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Large-scale distributed renewable energy connected to the rural distribution
network has given birth to a new rural distribution system with a high proportion
of new energy typical characteristics, and the optimal scheduling of the new rural
distribution system has become an important issue to ensure the safe and stable
operation of the power grid. This paper proposes a method of active-reactive
power collaborative optimization scheduling for rural power distribution system
with a high proportion of renewable energy. Firstly, the active support capability
evaluation model is established, and the active power support capability and
reactive power support capability of rural power distribution system are
quantitatively evaluated, which provides data basis and boundary conditions
for the scheduling part. Then, considering power-loss cost, distribution
network operation cost, and penalty cost, a method of active-reactive power
collaborative optimization scheduling for rural power distribution systems with a
high proportion of renewable energy is proposed. Finally, the active support
capability evaluation and regulation platform of the rural power distribution
system is built to provide technical support services for the safe and stable
operation of the rural power distribution system. Given the problems of overload
and overvoltage faced by rural power distribution systems with a high proportion
of renewable energy, this paper aims to solve the key technical challenges of
optimization and regulation of new rural power distribution systems. The results
show that the optimized control method proposed in this paper has better
security and economy, and is conducive to promoting the construction and
operation of the new rural power distribution system.
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1 Introduction

In 2021, the State Council issued the “2030 Carbon Peak Action Plan” and China’s
power industry ushered in deepening reform (Ru et al., 2021). Traditional fossil energy is
gradually replaced by clean and efficient renewable energy (Zhou et al., 2021). Rural
renewable resources have great potential, which is convenient for local materials and local
utilization. It is an important base for the development of new energy power generation
such as rooftop photovoltaic, distributed wind power and biogas power generation
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(Wu et al., 2011). The “14th Five-Year Plan for Renewable Energy”
proposes the action of thousands of households and thousands of
villages to control the wind, coordinate the construction of
distributed photovoltaics in rural areas, vigorously promote the
construction of rural wind power, and promote the construction
of a new rural energy system (Fu and Zhou, 2023).

In this context, rural decentralized wind power and distributed
rooftop photovoltaics have developed rapidly in recent years, and
the scale has shown exponential growth (Wang et al., 2023a). The
access of large-scale distributed renewable energy to the rural
distribution network has spawned a new type of rural power grid
with high proportion of new energy and typical characteristics of
bidirectional power flow (Han et al., 2022). On the one hand, it
provides more clean energy for the power system, and on the other
hand, it also brings great pressure to the safe and stable operation of
the power system. Due to the relatively weak rural power grid
(Chawda and Shaik, 2022), a large number of distributed energy
access to the rural distribution network after the overload,
overvoltage, harmonic overrun, power supply quality decline and
other issues (Akinyemi et al., 2022; Xu et al., 2024). Therefore, it is a
great challenge to build a low-carbon, efficient, safe and stable rural
energy system and form a rural power system with new energy as
the main body.

Nowadays, in addition to a variety of distributed resources, more
power electronic devices are also involved in power flow
optimization control. The power flow controller can effectively
deal with the above problems. It is connected to the distribution
network in series and parallel, which can compensate the active and
reactive power of the line and provide active and reactive power
support for the power system. The unified power flow controller
(UPFC) is the most powerful and optimal line power flow control
device at present (Osama abed el-Raouf et al., 2023). It has the ability
of voltage regulation and series compensation. It can not only carry
out power flow regulation but also carry out harmonic control,
which can effectively improve the stability of power system
operation and improve the consumption rate of renewable energy
(Wu et al., 2022). For example, in Reference (Albatsh et al., 2017), a
shunt and series controller based on a PI and FLC UPFC prototype
was used to successfully control the power flow in the transmission
line, and other power system parameters were also
significantly improved.

Since voltage quality is one of the important indexes to evaluate
the level of power system (Kharrazi et al., 2020), how to adjust
voltage quickly and effectively is an important research hotspot.
Aiming at the problem of voltage instability caused by high
proportion of renewable energy access to distribution network,
the current control methods are divided into reactive power
compensation and active power reduction. In Reference (Hou
et al., 2024), a dynamic reactive power/voltage control strategy of
active distribution network considering voltage stability is proposed.
By reasonably controlling the action time of reactive power
regulating equipment, the optimal distribution of reactive power
flow in active distribution network within 1 day is realized, and
the safety and stability of system operation are improved. References
(Zhang et al., 2024a) considered the influence of electric vehicle
access on the power grid, and proposed to use the on-load voltage
regulator and electric vehicle in the distribution network
for coordinated voltage regulation. In (Almeida et al., 2021;

Xiao et al., 2021), the reactive power and voltage control strategy
of distribution network considering the reliability of photovoltaic
power supply is proposed by using the reactive power support ability
of photovoltaic power supply. In reference (Li et al., 2019), the local
voltage control based on real-time measurement can quickly
respond to the frequent fluctuations of distributed generation
(DG). A local voltage control strategy of DG with reactive power
optimization based on Kriging surrogate model is proposed.
However, due to the high impedance ratio of the distribution
network, there is a problem of strong coupling between active
power and reactive power. Simple active or reactive power
optimization scheduling is difficult to meet the safe operation
and economic requirements of the distribution network, and the
uncertainty of distributed power output will cause serious voltage
fluctuations. Therefore, it is necessary to coordinate and optimize
the active power and reactive power resources in the distribution
network (Liu et al., 2022a; Jiang. et al., 2023a).

The current research on active-reactive power coordinated
scheduling mainly focuses on improving the efficiency and
stability of power systems, especially with the high integration of
renewable energy sources. This field involves a variety of
technologies and methods, including optimization algorithms,
prediction models, and real-time scheduling strategies.
Internationally, research on active-reactive power coordinated
scheduling often emphasizes integrating advanced prediction
technologies and optimization algorithms to manage the
uncertainty and variability of renewable energy sources (Huang
et al., 2022). In terms of prediction, machine learning models such as
neural networks and support vector machines are used to predict
energy output (Gao et al., 2017; Zhou et al., 2019; Babbar et al., 2021;
Zhuang et al., 2023), or Transformer model and Informer model for
ultra-short-term prediction of wind and light (Jiang et al., 2023b;
Zhang et al., 2024b; Zhuang et al., 2024). In the aspect of optimal
scheduling, intelligent algorithms such as genetic algorithm and
particle swarm optimization are used to optimize the scheduling.
Convex programming methods such as semi-definite programming
(SDP) and second-order cone programming (SOCP) can also be
used to solve the problem of active-reactive power collaborative
optimization (Gao et al., 2018). In China, research on active-reactive
power coordinated scheduling is also actively progressing, especially
against the backdrop of the national grid’s intelligent upgrade.
Domestic research often focuses more on the stability and
security of the grid, with research teams developing customized
models and algorithms that cater to the characteristics of the
Chinese grid. For example, researchers explore scheduling models
based on real-time monitoring and prediction, as well as
optimization scheduling strategies considering the characteristics
of grid loads. In general, it is of great practical significance to study
the coordinated optimization of active and reactive power after the
high proportion of renewable energy is connected to the grid, in
order to reduce the abandonment of wind and light to improve the
energy consumption capacity and improve the node voltage quality
after the renewable energy is connected to the grid.

Considering the above research basis and challenges, this paper
focuses on a new rural power distribution system with a high
proportion of renewable energy. A method of active power and
reactive power cooperative optimization control for rural power
distribution system with high proportion of renewable energy is
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proposed in order to provide technical support services for the safe
and stable operation of rural power distribution system and promote
the safe, economic and stable operation of the distribution system.
The specific innovations of this paper are as follows:

1. An active support capacity evaluation model is established, and
multiple indices are proposed for both active power support
capacity and reactive power support capacity, in order to
systematically assess the overall active support capacity of
rural power distribution systems with a high proportion of
renewable energy. This provides the data basis and boundary
conditions for the scheduling part.

2. Comprehensively considering the operation characteristics of
multiple distributed resources and power flow controllers, a
method of active-reactive power collaborative optimization
scheduling for rural power distribution system with high
proportion of renewable energy is proposed to minimize
power-loss cost, distribution network operation cost, and
penalty cost.

3. The active support capability evaluation and regulation
platform of the rural power distribution system is built. By
accessing the real-time operation data of distributed resources,
the active support capability evaluation of distributed resources
and the scheduling control function of the new rural power
distribution system is realized, and technical support services
are provided for the safe and stable operation of the rural
power distribution system.

2 Active support capability
evaluation model

Active support capability evaluation is very important for the
safe and stable operation of rural power distribution system, which
can show the adjustment ability of distributed photovoltaic power
generation equipment when the system voltage and power flow
fluctuate. The evaluation part is divided into active power support
capability evaluation and reactive power support capability
evaluation. The active power/reactive power adjustable capability
of photovoltaic is quantitatively evaluated, which is used as the data
support and boundary conditions of the subsequent scheduling part.

2.1 Assessment of active power support
capability

2.1.1 Informer model
The power load and photovoltaic output in rural distribution

networks have obvious time series characteristics. The Informer
model is introduced into the time series prediction problem to
capture time series characteristics with its strong time series
prediction ability. The Informer model is im-proved on the
Transformer model by introducing the multi-head ProbSparse
self-attention mechanism and the self-attention distillation
mechanism, effectively reducing computational complexity. On
this basis, by using a generative decoder, all prediction results
can be generated at once, further improving computational
efficiency. The Informer model consists of two parts: Encoder

and Decoder, as depicted in Figure 1. The input time series
information is encoded as a hidden state representation in the
Encoder and decoded in the Decoder section to output predicted
values. The specific principle is as follows:

The Encoder consists of the multi-head ProbSparse self-
attention mechanism and the self-attention distillation
mechanism, which extracts data features from time series. By
using the multi-head ProbSparse self-attention mechanism, the
computational complexity is effectively reduced. The calculation
formula can be expressed as Eq. 1,

Attention Q,K,V( ) � Soft max
�QKT��
d

√( )V (1)

Where Softmax is an activation function; Q,K, V ∈ CN×d

respectively represent the query matrix, key matrix, and value
matrix, which are obtained by combining the input feature
vectors with the corresponding weighted matrix; �Q is the query
matrix obtained by sparse calculation of matrixQ; d andN represent
the input dimension and variable dimension, respectively.

Then, the self-attention distillation mechanism is used to reduce
network complexity and highlight features, greatly enhancing the
processing ability for time series. The operating formula for
distillation from the l layer to the l+1 layer is shown in the
equation as Eq. 2,

xl+1
t � MaxPool ELU Convld xl

t[ ]
AB

( )( )( ) (2)

Where xl
t represents the input of layer l at time t; [·]AB and Convld

represent the operations of multi-head ProbSparse self-attention
mechanism and one-dimensional convolution operations,
respectively; ELU and MaxPool represent activation functions
and max pooling operations, respectively.

The Decoder consists of the multi-head ProbSparse self-
attention mechanism, multi-head attention mechanism, and a
fully connected layer, which can obtain all time series prediction
results at once.

This article uses the maximum mutual information coefficient
method to filter relevant meteorological data and historical sequence
data as inputs to the Informer model, and then predict the active
power PLoad

i,t and reactive power QLoad
i,t of node loads and the active

power PPV
i,t of photovoltaic for a total of 96 time points in the

next 24 h.

2.1.2 Evaluation indicators for active power
support capacity

The active power support capacity of rural distribution systems
is usually composed of electricity consumption level and power
generation level. Therefore, this article proposes evaluation
indicators for distributed resources and power load in rural
distribution systems to measure the active power support
capacity within the distribution area.

Based on the Informer model, interval and point predictions
were made for the photovoltaic output and power load of rural
distribution systems, obtaining data on upper and lower limits and
prediction results for 96 continuous time nodes, respectively. Then,
two indicators, maximum/minimum range and maximum
fluctuation range are proposed as evaluation criteria for the
active power support capability. Among them, the maximum/
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minimum range rep-resents the maximum/minimum difference
between the upper and lower limits of the interval prediction
results, which represents the maximum/minimum amplitude of
data fluctuation within the specified time. The maximum
fluctuation range is the value of the first-order derivative of the
point prediction result, used to represent the stability of the data
within the specified time.

All in all, this section presents an evaluation method of active
power support capability, which includes prediction and evaluation.
The part of prediction forecasts the active and reactive power of
photovoltaics and load nodes based on the Informer model, and
these data will be used in the scheduling part as input data, while
the results of the active power support capability evaluation part will
be used as the boundary conditions of active power related
constraints.

2.2 Assessment of reactive power support
capability

Compared to regulating active power, reactive power regulation
has a smaller impact on the user’s profits and lower regulation costs.
Therefore, reactive power regulation is generally chosen as the
voltage regulation method. This article takes the voltage support
degree and reactive power regulation capacity as evaluation
indicators to measure the reactive power support ability of nodes
where distributed resources are located.

2.2.1 Voltage support degree
The voltage support degree represents the degree to which the

voltage of the regional power grid is affected by changes in the
reactive power of distributed resources. The approximate linear
relationship between node power injection and voltage amplitude
change can be represented by the definitions of active voltage
sensitivity and reactive voltage sensitivity as Eqs 3, 4:

SPi,j,t �
ΔUi,t

ΔPi,t
(3)

SQi,j,t �
ΔUi,t

ΔQi,t
(4)

Where ΔUi,t, ΔPi,t and ΔQi,t respectively represent the changes of
voltage amplitude, active power, and reactive power of node i at
time t; SPi,j,t/S

Q
i,j,t is the active/reactive-voltage sensitivity

coefficient, which can be obtained from the modified equation
of the power flow calculation, it represents the voltage change at
node i at time t when the unit of active/reactive power changes
at node j.

The power flow sensitivity analysis method is used to linearize
the current operating point of the power grid, and then approximate
the voltage changes at each node during the voltage regulation
process through active voltage sensitivity and reactive voltage
sensitivity as shown in Eq. 5,

ΔU1,t

ΔU2,t

..

.

ΔUN,t

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � SPN × M( ),t[ ]

ΔP1,t

ΔP2,t

..

.

ΔPM,t

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ + SQN × M( ),t[ ]

ΔQ1,t

ΔQ2,t

..

.

ΔQM,t

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (5)

Where N and M represent the total number of nodes and the
number of connected photovoltaics in the rural distribution
network, respectively.

2.2.2 Reactive power regulation capacity
The reactive power regulation capability of photovoltaics is

affected by the capacity of grid-connected inverters. When the
active power of photovoltaics does not change, grid-connected
inverters need to meet capacity constraints as Eq. 6,��������������������

PPV
i,t( )2 + QPV

i,t + ΔQPV
i,t( )2√

≤ SPVi (6)

Where PPV
i,t and QPV

i,t respectively represent the initial active power
and reactive power of the photovoltaic at node i at time t; SPVi
indicates the capacity of the photovoltaic grid-connected inverter at
node i. Therefore, the upper and lower limits of reactive power
regulation of photovoltaic at node i at time t can be expressed
as follows,

ΔQP
i,t,max �

�������������
SPVi( )2 − PPV

i,t( )2√
− QPV

i,t (7)

ΔQPV
i,t,min � −

�������������
SPVi( )2 − PPV

i,t( )2√
− QPV

i,t (8)

Due to the influence of node load, photovoltaic output, and
photovoltaic grid-connected inverter capacity in the distribution
network, the reactive power regulation ability of different node
photovoltaics will undergo significant changes. Eqs 7, 8 can
accurately represent the reactive power adjustable capacity of the
photovoltaic without affecting the comparison of the reactive power
adjustable capacity between nodes. The difference in the adjustable
capacity only depends on the initial reactive power output of the
photovoltaic. Therefore, the upper limit of reactive power
adjustment of the photovoltaic can be selected as the indicator of
reactive power adjustment capacity.

Consequently, a reactive power support capability evaluation
method is proposed in this section, which quantifies the reactive
power support capability of distributed resources to the rural power
distribution system. By the way, the results of the voltage support
degree part will be used as a reference for the reactive power
adjustment of the scheduling part, and the results of the reactive
power regulation capacity part will be used as the boundary
conditions of reactive power related constraints.

3 Active-reactive power collaborative
optimization scheduling

This section utilizes the load and photovoltaic time series data
predicted based on the Informer model in Section 2, as well as the
evaluation results of active support capability, to carry out the active-
reactive power collaborative optimization scheduling of rural
distribution systems at the daily level.

3.1 Optimization objective

With the development of rural distribution systems and the
improvement of demand response awareness, demand-side
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resources are becoming increasingly diversified. The active-reactive
power collaborative optimization scheduling of rural distribution
systems can be expressed as a multi-objective optimization
scheduling model that comprehensively considers power loss,
operating costs, and system demand response in the distribution
network. Specifically, the optimization objectives of rural power
distribution systems take into account the minimization of power-
loss costf1, distribution network operation costf2, and penalty cost
f3 for system demand response, as shown in Eqs 9–14,

f1 � min∑
t∈T

∑nbus
i�1

∑nbus
j�1

Gij,t V2
i,t + V2

j,t − 2Vi,tVj,t cos θij,t( ) (9)

Where Gij,t is the conductivity of line ij at time t; Vi,t indicates the
voltage amplitude of node i at time t; θij,t is the phase angle of line ij
at time t; T and nbus respectively represent the number of time
periods and nodes divided.

f2 � min∑
t∈T

∑
i∈ΩPV

CPV
i,t + ∑

i∈ΩES

CES
i,t + ∑

i∈ΩOPQ

CCPQ
i,t

⎛⎝ ⎞⎠ (10)

CPV
i,t � ρPV · PPV

i,t � ρPV · PPV
0,i,t − ΔPPV

i,t( ) (11)
CES

i,t � ρES · PES
i,t (12)

CCPQ
i,t � ρCPQ · PCPQ

i,t (13)

Where CPV
i,t , CES

i,t and C
CPQ
i,t represent the cost of photovoltaic power

generation, energy storage operation, and regulation cost of power
flow controllers, respectively; ρPV , ρES and ρCPQ represent the unit
cost of photovoltaic power generation, the unit operating cost of
energy storage, and the unit regulation cost of power flow
controllers, respectively; PPV

i,t is the active photovoltaic output at
node i at time t, PPV

0.i,t is the active photovoltaic output before
adjustment at node i at time t, ΔPPV

i,t is the reduction in active
photovoltaic output at node i at time t, PES

i,t is the active energy
storage output at node i at time t, and PCPQ

i,t is the active power
regulation of the power flow controller at node i at time t;ΩPV ,ΩES

and ΩCPQ are the sets of nodes connected to photovoltaic, energy
storage, and power flow controllers, respectively.

f3 � min∑
t∈T

∑
i∈ΩPV

ΔPPV
i,t

∣∣∣∣ ∣∣∣∣ · λPVt +
∑

i∈ΩOPQ

PCPQ
i,t

∣∣∣∣ ∣∣∣∣ · λCPQt + ∑
i∈ΩEV

PEV
i,t

∣∣∣∣ ∣∣∣∣ · λEVt⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (14)

Where ΩEV represents the set of nodes connected to the electric
vehicle load; PEV

i,t is the adjustment amount of electric vehicle
load at node i at time t; λPVt , λCPQt and λEVt represent the
penalty price for photovoltaic curtailment, the degradation
cost of the power flow controller’s lifespan, and the
compensation price for adjusting the load of electric vehicles
at time t, respectively.

3.2 Constraint condition

3.2.1 Power flow and voltage constraints
This article uses the polar coordinate form of the Newton-

Raphson method to represent the power flow equation in rural
distribution systems, as shown in Eq. 15, while also satisfying the

balance of active and reactive power of the line shown in Eq. 16 and
the voltage amplitude constraint shown in Eq. 17.

ΔPnbus
i,t − ∑nubs

j ∈ L i( )
Vi,tVj,t Gij cos θij,t + Bij sin θij,t( ) � 0

ΔQnbus
i,t − ∑nubs

j ∈ L i( )
Vi,tVj,t Gij sin θij,t − Bij cos θij,t( ) � 0

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩ (15)

ΔPi,t � PPV
i,t + PES

i,t − PEV
i,t − PLoad

i,t

ΔQi,t � QPV
i,t + QES

i,t − QLoad
i,t

{ (16)

Vi,t,min ≤Vi,t ≤Vi,t,max (17)
Where ΔPnbus

i,t and ΔQnbus
i,t are the active and reactive power injected

by node i at time t, respectively; PLoad
i,t and QLoad

i,t are the active and
reactive power consumed by node i at time t, respectively; L(i)
represents the set of nodes connected to node i.

3.2.2 Photovoltaic constraints
Distributed photovoltaics can regulate active and reactive power

output, and their regulation capacity is affected by grid-connected
inverters. Based on the reactive power support evaluation results in
Section 2.2, the relevant constraints of distributed photovoltaics are
as Eqs 18–22,

PPV
i,t( )2 + QPV

i,t( )2 ≤ SPVi( )2 (18)
0≤PPV

i,t ≤PPV
i,t,max (19)

0≤QPV
i,t ≤QPV

i,t,max (20)
0≤ΔPPV

i,t ≤ΔPPV
i,t,max (21)

ΔQPV
i,t,min ≤ΔQPV

i,t ≤ΔQPV
i,t,max (22)

Where PPV
i,t,max and Q

PV
i,t,max represent the upper limits of photovoltaic

active and reactive power output, respectively; ΔPPV
i,t,max and ΔQ

PV
i,t,max

are the upper limits of active and reactive power reduction in
photovoltaics, respectively.

3.2.3 Power flow controller constraints
The power flow controller is a flexible AC transmission device

with superior characteristics, which can simultaneously and
efficiently control the active and reactive power in the
distribution network lines, and also reduce line power loss. Its
constraints are as Eqs 23–25,

PCPQ
i,t( )2 + QCPQ

i,t( )2 ≤ SCPQi( )2 (23)
0≤PCPQ

i,t ≤PCPQ
i,t,max (24)

0≤QCPQ
i,t ≤QCPQ

i,t,max (25)

Where PCPQ
i,t,max and QCPQ

i,t,max respectively represent the upper limits of
active and reactive power that the power flow controller can regulate;
SCPQi represents the capacity of the power flow controller.

3.2.4 Energy storage constraints
Energy storage devices can balance the power flow of rural

distribution systems through charging/discharging, and improve the
reliability and stability of system operation. The constraints are as
Eqs 26–30,

PES
i,t( )2 + QES

i,t( )2 ≤ SESi( )2 (26)
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PES
i,t,ch,min ≤PES

i,t,ch ≤P
ES
i,t,ch,max (27)

PES
i,t,dis,min ≤PES

i,t,dis ≤PES
i,t,dis,max (28)

EES
i,t,soc + PES

i,t,chη
ES
chΔt −

PES
i,t,dis

ηESdis
Δt � EES

i,t+1,soc (29)

EES
i,t,soc,min ≤EES

i,t,soc ≤EES
i,t,soc,max (30)

Where PES
i,t,ch and PES

i,t,dis respectively represent the charging and
discharging power of the energy storage device; PES

i,t,ch,min/P
ES
i,t,ch,max

and PES
i,t,dis,min/P

ES
i,t,dis,max indicate the minimum/maximum charging

and discharging power of the energy storage device, respectively; SESi
represents the capacity of the energy storage device; EES

i,t,SOC,
EES
i,t,SOC,min and EES

i,t,SOC,max are the stored energy and the upper
and lower limits of the storage capacity of the energy storage
device, respectively; ηESch and ηESdis respectively represent the
charging and discharging efficiency of energy storage devices.

3.2.5 Electric vehicle load constraints
The load of electric vehicles can participate in the demand side

response of the distribution system under reasonable regulation
strategies. Through its charging/discharging characteristics after
connecting to the power grid, it can achieve bidirectional
interaction with the power grid, achieve peak shaving and valley
filling, and obtain certain economic compensation costs. The
constraints are as Eqs 31–34.

PEV
i,t,ch,min ≤PEV

i,t,ch ≤P
EV
i,t,ch,max (31)

PEV
i,t,dis,min ≤PEV

i,t,dis ≤PEV
i,t,dis,max (32)

EEV
i,t,soc,min ≤EEV

i,t,soc ≤EEV
i,t,soc,max (33)

EEV
i,t,soc + PEV

i,t,chη
EV
ch Δt −

PEV
i,t,dis

ηEVdis
Δt � EEV

i,t+1,soc (34)

Where PEV
i,t,ch and PEV

i,t,dis respectively represent the charging and
discharging power of the electric vehicle load; PEV

i,t,ch,min/P
EV
i,t,ch,max and

PEV
i,t,dis,min/P

EV
i,t,dis,max indicate the minimum/maximum charging and

discharging power of the electric vehicle load, respectively; EEV
i,t,SOC,

EEV
i,t,SOC,min and EEV

i,t,SOC,max are the stored energy and the upper and
lower limits of the storage capacity of the electric vehicle loads; ηEVch
and ηEVdis represent the charging and discharging efficiency of electric
vehicle loads, respectively.

3.3 Solution methodology

The power flow equation in the polar coordinate form shown in
Eq. 15 and the power-loss cost f1 in the comprehensive objective
function have nonlinearity and non-convexity, which greatly
increases the computational difficulty and complexity of
optimization problems. Therefore, this paper uses the second-
order cone-based branch flow method, introducing intermediate
variablesXi,t, Yi,j,t andZi,j,t to transform the original problem into a
linear cone model that is easy to solve, while ensuring solution
accuracy, as shown in Eqs 35–40,

Xi,t � Vi,t( )2 (35)
Yi,j,t � Vi,tVj,t cos θij,t (36)
Zi,j,t � Vi,tVj,t sin θij,t (37)

Xi,tXj,t � Yi,j,t( )2 + Zi,j,t( )2 (38)

Mi,j,t � Xi,t +Xj,t

2
(39)

Ni,j,t � Xi,t −Xj,t

2
(40)

The power-loss costf1 Eq. 8, the power flow equation constraint
in polar coordinate form Eq. 15, and the voltage amplitude
constraint Eq. 17 can be transformed into the following forms, as
shown in Eqs 41–43,

f1 � min∑
t∈T

∑nbus
i�1

∑nbus
j�1

Gij,t Xi,t +Xj,t − 2Yi,j,t( ) (41)

ΔPnbus
i,t − GiiXi,t + ∑nubs

j ∈ L i( )
GijYi,j,t + BijZi,j,t( )⎛⎝ ⎞⎠ � 0

ΔQnbus
i,t − −BiiXi,t − ∑nubs

j ∈ L i( )
BijYi,j,t − GijZi,j,t( )⎛⎝ ⎞⎠ � 0

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(42)

Vi,t,min( )2 ≤Xi,t ≤ Vi,t,max( )2 (43)

When solving mixed-integer second-order cone programming
problems, the original problem has been transformed into a
polyhedral approximation of the second-order cone. When
solving, Eq. 38 is relaxed and transformed into a cone constraint
as shown in Eqs 44–47. At this time, the original nonconvex feasible
domain is relaxed into a convex second-order cone feasible domain,
which can be solved quickly and efficiently using commercial solvers
such as Gurobi.

Xi,tXj,t ≥ Yi,j,t( )2 + Zi,j,t( )2 (44)�����������������������
Yi,j,t( )2 + Zi,j,t( )2 + Ni,j,t( )2√

≤Mi,j,t (45)��������������
Yi,j,t( )2 + Zi,j,t( )2√

≤ γi,j,t (46)��������������
γi,j,t( )2 + Ni,j,t( )2√

≤Mi,j,t (47)

FIGURE 1
The structure of the informer model.
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As depicted in Figure 2, when considering all feasible
solutions within the non-convex feasible domain are in the
second-order cone plane, relaxation expands this feasible
domain into convex cones. Consequently, the optimal
solution to the original problem lies in the solution within
the convex second-order cone and the original feasible domain.

4 Active support capability evaluation
and regulation platform for rural power
distribution system

The active support capability evaluation and regulation
platform for rural power distribution system is based on
database management software and software support
platform, which realizes the monitoring and regulation of the
operation status of rural power distribution system, as depicted
in Figure 3. By accessing real-time operation data of distributed
resources such as photovoltaic, energy storage, and electric
vehicle loads, it realizes the active support capability
evaluation of distributed resources and the scheduling and
control function of the new power distribution system,
providing technical support services for the safe and stable
operation of rural power distribution system.

4.1 Operation status monitoring and
panoramic visualization module

The operation status monitoring module mainly includes
data collection and analysis processing, event and alarm
processing, microgrid data access and control, and terminal
data monitoring functions, providing data support and
abnormal alarm services for the application layer. The
processed data is transmitted to the application layer for
simulation analysis and calculation.

The panoramic visualization module mainly involves real-
time data display, including a list of display devices for the
application layer’s three modules, and displays the
corresponding measurement/calculation data types of the
devices. According to the selection, the calculated predicted/
scheduled photovoltaic data information, node load
information, calculation evaluation indicators, and other data
curves will be displayed in real-time.

4.2 Application layer

The application layer consists of three modules: distributed
resource power prediction, active support capability evaluation,
and optimization scheduling control. Among them, the
distributed resource power prediction module receives historical
time series data information on distributed photovoltaic, adjustable
load, and net load from the operation status monitoring module,
effectively predicting future distributed photovoltaic output and
user load demand.

The optimization scheduling control module involves the
coordinated optimization and control of active-reactive power in
rural distribution systems. It targets multiple types of distributed
resources composed of distributed photovoltaics, energy storage,
controllable loads, etc. (Wang et al., 2023b), and uses the output data
of the distributed resource power prediction module as input to
execute the active-reactive power collaborative optimization
scheduling algorithm. It reasonably cooperates to optimize the
active and reactive power of rural distribution systems, reduce
the impact of renewable energy fluctuations and uncertainties on
the operation of rural distribution networks under high penetration
rates, improve power quality, and ensure the reliable and stable
operation of the power grid.

FIGURE 2
Second-order cone relaxation principle.

FIGURE 3
Architecture of the platform.
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The active support capability evaluation module is divided into
the active power support capability evaluation model and the
reactive power support capability evaluation model. The active
power support capability evaluation model based on predicted
data information, calculates the evaluation index formula
according to the active power support capacity evaluation model
proposed in Section 2.1 and then evaluates the active power support
capacity of distributed resources within the region for the overall
rural power distribution system. According to the reactive power
support capability evaluation model proposed in Section 2.2, the
reactive power support capability evaluation model is based on the

capacity of grid-connected converters of distributed resources, the
predicted active power of distributed resources and user load,
evaluates the upper and lower limits of voltage adjustment
capacity for each distributed resource under active-reactive power
collaborative optimization scheduling algorithm, and then, based on
the active voltage sensitivity and reactive voltage sensitivity matrices
of the system, calculate and evaluate the voltage support degree of
each distributed resource node for each node in the rural
distribution system, and complete the evaluation of the overall
reactive power support capacity of the distributed resources in
the region for the rural distribution system.

FIGURE 4
Topology of the 11-node distribution network.

FIGURE 5
Prediction result presentation.
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5 Case studies

5.1 System data

The proposed active-reactive power collaborative
optimization scheduling algorithm was tested in a rural

distribution system located in Guizhou Province, China, which
contains a high proportion of renewable resources. The
equivalent 11-node power grid topology is shown in Figure 4.
In Figure 4, node 6 and node 11 are equipped with 2.6 MW and
2.05 MW photovoltaic power stations, node 8 is equipped with
400 kW energy storage, nodes 1,3 and 5 are equipped with electric
vehicle loads with a maximum capacity of 10% of the local load,
and the power flow controller installed between nodes 9 and
11 has a capacity of 100 kW. The prediction part of the active
support capability assessment model receives the historical series
data from the rural power distribution system, including the
output data of the photovoltaic power station, the node power
load data, and the meteorological data required for prediction,
with a period of March 2023 to September 2023 and a time
granularity of 15 min.

5.2 Evaluation of active support capability

Figure 5; Tables 1, 2 show the prediction results of the Informer
model proposed in Section 2 for distributed photovoltaic and node
power load in the region in the next 24 h and then quantitatively
evaluate the active power support capacity of the rural power
distribution system based on the prediction results. The predicted
results in Figure 5 are obviously in line with the trend of photovoltaic

TABLE 1 Predicted fluctuation indicators.

PV Load

Maximum
fluctuation range

Minimum
fluctuation

range

Maximum
fluctuation
amplitude

Maximum
fluctuation range

Minimum
fluctuation

range

Maximum
fluctuation
amplitude

833.5518 0.3983 364.6809 400.5810 36.7028 133.2695

197.1246 0.6176 91.4882 288.9592 0.3379 133.2501

390.6840 0.0379 116.1601 99.5663 0.8750 108.5016

327.3329 27.5622 60.1674 196.1139 0.1880 103.8253

307.4116 0.1302 106.3608 265.3143 0.2697 117.4270

698.5962 0.5087 193.2312 262.1948 12.7294 141.5460

214.7788 0.5324 178.6859 411.8258 44.5950 153.2775

211.7816 0.2008 153.9651 306.7773 46.2228 124.0258

948.6616 15.5817 209.9706 326.2993 4.2378 128.4183

639.5231 1.4247 103.8170 174.1690 0.4785 114.6069

264.1783 29.0681 46.2188 135.2690 5.4687 118.9498

823.0273 0.2206 169.2849 205.8177 0.3227 111.7306

145.3241 0.1422 40.1902 311.4124 17.1906 120.6279

501.2705 0.3715 96.7539 179.0178 2.0235 139.7288

216.5244 0.2344 90.0313 205.4618 0.3065 105.7739

129.8710 21.1172 89.6522 251.2050 0.1353 103.0788

373.1213 19.0373 150.6621 210.0157 0.5725 116.2219

815.1910 0.0513 188.5215 290.8798 5.1402 115.4104

TABLE 2 Comparison of prediction accuracy.

Prediction
model

Point prediction Interval
prediction

Evaluation index RMSE MAE PIPC PINAW

PV Informer 135.2468 76.8952 0.6779 0.0398

Transformer 156.3272 88.9532 0.6512 0.0550

LSTM 143.7693 80.9325 0.6439 0.0561

GRU 173.80516 91.4636 0.6032 0.0723

Load Informer 79.9029 62.6072 0.8084 0.0375

Transformer 90.5427 69.5337 0.7748 0.0487

LSTM 85.8634 67.9785 0.7327 0.0436

GRU 98.9743 75.9742 0.7859 0.0695
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output and power load change over time. The difference between the
predicted point value and the actual value is small, and both are within
the range of the interval prediction, achieving the expected effect. In
the evaluation and calculation part, with maximum/minimum range
and maximum fluctuation range as key indicators, 18 sets of data are
calculated in Table 1 to measure the volatility and stability of power
data. At the same time, root mean square error (RMSE) and absolute
error (MAE) are introduced as evaluation indexes for the accuracy of
point prediction results. Prediction interval coverage (PIPC) and
normalized average width of prediction interval (PINAW) are
selected as evaluation indexes for the accuracy of interval
prediction results. The comparison results are shown in Table 2.
Compared with Transformer (Tian et al., 2022), LSTM (Zhang et al.,
2024c), and GRU (Liu et al., 2022b), the distributed photovoltaic and
power load forecasting model based on informer has better prediction
effects in all aspects and can better improve the prediction accuracy of
time series.

Figure 6 shows the reactive voltage support of two photovoltaic
power stations located at node 6 and node 11 for the overall rural
power distribution system when the photovoltaic power output is
large at noon. It can be seen that when the reactive power output of the
photovoltaic power station increases (Wang et al., 2023c), the voltage
of other nodes will be affected and will rise accordingly, and the node
closer to the photovoltaic power station ismore sensitive to the change
of photovoltaic reactive power output, and the voltage rise is
also higher.

The changes in the adjustable reactive power capacity of the two
photovoltaic power stations at 12–14 are shown in Figure 7. It can be
seen from the figure that the adjustable reactive power capacity of the
photovoltaic power station will decrease with the increase of the active
power output (Cao et al., 2024). When it is at night, the active power
output of the photovoltaic power station is almost 0, and the
adjustable reactive power capacity is close to the installed capacity
of the photovoltaic power station.

FIGURE 6
Sensitivity of reactive voltage.

FIGURE 7
Reactive capacity of photovoltaics.
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5.3 Active-reactive power collaborative
optimization scheduling

Based on the forecast results of distributed photovoltaic output
and node power load for a total of 96 points in the next 24 h based on
the Informer model, the day-ahead optimal scheduling was carried
out by comprehensively considering the photovoltaic, energy
storage, power flow controller and electric vehicle loads in the
distribution system. The output curve of distributed photovoltaic,
the operation curve of energy storage, and the load control curve of
electric vehicles are shown in Figure 8. It can be seen that
photovoltaics have no active power output at night and before
sunrise, and only reactive power participates in system
scheduling. In addition, when photovoltaic is generated, energy
storage absorbs redundant active power, SOC increases
significantly, and stops charging when rated capacity is reached.

The electric vehicle load also absorbs excess active power by
increasing the load. As the sun goes down, the photovoltaic
active power output is reduced. When the system has an energy
gap, the energy storage and the electric vehicle load discharge to
supplement the missing active power of the system.

Figure 9 shows the load distribution curve of the power
distribution system as a whole and the change curve of the
balance node (access point of the upper power grid). It can be
observed that as time changes, the load of the two nodes where
photovoltaics is located presents a trend of first increasing and then
decreasing, when the photovoltaic output is insufficient, the system
purchases electricity from the upper power grid through the
balance node to meet the load demand, and when the
photovoltaic output is too much, the redundant electricity is
returned to the upper power grid, which is in line with the
actual situation.

FIGURE 8
Distributed resource output.
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Figure 10 shows the adjustment amount of photovoltaic
active/reactive power output and the change amount of electric
vehicle load after the active-reactive power collaborative
optimization scheduling. To ensure that the voltage of the
nodes in the system does not exceed the limit when the
photovoltaic power is generated, it is necessary to control the
photovoltaic field station to reduce part of the active power output
and guide the power flow controller to channel the line power
flow. It can be found that with the changes in photovoltaic active
power output and node load demand, the power flow controller
can adjust the active and reactive power distribution of the line to
ensure that the line voltage does not exceed the limit, and at the
same time, it can reduce the amount of light discarded by
photovoltaic, and effectively improve the absorption rate of
renewable energy.

Figure 11; Table 3 compare the overall voltage and
comprehensive cost of the rural power distribution system before
and after optimization and regulation. By comparison, it can be seen
that before optimizing and regulating the rural power distribution
system, when the photovoltaic output is excess, the overall voltage of
the system will exceed the upper limit, and when the photovoltaic
output is insufficient, the overall voltage of the system maybe exceed
the lower limit, which will bring serious harm to the power grid, and
after optimized control, the node voltage is limited to a reasonable
range, and the voltage fluctuation amplitude is significantly reduced.

In summary, two schemes are performed for comparisons to
demonstrate the effectiveness and superiority of the proposed
active-reactive power collaborative optimization scheduling:
Compared to before collaborative scheduling, after collaborative
scheduling, the comprehensive cost, including power-loss cost f1,

FIGURE 9
Node active power.

FIGURE 10
Power adjustment condition of PV and PFC.
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distribution network operation cost f2, and penalty cost f3, is also
lower, which is reduced by about 11.81%, and in order to meet the
safe operation requirements of the distribution system, the overall
photovoltaic active power output is reduced by about 6.86%, and by
adjusting the output of distributed resources such as photovoltaic,
the voltage of all load nodes at any time is limited to the safety
standard, the maximum voltage reduction of the rural distribution
system is approximately 27.2%. After optimized by the collaborative
scheduling method, it not only meets the security of the power grid
but also improves the economy. Therefore, the active-reactive power
collaborative optimization scheduling method proposed in this
paper has obvious advantages and can carry out reasonable and
efficient optimization and regulation of this kind of rural power
distribution system.

6 Conclusion

In order to solve the instability of rural power distribution systems
with a high proportion of renewable energy, a method of active-reactive
power collaborative optimization scheduling for rural power
distribution systems is proposed. The key innovations proposed in
this paper are as follows: 1) The quantitative evaluation indexes of active
power support capability and reactive power support capability were
put forward, and the evaluation model of active power support
capability was established. The proposed evaluation model can more

accurately evaluate and quantify the support capacity of distributed
resources for rural power distribution systems. Moreover, the accuracy
of active power prediction based on informant model is about 13.26%
higher than that of other methods mentioned in this paper; 2) The
active-reactive power collaborative optimization scheduling model for
rural power distribution systems with a high proportion of renewable
energy was established, which greatly improved the safety and economy
of the distribution system compared with the non-optimization, the
comprehensive cost could be reduced by about 11.81%, and the
maximum voltage reduction of the rural distribution system is
approximately 27.2%; 3) The active support capability evaluation
and regulation platform of the rural power distribution system is
built to realize the active support capability evaluation of distributed
resources and the scheduling control function of the new power
distribution system, providing technical support services for the safe
and stable operation of the rural power distribution system. In general,
these innovations help to promote the safe, economic and stable
operation of rural power distribution systems with a high
proportion of renewable energy, and promote the construction of
new rural power distribution systems.
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FIGURE 11
Node voltage comparison.

TABLE 3 Total cost comparison.

Network loss cost Operating cost Penalty cost Total cost

Before optimization 3,954.44 894.62 0 4,849.06

After optimization 3,219.40 792.85 324.61 4,336.86
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