parameters. We validate this approach through
simulations conducted on an IEEE 33-node distribution
system, where various fault conditions are set. The test
results are compared with those reported in Xingquan et al.
(2022) and Azizi and Seker (2022). Our findings demonstrate
that the proposed method achieves accurate fault-type
identification. Moreover, the acquisition of feature vectors
is simplified, and the accuracy is comparable to that of the
comparison method. Importantly, our method exhibits robust
performance across different fault conditions, highlighting its
broad applicability.

1.2 Paper organization

The remainder of the paper is structured as follows: Section
2 provides an introduction to the fundamental theory of von
Mises–Fisher (v-MF) distribution and the expectation–maximization
(EM) algorithm. Section 3 outlines the initialization method for
parameters of the mov-MF distribution, along with the algorithm
for fault-type identification based on the mov-MF distribution.
Section 4 verifies the effectiveness and applicability of the proposed
method through simulation examples.

2 The von Mises–Fisher basic theory

The vonMises–Fisher distribution is the probability distribution
of directional statistics for spherical surface data. A d-dimensional
unit random vector x (i.e., x ∈ Rd and ‖x‖ � 1) is said to have the
d-variate von Mises–Fisher (v-MF) distribution if its probability
density function is given by

f x
∣∣∣∣μ, κ( ) � cd κ( )e κμTx( ), (1)

In the Eq. 1, where ‖μ‖ � 1, κ≥ 0, d≥ 2. The normalizing
constant Cd(κ) is given by

cd κ( ) � κ( )d/2−1/ 2π( )d/2Id/2−1 κ( ), (2)

where Id(κ) represents the first kind-modified Bessel function.

The probability density f(x|μ, κ) function is determined by the
mean direction μ and concentration parameter κ. The mean
direction μ represents the central direction of clustering of this
type of data on the spherical surface, indicating the direction of
clustering. The concentration parameter κ represents the
concentration of data in this direction. A higher value indicates a
higher degree of clustering of data in this direction. The specific
comparison chart is shown in Figure 1

2.1 Maximum likelihood estimation

For a given dataset χ, we want to find the maximum likelihood
estimates of the parameters: mean direction μ and concentration
parameter κ of its probability density function f(χ|μ, κ). Assuming
these data are independently and identically distributed, the
logarithm of the likelihood for χ can be expressed as

lnP χ
∣∣∣∣μ, κ( ) � n ln cd κ( ) + κμTr. (3)

To obtain the maximum likelihood estimates of mean direction
μ and concentration parameter κ, we introduce Lagrange multipliers
and derive the maximum likelihood estimation from Equation 3,
resulting following Eqs 4, 5:

μ̂ � r

r‖ ‖ �
∑n

i�1xi∑n
i�1xi

���� ����, (4)

Id/2 κ̂( )
Id/2−1 κ̂( ) � �r � ∑n

i�1xi

���� ����
n

. (5)

Due to the implicit equation involving the ratio of Bessel
functions in the calculation process of the above expression, it is
impossible to obtain an exact analytical solution directly. Therefore,
we must use numerical asymptotic approximation methods to
obtain an approximate solution for the concentration parameter
κ̂, expressed using Eq. 6. We select the best performing approximate
solution method proposed in Zhe et al. (2019):

κ̂ � �rd − �r3

1 − �r2
. (6)

2.2 Parameter estimation of mov-MF
distribution based on the EM algorithm

The process of using v-MF distributions for fault-type
identification requires a hybrid model containing multiple v-MF
distributions. We now consider a mix of k v-MF (mov-MF)
distributions that serves as a generative model for directional
data. Let fh(x|μ, κ){ }kh�1 denote the hth v-MF distribution, then a
mixture of these k v-MF distributions given by Eq. 7:

f x
∣∣∣∣ μh, κh, πh{ }kh�1( ) � ∑k

h�1πhfh x
∣∣∣∣μh, κh( ), (7)

where πh denotes the weights of the different types of
components and the sum is 1. We randomly select the hth v-MF
distribution with weights πh and sample a point from that
distribution fh(x|μh, κh). Let χ � x1,/, xn{ } be the dataset of n
independently sampled points that follow Eq. 7. Let Z � z1,/, zn{ }
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be the corresponding set of hidden random variables that indicate
the particular v-MF distribution from which the points are sampled.
In particular, zi � h if xi is sampled from fh(x|μh, κh). Assuming
that the values in the set Z are known, the log-likelihood of the
observed data is given by

lnP χ, Z
∣∣∣∣μ, κ( ) � ∑n

i

ln πzifzi xi

∣∣∣∣μzi, κzi( )( ). (8)

Equation 8 is actually a random variable dependent on Z, which
follows a distribution. This random variable is referred to as the
complete data log-likelihood. Given a particular value of (χ, μ, κ),
the conditional probability expectation of Z|(χ, μ, κ) is calculated,
and this estimation forms the E-step in an EM framework.

Using an EM approach for maximizing the expectation of Eq. 8),
we can summarize the steps for estimating the mov-MF parameters
based on the EM algorithm.

Input: set X of data points

Output: a mov-MF distribution; initialize

all πh,μh, κh,h � 1,...,k

Repeat

{The E-step of EM}

for i � 1 to n do

for h � 1 to k do

fh(xi|μh , κh) ← cd(κh)e(κhμh
Txi)

end for

for h � 1 to k do

p(h|xi ,μ, κ) ← πhfh(xi |μh ,κh )∑k

l�1πlfl(xi |μl ,κl )
end for

end for

{The M-step pf EM}

for h � 1 to k do

πh � 1
n ∑

n

i�1
p(h|xi,μ, κ)

rh � ∑n
i�1

xip(h|xi ,μ, κ)
μ̂h � rh

‖rh‖
κ̂ � �rhd−�rh

3

1−�rh
2

end for

until convergence

Algorithm 1. EM algorithm.

On termination, the algorithm gives the parameters πh, μh, κh of
the k v-MF distributions that model the dataset χ, as well as the soft-
clustering, i.e., the posterior probabilities p(h|xi, μ, κ), for all h and i.

3 Steps for designing the fault
identification model based on mov-MF
distribution

3.1 Data preprocessing and dataset
construction

The fault signals of the distribution network are acquired and
combined to form a three-dimensional vector Ψ(φ1,φ2,φ3), which is
converted into directional data by L2 normalization. The dataset
consists of voltage phasors measured by the PMU under different

fault conditions. After a fault occurs, the positive–negative–zero-
sequence voltage phasors of different types of faults vary widely, and
the main difference exists between the phase angles. The L2 normalized
data are distributed on the unit sphere, and the different types of fault
vectors are combined to form a dataset in the form of a matrix.

3.2 Calculation of the parameters of the
mov-MF distribution

As the EM algorithm is needed to establish the mov-MF
distribution, there is an important problem that in the case of
the known distribution χ, we need to solve the distribution of the
average direction μ and concentration parameters κ. From Section
2.2, we need to use the log-likelihood function as the objective
function to estimate the unknown parameters μ and κ, and the log-
likelihood function is non-convex; there are some small local
maxima and local minima, so avoiding such problems is essential
to improve the performance of the EM algorithm. Therefore,
avoiding such problems is crucial to improve the performance of
the EM algorithm. The EM algorithm is more sensitive to
the initial value, and the clustering result fluctuates greatly
with the change in the initial value, so it is chosen to
determine the reasonable starting state of the EM by the
preliminary clustering of the data.

3.2.1 mov-MF model parameter initialization
The mov-MF parameters are computed by initializing the

spherical K-means algorithm, updating the parameters by the EM
algorithm, and determining whether the optimality is reached based
on the cosine similarity D.

Initialization is performed using the spherical K-means
algorithm (Mashal and Hosseini, 2015), where the n × d data
matrix is first divided into K clusters, K generally needs to be set
in advance, and K data points are selected as the initial cluster
centers. Before the algorithm, it is assumed that in the case of a mov-
MF distribution, all classified clusters are equal a priori, i.e., for each
distribution πh � 1

k, h � 1,/, k, while it is further assumed that all
classified clusters have equal concentration parameters, which are
generally set to κh � 100. For the case of mov-MF distribution, some
distant data points are selected as initialization parameters μh for
different clusters.

In order to realize the classification of different data points, the
distance metric between different points on the unit hypersphere is
defined, which can be mainly categorized into Euclidean distance,
Manhattan distance, cosine distance, and correlation distance, etc.,
depending on the clustering requirements. Jianyuan et al. (2023)
explained the rationality of using cosine similarity as a distance
metric for clustering. Therefore, we choose to calculate the cosine
similarity S as the clustering metric.

S � xi
Tμh. (9)

Thus, the cluster label to which each data point belongs is
determined based on the similarity of the data point to the initial
cluster center.

Xh ← Xh ∪ xi{ }, h � argmaxxi
Tμh′

h′
. (10)
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From this, we obtain the center of each cluster μh, initialize
again to select a set of cluster centers μh, and compare the
distance between the data points in the cluster and the
center point D, D � 1 − S. If the distance D of the current
clustering result is smaller than that of the previous
generation, then update the clustering result until the
distance D does not change anymore to get the optimal
clustering result of the K clusters at this time and compute
the average direction μh, concentration parameter κh, and
mixing distribution weight πh of each cluster at this time,
which is used as the initial parameter of the mov-MF model.
In order to improve the accuracy of the initial parameters,
multiple initializations are usually performed, and the
group with the smallest distance D is chosen as the
initialization parameter.

3.2.2 mov-MF model group score determination
On the basis of step a), the group score of the sample data is

determined by the MML algorithm, and according to the log-
likelihood lr and the minimum message length I(π) to determine
whether the optimal group score is reached or not and through
many iterations of the EM algorithm, the mov-MF distribution of
the typical sample data is obtained.

When the mov-MFmodel group scores are determined, then the
EM algorithm is used to estimate the mixture distribution

parameters, i.e., the mixture distribution weights and the
parameters for each subgroup. Thus, we need to determine
the optimal number of subgroups for the mixture distribution
and the corresponding distribution parameters.

Therefore, the minimum message length (MML) algorithm is
used for group score K determination. First, we need to encode the
parameters using MML and calculate the message length
corresponding to different parameters. The log-likelihood ratio of
the mov-MF distribution for a set of fractions is given by Eq. 11:

χ Φ|( ) � ∑n
i�1
ln∑K

h�1
πhfh xi;Θh( ), (11)

where πh and fh(xi;Θh),Θh � (μh, κh) are the weights and
probability densities of the hth group component, respectively,
under the assumption that the initial number of group scores, K,
is determined; K is a number of groupings for the current
hypothesis; and the maximum likelihood is estimated to be
ΦML � argmax

Φ
(χ |Φ), using the EM algorithm for the estimation

of the above mixing parameters.
For step E, rewriting the formulas for calculating the conditional

expectation probability of the joint distribution, expressed by Eqs 12, 13:

rhi � πhf xi;Θh( )
∑K

h�1πhf xi;Θh( ),∀1≤ i≤N, 1≤ h≤K, (12)

FIGURE 1
Clustering effects of different concentration parameters.
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nh � ∑N
i

rhi. (13)

For the M-step, assuming an estimate Φ(t) for the tth iteration,
the local parameters and the maximum log-likelihood estimates

used to compute the next one, and the weights of the hth component
are updated as π(t+1)

h � n(t)
h
N .

Based on the expression proposed in Kasarapu and Allison
(2015) for encoding the component weights, the message length
expression for the hybrid weights πh is redefined on this basis by
combining the log-likelihood lr ← E(∑k

h�1πhfh(x|μh, κh)) obtained
from the E-step:

I π( ) � −lr +N∑K
h�1

ln πh + lnN · K − 1( )! (14)

According to the initialization parameters obtained by the
spherical K-means algorithm, the log-likelihood lr and the
message length of the hybrid weight I(π) in the initial state.
The message length of the hybrid weight expressed by Eq. 14.
Execute the E-step to calculate the initial log-likelihood was
executed using the initialization parameters μh, κh, and πh, and
then the M-step was executed to calculate the parameters at the
time of maximization of the expectation; after completing the
calculation of the corresponding parameters for each subgroup,
the log-likelihood and the message length were updated at this
time. If a subgroup of a subgroup is set to 0, the subgroup is
removed from the model, and the number of subgroups is
reduced. At the end of each E-step and M-step, the log-
likelihood is compared with the previous generation by
calculating the log-likelihood and judging whether
convergence occurs based on the threshold value Δlr.
calculated from Eq. 15.

Δlr � l t+1( )
r − ltr
lr
t < ε, ε � 10−12. (15)

Meanwhile, after each iteration of the E–M step to the
number of confirmed groups, the new message length I′(π) is
recalculated, checking whether the current message length is no
longer changing and thus determining whether the optimal result
is reached.

It is likely that there are two or even more similar groupings in
the initialization phase, and when there are such groupings with very
close average directions, group merging is required. Using the mean
direction μh of each group, the similarity between different groups is
calculated, the similarity is used to determine if they are similar
groups, these groups are merged, and the parameters μh, κh, and πh

and the number of groups K are updated.

3.3 Fault-type identification

After establishing a mov-MF distribution based on the sample
data, the samples to be tested are mixed into the constructed sample
mov-MF distribution, and the probabilities of the samples to be
tested attributed to different types of faults are calculated. The fault
label is then determined according to the size of the probability, thus
realizing fault-type identification.

Labeling of fault types h � 1, 2, . . . , k, weights πh are the weights
corresponding to different fault types in the mov-MF model
obtained from the sample data; rhi is the probability of the fault
types of the data to be measured, and according to the size of the
probability, the vector of the data to be measured is assigned to the

FIGURE 2
Flowchart of fault identification based on the mov-MF algorithm.
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grouping of the fault types with the largest probability to realize the
fault-type identification.

h � arg max
h∈ 1...k{ },i∈ 1...N{ }

rhi. (16)

Step 1: Input sample dataset χ, set the initial number of

groups K, and set the initial κh � 100, πh � 1
K.

Step 2: Select K μhi as cluster centers, calculate the

similarity index Dhi between the selected

cluster centers and the data in the clusters,

and if it is smaller than the previous

generation result, then re-select the cluster

centers and repeat step 2 until Dhi is larger

than the previous generation result.

Step 3: After the initial cluster centers μh are selected,

the obtained initialization parameters and

dataset χ are used to estimate and update the

parameters by the EM algorithm (Algorithm 1).

Step 4: After obtaining the mov-MF distribution of the K

subgroups, determine whether to keep the

subgroups by judging whether πh is zero or not.

Step 5: Calculate the log-likelihood Δlr and determine

whether convergence has been reached; if not,

return to step 3.

Step 6: Calculate the message length of the mixed weights

I(π) and determine whether the message length is no

longer changing, otherwise return to step 2.

Step 7: Output μh, κh, πh, and K and, get the mixture v-MF

distribution of sample dataset χ for. Mix the

samples to be tested into this distribution, and

realize the fault-type identification by Eq. 16.

Algorithm 2 Fault identification algorithm.

The step-by-step flowchart is shown in Figure 2:

4 Example analysis

In order to verify the effectiveness of the fault identification
method based on the mov-MF model proposed in this paper,
simulation experiments are carried out in MATLAB/Simulink on
the IEEE33 node 10-kV distribution system, as shown in Figure 3, to
obtain the fault sample data.

4.1 Sample data

Fault points are set between nodes 8–9, 13–14, 18–19, and
23–24, respectively, where nodes 20–21, 11–17, 22–24, and
29–32 are connected by overhead lines, and the rest of the lines
are connected by cables, and the parameters of each sequence of the
overhead lines and cables are shown in Table 1, line model
parameters (Wang et al., 2021b). The system is a 10-kV
distribution network. It is set up with transformer grounding
methods that are neutral ungrounded and neutral grounded via
arcing coil(0.8697H). Only one of the above fault parameters is
changed in each simulation, and the duration of each type of fault is
0.1 s. The synchronized phase data are collected using a PMU, and a
measuring device is installed at each node, with an update interval of
10 m and a sampling frequency of 6.4 kHz. A total of 560 sets of fault
samples are generated, of which 420 sets comprise the training set
and 140 sets comprise the test set. The fault conditions are neutral
ungrounded; neutral grounded via arcing coil; transition resistance
0Ω, 1Ω, 10Ω, and 1000Ω and has access to distributed power; and
the abovementioned seven conditions are grouped into four fault
points for single-phase grounded short-circuit faults (AG,BG,CG),
two-phase grounded short-circuit faults (ABG,BCG,ACG), three-
phase short-circuit faults, and two-phase interphase short-circuit
faults (AB,BC,AC); 80 fault samples are generated for each group,
and 33 data points are obtained for each set of data, and the mov-
MFs are established, respectively, under different conditions.

Based on the principle in Section 3.1, the vector dataset suitable
for building the mov-MF model is constructed. In the mov-MF
model, the main judgment basis for fault-type identification is the
average direction μ of the grouped clusters, so the phase angle values

FIGURE 3
10-kV IEEE33 node distribution network model.

TABLE 1 Line model parameter.

Line parameter Overhead line Cable

Positive-sequence resistor/(Ω/km) 0.17 0.27

Zero-sequence resistance/(Ω/km) 0.32 2.7

Positive-sequence inductors/(mH/km) 1.017 0.255

Zero-sequence inductors/(mH/km) 3.56 1.109

Positive-sequence capacitance/(μF/km) 0.115 0.376

Zero-sequence Capacitance/(μF/km) 0.0062 0.276
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of the positive–negative-sequence and zero-sequence voltage
phasors at the moment of 0.05 s after the fault are selected to be
combined into the three-dimensional feature vectors
Ψ(φu1

,φu2
,φu0

).
The feature vectors extracted from the typical sample fault dataset

are used as initial vectors for L2 normalization to obtain the normalized
Ψ′(φu1

,φu2
,φu0

). The 3D feature vectors of each data point for each
fault type obtained after normalization are combined to form a 330 ×
3 initial vector matrix Ψ′ � [Ψ′1 Ψ′2 / Ψ′329 Ψ′330 ]T, and the
corresponding mov-MF distribution is modeled on the basis of
this dataset.

4.2 Type identification under different fault
conditions

After establishing the mov-MF distribution model based on the
historical sample fault dataset, the simulation is then carried out
according to different fault conditions, and the test dataset of a

particular fault is mixed into the history set of the mov-MF model
for different conditions completed in Section 4.1 based on the
historical samples for identification in each test.

4.2.1 Different transformer grounding methods
The purpose of changing the transformer grounding method is

to verify the applicability of the fault identification method proposed
in this paper under this condition. The simulation model is a 10-kV
distribution network model, so two small current grounding
methods are set. The compensation method of the arc-canceling
coil is set to be over-compensation, and the simulation is carried out.
Fault-type identification is carried out by establishing the mov-MF
model, and the mov-MF model established according to the
positive-, negative, and zero-sequence phases is shown in Figure 4.

The small current grounding method does not have much effect
on the positive-, negative-, and zero-sequence voltage phase angles,
and the obtained mov-MF distributions are similar. Eighty sets of
test datasets are mixed into the obtained mov-MF distributions for
different neutral grounding methods, and the labeling results are

FIGURE 4
Neutral ungrounded mov-MF distribution of neutral grounded through arc suppression coil.

FIGURE 5
Fault-type probability diagram (AG, neutral ungrounded).
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used to determine whether the classification is correct or not. The
typical data mean direction matrix when the neutral point is not
grounded is:

According to the average direction of typical faults, the cosine
similarity was calculated between the test data set and the average
direction of a certain type of fault, the probability of belonging to
that type of fault was also calculated according to the number of data
point labels, and the type of fault with the highest probability was
selected to judge that it belongs to that type of fault. The A-phase
short-circuit grounding fault was taken as an example under the
condition of neutral ungrounded, and the fault probability rhi was
calculated, as shown in Figure 5.

The overall accuracy results for the 40 test sets are shown
in Table 2.

Transformer neutral point through the arcing coil grounding will
limit the fault phase current. The method proposed in this paper does
not have much impact, so the 10-kV distribution network applicable to
the small current grounding method is applicable to this method.

4.2.2 Fault transition resistance impact analysis
Changing the transition resistance when the fault occurs, the

transition resistors with sizes of 0Ω, 1Ω, 10Ω, and 1000Ω are
selected, and simulation experiments are carried out by changing
the fault type and the initial phase angle of the fault at different fault
locations. The mov-MF model is established for fault type
identification, and the mov-MF model is also established
according to the positive and negative zero sequence phases as
shown in Figure 6.

Varying the transition resistance size, the mov-MF distributions
are different due to the fact that 0Ω, 1Ω, and 10Ω all differ from
1000Ω, but the expected results can still be achieved for type
differentiation under each condition. The 160 sets of test datasets
are mixed into the obtained mov-MF distributions for different
neutral grounding methods, and the labeling results are used to
determine whether the classification is correct or not. The typical
data mean direction matrix for a transition resistance of 0Ω is:

The A-phase short-circuit ground fault under the condition of
0Ω transition resistance is taken as an example, and the fault
probability rhi is calculated as shown in Figure 7:

The judgment process is the same as shown in section IV.B.a),
and the results of 80 sets of test data are shown in Table 3.

When a single-phase high-resistance grounded short-circuit occurs,
the transition resistancewill have a certain effect on the fault phase voltage
amplitude, and for positive-, negative-, and zero-sequence phase angles,
the transition resistance does not have much effect, so the fault-type
identification accuracy is not affected under the condition of different
fault transition resistances, and it still maintains a high accuracy rate.

4.2.3 Impact analysis of connecting to distributed
power sources

DG is connected at nodes 17, 21, 24, and 32, and DG is a 1.5 kW/
230 V PV power supply. The transformer grounding method is
selected as neutral ungrounded, and the transition resistance is 0Ω.
Simulation experiments are carried out by changing the fault types at
different locations. Fault type identification is carried out by
establishing a mov-MF model, and the mov-MF model

TABLE 2 Fault identification accuracy under different grounding modes.

Fault type Neutral point ungrounded Neutral point grounded via the arcing coil

Single-phase grounding (%) 97.47 95.96

Two-phase grounding (%) 100 100

Three-phase grounding (%) 100 100

Short circuit between two phases (%) 100 100

FIGURE 6
mov-MF distribution of different transition resistors (0Ω and 1000Ω).
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established according to the positive and negative zero sequence
phasors is shown in Figure 8.

After accessing the distributed power supply, the impact on the
vectors we use to build the mov-MF distribution will not be
significant, so the obtained mov-MF distribution is similar to the
previous distribution and still differentiates between different types
of faults based on the feature vectors. The 10 sets of test datasets are
mixed into the obtained mov-MF distribution, and the labeling
results are used to judge whether the classification is correct or not.
The typical data mean direction matrix after accessing the DG is:

μ1
..
.

μ10

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �

−0.631218228528535 −0.542200651398354 −0.554600758741366
−0.479847261990186 −0.0858554318574786 0.873141139782731
−0.122723196711859 −0.710487151061130 0.692926421177503
−0.00614141822594962 0.669614264944898 −0.742683660224511
−0.0804373299381854 −0.0702110133474672 0.994283787234378
0.0282440012654692 −0.630164345667798 0.775947919542022
−0.182608156880069 0.738532954956005 −0.649017207387305
−0.0319915375253993 −0.592815736939139 −0.804702456541588
0.00827657042339661 0.922151265513940 −0.386740923478581
−0.00258341173453716 −0.762914549679774 0.646494173114281

.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Take the example of a short-circuit ground fault in phase A after
connecting to the DG, and calculate the fault probability rhi as shown in
Figure 9:

The judgment process is the same as shown in section IV.B.a,
and the results of 20 sets of test data are shown in Table 4.

After accessing the distributed power supply, the fault current
and voltage amplitude will slightly increase when a fault occurs
compared with when it is not connected. For positive-, negative-,
and zero-sequence voltage phase angles, access to distributed power

supply has little effect on it; as a feature vector can still establish a
clearly classified hybrid v MF distribution, the accuracy of fault-type
identification is not affected, and the accuracy rate is still high.

4.2.4 Comparative analysis of different algorithms
The algorithm proposed in this paper is compared with the

existing algorithms, and in Table 4, with the ensemble algorithm of
multilayer classifiers (Ghaemi et al., 2022), the CNN–SVM
algorithm (Xingquan et al., 2022), and the BrownBoost–HHT
algorithm (Azizi and Seker, 2022), and compared with the
algorithms that make use of the one-dimensional feature quantities,
there is an improvement in the fault identification rate for two-phase
short circuits, two-phase inter-phase, and three-phase short circuits;
compared with the fault identification methods that make use of
intelligent algorithms, the mov MF distribution of the three-
dimensional feature quantity established by the algorithm proposed
in this paper is simpler in the model, and the algorithm is clearer. The
acquisition of the feature quantity is simpler, and the accuracy of fault-
type identification is comparable to the algorithm.

FIGURE 7
Fault-type probability diagram (AG, 0Ω).

TABLE 3 Fault identification accuracy under different transition resistors.

Fault type 0 1 10 1,000

Single-phase grounding (%) 97.98 96.46 96.97 94.44

Two-phase grounding (%) 100 100 100 100

Three-phase grounding (%) 100 100 100 98.48

Short circuit between two phases (%) 100 100 100 100

FIGURE 8
mov-MF distribution after connecting to DG.
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The comprehensive analysis of Table 5 shows that the accuracy
of fault-type identification using the method based on the mov-MF
distribution is slightly lower than other types of faults when single-
phase ground faults and three-phase grounding faults occur. When
establishing the mov-MF distribution, a dataset consisting of phase
angle values of positive-, negative-, and zero-sequence voltages is
chosen, and the mov-MF distribution is able to extract the average
direction of the same type of fault vectors as a feature value based on
the vector data, so we carry out the fault-type identification based on
this characteristic.

4.2.5 Simulation test time
The methodology in this paper needs to be applied with

consideration of the required hardware base and the time-
consuming identification work. As an example, the running time of
the MATLAB fault classification program is analyzed to test the time
taken to identify different types of faults under ungrounded neutral
conditions, and the proposedmethodology is applied to identify a single
fault. The test hardware is a conventional mainstream PC with AMD
Ryzen-5,000 processor and 16 GB RAM, and the time required to build
the mov-MF distribution under these conditions is approximately 15 s.
When a fault occurs, the probabilistic identification method of
distribution network based on hybrid v-MF can achieve
classification judgment within 1 s, which is a rapid response, and
has engineering application significance and practical value.

5 Conclusion

This paper introduces a novel method for fault-type identification
in distribution networks utilizing a mixed von Mises–Fisher (v-MF)

FIGURE 9
Fault-type probability graph (AG, DG).

TABLE 4 Fault identification accuracy after connecting to DG.

Fault type Access to DG

Single-phase grounding (%) 95.45

Two-phase grounding (%) 100

Three-phase grounding (%) 100

Short circuit between two phases (%) 100

TABLE 5 Classification accuracy of different fault types.

Fault type Single-phase
grounding (%)

Two-phase
grounding (%)

Three-phase
grounding (%)

Short circuit between
two phases (%)

Accuracy of the methodology in
this paper (%)

96.39 100 99.78 100

Ghaemi et al. (2022) method
accuracy (%)

97.53 97.16 98.77 96.97

Xingquan et al. (2022) method
accuracy (%)

92.8 100 100 100

Azizi and Seker (2022) method
accuracy (%)

100 99.22 99.47 98.26
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distribution. The method involves constructing three-dimensional
feature quantities derived from the positive, negative-, and zero-
sequence voltage phase angles observed at the time of the fault.
Subsequently, the mov-MF distribution is generated to classify the
fault type based on the integration of current data with historical
distributions. Consequently, the following conclusions can be drawn:

In this paper, we propose a method for fault-type identification
utilizing 3D direction vectors to construct a mixed vonMises–Fisher
(v-MF) distribution. By leveraging the positive–negative–zero-
sequence voltage phasors associated with various fault types, we
establish the mov-MF distribution using sample data from
diverse fault scenarios. The probability that the faults under test
belong to different fault types is estimated by discerning the
discrepancy between the mean directions of distinct fault types.
Consequently, our method achieves fault-type identification with
high accuracy.

The method proposed in this paper remains unaffected by
changes in neutral grounding mode, fault transition resistance,
and variations in fault locations. It exhibits robust applicability
under diverse working conditions.
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