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Multiple microgrids interconnect to form a microgrid cluster. To fully exploit the
comprehensive benefits of the microgrid cluster, it is imperative to optimize
dispatch based on the matching degree between the sources and loads of each
microgrid. The power of distributed energy sources such as wind and
photovoltaic systems and the sensitive loads in microgrids is related to the
regional weather characteristics. Given the relatively small geographical scope
of microgrid areas and the fact that distributed energy sources and loads within
the grid share the same weather characteristics, simultaneous ultra-short-term
forecasting of power for both sources and loads is essential in the same
environmental context. Firstly, the introduction of the multi-variable uniform
information coefficient (MV-UIC) is proposed for extracting the correlation
between weather characteristics and the sequences of source and load
power. Subsequently, the application of factor analysis (FA) is introduced to
reduce the dimensionality of input feature variables. Drawing inspiration from
the concept of combination forecasting models, a combined forecasting model
based on Error Back Propagation Training (BP), Long Short-TermMemory (LSTM),
and Bidirectional Long Short-Term Memory Neural Network (BiLSTM) is
constructed. This model is established on the MV-UIC-FA foundation for the
joint ultra-short-term forecasting of source and load power in microgrids.
Simulation is conducted using the DTU 7K 47-bus system as an example to
analyze the accuracy, applicability, and effectiveness of the proposed joint
forecasting method for sources and loads.
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1 Introduction

In microgrids, there exists a substantial presence of distributed generation (DG) sources
such as wind and photovoltaic, along with actively time-varying sensitive loads. The power
output of DG and load power are both influenced by complex factors such as regional
weather, date, and special events (Zhu et al., 2023). As microgrid deployment and utilization
expand, neighboring microgrids interconnect to form coexistence of distributed generation
and loads in the same environment, it is imperative to simultaneously conduct joint
prediction of source and load power under the same weather characteristics (Yu et al., 2024).
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To fully exploit the comprehensive benefits of microgrid clusters, it
is necessary to coordinate and optimize the operation within each
microgrid cluster and between microgrid clusters and distribution
networks based on the matching degree of sources and loads in each
microgrid. Ultra-short-term prediction of source and load power
serves as the foundation for this endeavor. Given the relatively small
geographical area where microgrids are located and the coexistence
of distributed generation and loads in the same environment, it is
imperative to simultaneously conduct joint prediction of source and
load power under the same weather characteristics (Wang
et al., 2024).

Microgrid source and load power ultra-short-term prediction
methods encompass mathematical statistical approaches (Safari
et al., 2018) and artificial intelligence methods (Zhu et al., 2023).
Artificial intelligence methods excel in capturing the nonlinear
relationship between inputs and outputs, demonstrating robust
data analysis and forecasting capabilities. They have emerged as
pivotal techniques for ultra-short-term prediction of microgrid
source and load power (Zhang et al., 2024). Internationally
recognized experts and scholars, considering factors such as
meteorological and calendar features, have employed various
single prediction models like Error Back Propagation Training
(BP), deep recurrent neural network (DRNN), and Long Short-
Term Memory (LSTM) to forecast short-term power for microgrid
DG and loads. In response to the escalating electricity demand and
restructuring of power systems, researchers have proposed a long-
term electricity demand forecasting method based on BP (Masoumi
et al., 2020). This approach utilizes a Time Series Neural Network
(TSNN) structure, employing forward propagation of input load
data, error computation, and weight updating through
backpropagation in training steps, thereby achieving self-learning
and self-organization. To enhance photovoltaic (PV) generation
prediction accuracy, researchers have developed a forecasting
algorithm based on LSTM (Hossain and Mahmood, 2020). This
algorithm combines synthesized weather forecasts with historical
solar radiation data and publicly available sky type predictions for
the host city, utilizing the K-means algorithm for dynamic sky type
classification. This approach significantly improves prediction
accuracy, achieving an increase in accuracy ranging from 33% to
44.6% compared to predictions using fixed sky types. In another
study, G. W. Chang and H.J. Lu integrated grey data preprocessors
with DRNN for day-ahead output prediction in photovoltaic
generation (Chang and Lu, 2018). However, due to the distinct
advantages of different prediction models, achieving optimal
predictive performance with a single model often proves
challenging (Zhu et al., 2019). To address this, experts and
scholars adopt a “modal decomposition-combined prediction”
approach: firstly, utilizing modal decomposition methods to
break down historical data of sources and loads into components
with different frequencies, thereby reducing the complexity of input
data; secondly, introducing a combined model approach, selecting
prediction models with varying performances for different
frequency modal components, and ultimately obtaining the final
prediction results through summation and reconstruction. For
instance, adaptive noise-aided complete ensemble empirical mode
decomposition with adaptive noise (CEEMDAN) was employed to
decompose the raw data of building sub-item energy generation
(Lin, 2022). Subsequently, predictions for different modal

components were conducted using BiLSTM. The final
photovoltaic power generation was obtained through summation
and reconstruction. Another study combined three models,
optimized extreme learning machine (ELM), backpropagation
neural network (BPNN), and dynamic recursive neural network
(ELMAN), for short-term forecasting of wind power plant output
(Ma et al., 2023). In a separate study, variational mode
decomposition (VMD) was utilized to decompose load raw data
into different frequency modal components (Yue et al., 2023).
Subsequently, a Bagging ensemble ultra-short-term multivariate
load forecasting method was developed based on gated recurrent
unit (GRU), LSTM, and BiLSTM models, leading to enhanced
prediction accuracy. In the field of microgrid power forecasting,
predictions of source power and load power are typically conducted
independently based on their respective environmental factors.
However, this approach may overlook an important reality:
under the same environmental conditions, weather characteristics
may simultaneously affect both the source side (such as photovoltaic
and wind power) and the load side of the microgrid. For instance,
sunny weather may increase the output of photovoltaic generation
while also raising the electricity demand for cooling devices like air
conditioners. Therefore, decoupling the predictions of source power
and load power may lead to reduced accuracy in forecasting results,
impacting the economic dispatch and stable operation of the
microgrid. Currently, research on how to comprehensively
consider the simultaneous impact of weather characteristics on
both the source and load sides of microgrids is relatively limited.
Most existing models focus on predicting power for a single energy
source type or only consider the influence of weather factors on load
demand. Such independently predictive methods may fail to fully
capture the comprehensive effects of weather changes on the overall
performance of microgrids. To enhance the accuracy and reliability
of microgrid power forecasting, future research needs to develop
more comprehensive models that can simultaneously consider the
generation characteristics of multiple energy sources and the
response of load demand to weather changes.

To predict both the source and load power in a microgrid under
the same weather conditions simultaneously, it is necessary to
analyze the concurrent correlation between the two variables and
the weather features. Extracting weather characteristics that have a
significant impact on the source and load power in the microgrid
enhances predictive capability. Common methods for feature
extraction include the Pearson coefficient (Xu et al., 2023),
Spearman coefficient (Qun et al., 2023), Maximum Information
Coefficient (MIC) (Reshef et al., 2011), and Uniform Information
Coefficient (UIC) (Jiang et al., 2023). Reference Jiang et al. (2023)
utilized the Uniform Information Coefficient (UIC) to analyze the
correlation between weather characteristics and load power.
Compared to the other three algorithms, UIC is specifically
designed for analyzing relationships among multidimensional
variables, making it more suitable for handling complex
meteorological data and load power data, which are often
multidimensional. Moreover, it is computationally more efficient.
It achieves this by employing a simplified technique based on
uniformly partitioned data grids, replacing the dynamic
programming steps in MIC computation, thus reducing
computational costs. The aforementioned approaches focus solely
on extracting the correlation between a single dependent variable
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(e.g., DG output or load power) and a single independent variable
(weather feature), thereby unable to capture the correlation between
multiple dependent variables (DG output and load power) and a
single independent variable (weather feature). Addressing this
limitation, this study investigates the simultaneous correlation
between source and load power in a microgrid and weather
features, conducting research on the joint ultra-short-term
prediction of source and load power in a microgrid. Additionally,
commonly used dimensionality reduction algorithms include
Principal Component Analysis (PCA) (Wang et al., 2023),
Independent Component Analysis (ICA) (Kobayashi and Iwai,
2018), Factor Analysis (FA) (Ramirez et al., 2019; Wu et al.,
2024), etc. FA merges numerous features into several
representative common factors to extract latent factors among
features, accurately capturing the relevant information in the data
(Zhou et al., 2020). FA is particularly effective in capturing the
underlying structure of data by reducing the dimensionality and
identifying the shared variance among variables. It helps uncover the
latent factors that explain the correlations and patterns within the
dataset, facilitating a deeper understanding of the relationships
among the features.

In conclusion, this manuscript contemplates the impact of
weather features in the region of a microgrid on DG and load
power simultaneously. A joint ultra-short-term prediction model for
source and load power in a microgrid is proposed. Initially, the
concept of the Multi-Variable Uniform Information Coefficient
(MV-UIC) is introduced to analyze and compute the correlation
coefficients between weather features and the sequences of
microgrid source and load power, facilitating the elimination of
redundant features. To diminish the dimensionality of input features
for the prediction models of source and load power, FA is employed.
Addressing the pronounced nonlinearity and non-stationarity in
microgrid source and load power, a model is established by
amalgamating BP, LSTM, and BiLSTM models, considering the
correlation between weather features and multiple variables. Using
the DTU 7K 47-bus as an example in a real system (Baviskar et al.,
2021), specifically with 3 wind farms serving as DG and an
aggregated load, the proposed prediction model is pre-trained
using historical data from the power grid dataset. The accuracy,
applicability, and effectiveness of the proposed joint prediction
method for source and load are then analyzed in the DTU 7K
47-bus system.

2 A weather feature extraction method
based on MV-UIC

The Uniform Information Coefficient (UIC) algorithm,
pioneered by Mousavi and Baranuk (2022), introduces an
innovative methodology for feature extraction. UIC facilitates the
analysis of the correlation between two univariate variables, making
it particularly well-suited for addressing feature extraction
challenges in large-scale datasets. Let A = [a1, . . ., an] and B =
[b1, . . ., bn] denote two sets of feature vectors with a sequence length
of n. The model for the UIC is shown in Eq. 1.

IUIC A;B( ) � I A;B( )
log2 min r, s{ }( ) (1)

where IUIC(A; B) represents the Uniform Information Coefficient
between A and B; I (A; B) denotes the Mutual Information
Coefficient between A and B; r and s correspondingly indicate
the segmentation numbers for A and B; min{r, s} represents the
minimum value between r and s.

In order to ascertain the simultaneous correlation of the
dependent variables, source and load power, with weather
characteristics in a microgrid, this paper adopts an extension of
the method presented in Wang (2020) and Ng et al. (2023), which
expands from the maximum information coefficient between two
variables to the multivariate case. The UIC for the two variables is
extended, introducing the Multi-variable Uniform Information
Coefficient (MV-UIC) algorithm. The specific definition is
outlined as follows: The dataset D consists of three variables:
(PDG, PL), and H. H represents the independent variable,
denoting the regional weather feature vector, while (PDG, PL)
signify the source and load power vectors, respectively, in a
microgrid. H is allocated to the x-axis as X = [xi], where “n”
denotes the sequence length. Similarly, (PDG, PL) are allocated to
the y-axis as Y = [yi]. H is uniformly divided into r blocks, and (PDG,
PL) into s blocks. After partitioning dataset D, r × s grids are
obtained, with each grid representing a subset of data points. The
ratio of the number of points falling into corresponding grid to the
total number of points defines the approximate probability density
of that grid. Subsequently, the mutual information coefficient
between the weather feature variable H and (PDG, PL) is derived.
Normalization is then performed to obtain the multivariate unified
information coefficient between the two variables PDG, PL, and the
univariate H in dataset D. The steps for obtaining MV-UIC are
as follows:

(1) For a given three-variable dataset D and positive integers r, s,
where r, s ≥ 2, D = {(PDG, PL), H}, the mutual information
between them, denoted as IMI(D, r, s, (PDG, PL); H):

IMI D, r, s, PDG, PL( ), H( ) � ∑r
x�1

∑s
y�1

p xy( )log2 p xy( )
p x( )p y( ) (2)

where p(x) represents the edge probability density of the regional
weather characteristic variableH uniformly divided into r grids, p(y)
represents the edge probability density of the source and load power
vectors (PDG, PL) uniformly divided into s grids, and p (xy)
represents the joint probability density of the dataset D divided
into r×s grids.

According to the uniform division method, the length of each
segment after evenly dividing the x and y axes into r and s is:

dx � xmax − xmin

r
, 2≤ r≤ 1 + n0.6

2

dy � ymax − ymin

s
, 2≤ s≤ 1 + n0.6

2

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (3)

where dx and dy represent the lengths of partition units for X and Y,
respectively; xmax and xmin denote the maximum and minimum
values of the feature vector X; ymax and ymin correspondingly signify
the maximum and minimum values of the feature vector Y; r and s
designate the number of segments for X and Y, respectively; and n0.6

symbolizes the size of the partition grid, typically chosen as the 0.6th
power of the data volume (Wang, 2020).
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(2) The formula for calculating theMV-UIC between the regional
weather feature vector H and the source and load power
vectors (PDG, PL) in a microgrid is as follows:

MV −MIC PDG, PL( );H{ } � max
r,s < ∂

IMI D, r, s, PDG, PL( ), H( )
log2 min r, s{ }( ) (4)

where I (D, r, s, (PDG, PL),H) denotes the mutual information among
the three entities; log2 (min{r, s}) represents normalization, with min
{r, s} being the minimum value between r and s, and ∂ denoting the
maximum grid partition number (r, s< ∂). The flow chart of the
MV-UIC algorithm is shown in Figure 1.

Based on Eqs 2–4, the MV-UIC between microgrid source, load
power, and weather features can be computed. A higher value
indicates a stronger correlation between the respective weather
feature and the source/load power. Selecting weather features
with high correlations as inputs for source/load power prediction
models helps filter out remaining features, thereby mitigating issues
related to excessive variables and redundant computations.

3 Inputfeature dimensionality
reduction based on FA

Due to the strong interrelationships among weather feature
variables, regression analysis encounters a certain degree of
collinearity issue. FA serves as a multivariate statistical method

that, by solving the correlation matrix of variables, identifies
common factors describing relationships among numerous
variables and simplifies data, thereby reducing the dimensionality
of the dataset. The fundamental principles and computational
procedures of FA are detailed in Wu et al. (2024), wherein the
basic model entails the linear relationship between observed
variables and common factors as Eq. 5:

Ψ � ι*F + E (5)
In the equation, Ψ represents the matrix of observed variables;

F stands for the matrix of common factors; ι denotes the factor
loading matrix, illustrating the relationship between each observed
variable and the common factors; E signifies the matrix of
factor variances.

Utilizing the MV-UIC obtained in Section 1, weather feature
variables with similar attributes are grouped together and
represented by a common factor. Analyzing the correlation
between variables involves solving the eigenvalues and
corresponding orthogonal eigenvectors of the correlation matrix.
Based on the eigenvalues of the correlation matrix, the variance
contribution rate and cumulative contribution rate of common
factors are computed, with a cumulative contribution rate
exceeding 85% serving as the criterion for determining the
number of common factors. Subsequently, factor matrix rotation
yields the factor loading matrix. Factor scores are then calculated
using regression analysis. Higher values in the factor score matrix
indicate a more significant representation of the feature by the
respective factor in the dataset. Dimensionality reduction of input
features for source/load power prediction is conducted based on
factor scores.

4 A short term joint prediction model
for microgrid source and load power
considering weather characteristics
and multivariable correlation

In microgrid systems, predicting source and load power is
crucial for stable operation. Due to their nonlinearity and non-
stationarity, single models struggle to capture these complexities,
leading to poor performance. Empirical Mode Decomposition
(EMD) decomposes source-load sequences into Intrinsic Mode
Functions (IMFs), enhancing prediction accuracy by describing
variations and periodicities. To improve predictive performance
further, joint prediction methods integrate multiple models’
advantages. Weighting different models appropriately creates a
comprehensive model considering various characteristics and
IMFs, yielding more accurate results. Additionally, predicting
source and load power under similar weather conditions requires
analyzing their correlation with weather features. Traditional
methods fail to capture this correlation simultaneously, unlike
the Multi-variable Uniform Information Coefficient (MV-UIC),
which evaluates it effectively. MV-UIC’s application enables
feasible joint prediction of source and load, quantifying the
correlation between multiple dependent variables and a single
independent variable, aiding in constructing precise
prediction models.

FIGURE 1
Flow chart of the MV-UIC algorithm.
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4.1 BP network

The BP network is a multi-layer feedforward neural network. The
topology of a three-layer BP network is illustrated in Figure 2,
encompassing an input layer, an output layer, and a single hidden
layer. Each neuron is connected to all neurons in the subsequent layer,
with no interconnections among neurons within the same layer.

The BP network minimizes error using gradient descent.
Standard BP lacks momentum consideration, causing slow
convergence. Enhanced BP integrates momentum to reduce
oscillations and hasten convergence. The objective function is
defined accordingly. The objective function is defined as Eq. 6:

JBP � 1
2
∑NBP

δ�1
∑mBP

ϕ�1
zδϕ − cδϕ( )2 (6)

where cδϕ represents the output of node ϕ when sample δ is applied; zδϕ
denotes the target value of output busϕ for sample δ,mBP is the dimension
of the output variable, and NBP is the number of training samples.

4.2 LSTM

The LSTM represents an enhanced version of the Recurrent
Neural Network (RNN). Introduced and subsequently refined with

additional forget gates, the improved LSTM addresses the issue of
“vanishing gradients” encountered during model training. Capable
of learning both short-term and long-term dependencies in time
series data, it stands as one of the most successful RNN architectures,
finding applications across various domains. The fundamental unit
of an LSTM network, as depicted in Figure 3.

The fundamental unit of an LSTM network comprises forget
gates, input gates, and output gates. The forget gate determines the
extent of memory to be retained from the state cell, influenced by the
input χt, previous state ~St−1, and the intermediary output ht-1. The
input gate decides the vectors to be preserved within the state cell,
with χt undergoing transformations via sigmoid and tanh functions.
The intermediary output ht-1 is jointly determined by the updated
state ~St and the output ot, as outlined in Eqs 7–12:

f t � σ Wfχχt +Wfhht−1 + βf( ) (7)
it � σ W iχχt +W ihht−1 + βi( ) (8)
g t � ƛ Wgχχt +Wghht−1 + βg( ) (9)
ot � σ Woχχt +Wohht−1 + βo( ) (10)

~St � g t ⊙ it + ~St−1 ⊙ f t (11)
ht � ƛ ~St( ) ⊙ ot (12)

where f t, it, gt, ot, ht and ~St represent the states of the forget gate,
input gate, input node, output gate, intermediary output, and state
unit, respectively. Wfχ , Wfh, W iχ , W ih, Wgχ , Wgh, Woχ , and Woh

denote the matrix weights for the respective gates multiplied by the
input χt and intermediary output ht−1. βf, βi, βg, and βo are the bias
terms for the corresponding gates. The symbol ⊙ represents element-
wise multiplication in vectors, σ denotes the sigmoid function
transformation, and ƛ represents the tanh function transformation.

4.3 BiLSTM

The BiLSTM is an advanced enhancement of the conventional
unidirectional LSTM, integrating both a forward LSTM layer and a
backward LSTM layer, each influencing the output. While the
unidirectional LSTM adeptly utilizes historical data to mitigate
long-distance dependency issues, the BiLSTM benefits from the
incorporation of both forward and backward sequence information,
thoroughly considering past and future data to significantly enhance
model prediction accuracy. The architecture of the BiLSTM, as
illustrated in Figure 4.

The architecture of the BiLSTM involves updates to the hidden
layers of the forward LSTM, the backward LSTM, and the process
leading to the final output of the BiLSTM, delineated in Eqs 13–15:

ςt � fBiLSTM,1 ω1χt + ω2ςt−1( ) (13)
ξt � fBiLSTM,2 ω3χt + ω5ξt+1( ) (14)
γt � fBiLSTM,3 ω4ςt + ω6ξt( ) (15)

where fBiLSTM,1, fBiLSTM,2 and fBiLSTM,3 denote the activation
functions between the different layers; ςt and ξt represent the
corresponding LSTM hidden states for the forward and backward
iterations, respectively; χt represents the corresponding input data;
γt represents the corresponding input data; ω1...ω6 represent the
corresponding weight of each layer.

FIGURE 2
BP network with three layers.

FIGURE 3
Basic unit of LSTM network.
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4.4 VMD

The specific steps of the VMD algorithm are described
as follows:

(1) Define the variational problem: In order to decompose the given
original sequencefVMD() into ~K variational mode components
uκ with different central frequency bandwidths, and the sum of
the estimated bandwidths of each mode is the minimum, the
variational constraint expression is defined as Eq. 16:

min
uκ{ }, ϖκ{ }

∑
κ�1

~K

∂t ϑκ ( )[ ]e−jϖκ
���� ����22⎧⎨⎩ ⎫⎬⎭

s.t.∑
κ�1

~K

uκ ( ) � fVMD ( )

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(16)

where the original sequence fVMD() is the set of optimal similar
daily load sequence; uκ{ } ϖκ{ }, which represents the set of all
submodes and their corresponding center frequencies
respectively; ϑκ() represents the analytical signal of the κ

submode after being demodulated by Hilbert; uκ() represents
the modal function of the κ submode.

(2) The formula for the Lagrangian transformation is shown in Eq.
17: In order to solve the optimal solution problem of the above
variational constraint, Lagrange multiplier λ is introduced to
ensure the strictness of the constraint condition and penalty
factor α to ensure the accuracy of signal reconstruction in high
noise environment, and transforms the constraint problem into
an unconstrained variational problem.

LVMD uκ{ }, ϖκ{ }, λ( ) � α∑
κ

~K

∂t ϑκ ( )[ ]e−jϖκ
���� ����22

+ fVMD ( ) −∑
κ

~K

uκ ( )
���������

���������
2

2

+〈λ ( ), fVMD ( ) −∑
κ

~K

uκ ( )〉 (17)

(3) Alternate update: initialize u1κ{ }, ϖ1
κ{ }, λ1, alternate direction

multiplier method solution, and iteratively update u1κ, ϖ1
κ, λ

1.

ûψ+1
κ

f̂VMD ϖ( ) − ∑
] ≠ κ

~K

ûψ
] ϖ( ) + λ̂

ψ ϖ( )
2

1 + 2α ϖ − ϖκ( )2
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

ϖ̂ψ+1
κ � ∫∞

0
ϖ ûκ ϖ( )| |2dϖ

∫∞
0
û ϖ( )| |2dϖ

λ̂
ψ+1 ϖ( ) � λ̂

ψ ϖ( ) + τ f̂VMD ϖ( ) −∑
κ

~K

ûψ+1
κ ϖ( )⎛⎝ ⎞⎠

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(18)

where ψ is the number of iterations; τ is the noise tolerance, ûψ+1κ ,
ϖ̂ψ+1
κ represent the mode function and the center frequency at

ψ+1 iteration; λ̂
ψ+1(ϖ) is the Lagrange multiplier value of the

VMD algorithm at ψ+1 iteration; f̂VMD(ϖ), ûψ+1κ (ϖ) and λ̂
ψ(ϖ)

represent the fVMD(), uψ+1 () and λψ() Fourier transform forms
respectively.

(4) Submode output as Eq. 19: according to Eq. 18 determine
whether the termination conditions, if not, return to step 3), if
satisfied, the Fourier inverse transformation of the last update
ûκ(ϖ){ }, get the set uκ(){ } within the time domain range, the
final output κ submode signal, the submode function is uκ(),
and the corresponding center frequency is ϖκ.

∑
κ

~K

ûψ+1
κ − ûψ

κ

���� ����22/ ûψ
κ

���� ����22 < ε (19)

where ε is the judgment accuracy (ε> 0).

4.5 Model construction

The paper exemplifies a 15-min interval to predict the
microgrid’s source and load power sequences for the next hour.
Due to the long time resolution and insufficient accuracy of
numerical weather forecasts, only historical meteorological data is
utilized as weather feature input during the selection of input
features for the prediction model. This data is combined with
historical sequences of microgrid source and load power to
collectively form the input matrix. Regarding historical features,
five historical similar days with significant correlation to the current

FIGURE 4
Structure of BiLSTM network.
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weather and the historical power measurement values from the past
5 days are specifically chosen as historical data (Wang, 2020).

The source and load power in microgrids exhibit strong
nonlinearity and non-stationarity characteristics, rendering single
predictive model methods limited in both fitting performance and
prediction accuracy. To enhance power prediction accuracy, this
study drew upon the methods outlined in Yue et al. (2023). Initially,
VMD was employed to decompose historical source and load power
time series under different weather conditions, yielding multiple
IMF components of various frequencies. Subsequently, the
permutation entropy (PE) values of each IMF were computed,
and based on these PE values, low, medium, and high-frequency
input matrices were constructed. Considering the concurrent
temporal correlation of current microgrid source and load power
values with past and future time information, three homogeneous
recursive neural network models—BP, LSTM, and BiLSTM—were
selected for their robust handling of time-series data. These models
were employed as base learners, utilizing a bootstrapping method to
acquire diverse training set samples, which were then used to train
the base learners. This approach enabled the prediction of different
frequency components, which were subsequently combined to
obtain microgrid source and load power forecasts. High-
frequency data changes typically exhibit strong sequential
dependencies and long-term trends. LSTM models excel at
capturing long-term dependencies within sequential memory and
adaptively adjusting the complexity and variability of sequence
patterns, making them suitable for predicting high-frequency
data trends. Medium-frequency data is often influenced by
preceding and succeeding time-step data, exhibiting certain
contextual dependencies. BiLSTM models, equipped with both
forward and backward memory units, can simultaneously process
forward and reverse sequence information, thus better capturing
contextual relationships within medium-frequency data and
enhancing prediction accuracy. Low-frequency component
variations are relatively slow and stable. The training process of
BP neural networks is relatively straightforward, capable of
providing forecasts of future trends by learning the input-output
mapping relationships of historical data.

In consideration of the aforementioned, this paper contemplates
the correlation between weather characteristics and multivariable
factors, proposing a joint prediction model for microgrid source and
load power based on MV-UIC-FA. The schematic diagram of the
prediction model is illustrated in Figure 5. The specific prediction
steps are as follows:

(1) Acquiring meteorological characteristics for the forecasted
day involves retrieving weather information strongly
correlated with source and load power from historical daily
datasets. Similar days are selected to construct datasets under
distinct weather types.

(2) Data completion: To address gaps in the source and load
datasets, missing values are replenished with the average of six
data points before and after the sampling point.

(3) Normalization: Employing the Z-score algorithm for
normalization ensures a balanced distribution of data.

(4) Timestamp alignment: Concerning the alignment of
timestamps in the dataset, this study will utilize spline
interpolation for the alignment operation.

(5) Feature selection: Utilizing MV-UIC, an analysis is conducted
on the correlation between weather characteristics and
microgrid source/load sequences to filter out weather
features closely associated with the prediction task.

(6) Feature dimensionality reduction: Employing the FAmethod,
the selected weather feature sequences are subjected to
dimensionality reduction while preserving the fundamental
information of the original features.

(7) Offline model training: Constructing input matrices for the
prediction model involves integrating the processed features
with source and load sequences. Following the training
methodology of the combined prediction model, the
processed dataset is partitioned into training, validation,
and testing sets in a ratio of 7:2:1. Subsequently, offline
training is conducted to derive the prediction model.

5 Example analysis

To substantiate the rationality of the jointly proposed ultra-
short-term forecasting methodology for microgrid source and load
power, it is imperative to concurrently acquire the original data
pertaining to weather characteristics, distributed power sources, and
load power within the microgrid’s geographical domain. The source,
load, and weather feature data for the DTU 7K 47-bus system
(Baviskar et al., 2021), available on the official website, are
comprehensive for the period spanning from 1 January 2015, to
31 August 2015. Accordingly, the simulation testing in this study is
conducted utilizing the data from this specific timeframe.

The DTU 7K 47-bus system is an open-source multi-voltage
level distribution grid model developed by the Technical
University of Denmark (DTU). Named the DTU 7k-Bus Active
Distribution Grid Model, it spans three voltage levels and is
geographically modeled for network topology. Key features
include multi-voltage levels enabling analysis of challenges and
opportunities in renewable energy-dependent grids, geographical
data-based network topology modeling for real-world grid
operation simulation, simulation data derived from weather and
measured data, and open accessibility for research and educational
purposes. Data primarily sourced from DTU’s official data-sharing
platform, DTU Orbit, allows researchers access for power system
analysis, renewable energy integration studies, grid planning, and
operational simulations.

The DTU 7K 47-bus system, depicted in Supplementary
Appendix Figure S2, is interconnected with the external grid via
the B-0 transformer at the B-9 bus; the system encompasses three
wind farms, composed of fourth-generation controllable wind
turbines with installed capacities of 12, 15, and 15 MW,
respectively. Due to the location of the DTU 7K 47-bus testing
system within the Danish territory, meteorological data is sourced
from the Danish Meteorological Institute. The selected weather
features include reflectance, snow reflectance, high cloud cover,
low cloud cover, 2-m relative humidity, snow density, 2-m
specific humidity, 10-m wind speed, 30-m wind speed, 50-m
wind speed, 70-m wind speed, 100-m wind speed, atmospheric
pressure, 2-m temperature, total cloud cover, visibility, 10-m wind
direction, and mid-level cloud cover, totaling 18 variables. The
sampling, normalization, and offline training data sample
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quantities for source and load data remain consistent. The sampling
frequency is 15 min, resulting in a total of 23,328 samples. Z-score
algorithm is employed for normalization. Subsequently,
16,330 samples are randomly chosen for training, 4,665 for
validation, and 2,333 for testing. The input time series length is
set at 96.

The models in this study are trained using the Python software.
The performance of the proposed methodology is assessed through

the utilization of root mean squared error (RMSE) and mean
absolute error (MAE) they are as Eqs 20, 21:

vRMSE � ∑NT

i�1
v̂ − v( )2/NT

⎛⎝ ⎞⎠ 1
2 (20)

vMAE � ∑NT

i�1
v̂ − v| |⎛⎝ ⎞⎠/NT (21)

FIGURE 5
Joint prediction model of microgrid source and load power based on MV-UIC-FA.

Frontiers in Energy Research frontiersin.org08

Huang et al. 10.3389/fenrg.2024.1409957

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1409957


In the equation: v is the true value of the source load; v̂ is the
predicted value of the source load; NT is the number of elements in
the test set.

5.1 Simulation case 1: testing of weather
feature extraction and dimensionality
reduction methods

5.1.1 Feature extraction and factor analysis based
on MV-UIC for dimensionality reduction

To substantiate the rationality of the proposed feature extraction
algorithm across diverse seasons, this paper opts for the dates of
April 30th (spring), June 30th (summer), August 31st (autumn), and
February 28th (winter) as prediction days, aligning with the climatic
nuances of Denmark. Historical days with correlation coefficients
exceeding 0.8 concerning the prediction days are designated as
analogous days. The input feature sequences encompass five
historical source-load data points with a kin weather conditions,
the source-load data from the past 5 days, and eighteen weather
attributes. Four forecasted days’ weather features, along with the
MV-UIC of source and load power, are extracted as delineated
in Table 1.

From Table 1, it can be observed that the weather characteristics
vary across different seasons, exhibiting disparate MV-UICs
concerning microgrid source and load power. These weather
features manifest distinct correlations with source and load
power. Given Denmark’s temperate maritime climate,

precipitation (snow) and strong winds are predominantly
observed during the autumn and winter seasons, occasionally
culminating in extreme weather phenomena such as blizzards.
Consequently, during the winter season, the information
coefficients between snow density, wind speed, and source and
load power stand at 0.324 and 0.2037, respectively, indicating
considerable magnitudes. These findings align with Denmark’s
actual climatic conditions and geographical location, thereby
corroborating the rationality and efficacy of the proposed MV-
UIC feature extraction method.

5.1.2 Using FA to reduce the dimension of
input features

The FA method is employed herein to capture the common
factors among input features by constructing a factor score matrix,
facilitating dimensionality reduction for the 18 input features across
four forecast days. The total variance explanation table for the spring
is presented in Table 2, while the factor score matrix is shown in
Table 3. The variance explanation tables and factor score matrices
for the other three forecast days can be found in Supplementary
Appendix SA. From the variance analysis in Table 2, it is evident that
six common factors are extracted from the input features in this
study. As indicated by the factor score matrix in Table 3, these
factors are the wind speed factor, 2 m information factor (including
2 m relative humidity, 2 m specific humidity, and 2 m temperature),
albedo factor, cloud cover factor, surface pressure factor, and wind
direction factor. The cumulative variance contribution rate of these
common factors is 97.966% (>85%), suggesting that these six

TABLE 1 Weather characteristics and MV-UIC of source and load power for four forecast days.

Meteorological characteristics April 30th
(spring)

June 30th
(summer)

August 31st
(autumn)

February 28th
(winter)

Albedo 0.1595 0.1279 0.1932 0.2907

Snow albedo 0.1755 0.0 0.2199 0.3554

High cloud cover 0.1295 0.1719 0.1230 0.1304

Low cloud cover 0.1207 0.1321 0.1234 0.1452

2 m relative humidity 0.1188 0.1449 0.1303 0.1422

Snow density 0.1435 0.0 0.2914 0.3240

2 m specific humidity 0.1965 0.1590 0.1513 0.2382

10 m wind speed 0.1377 0.1586 0.1433 0.2037

30 m wind speed 0.1421 0.1537 0.1405 0.1999

50 m wind speed 0.1314 0.1534 0.1419 0.1966

70 m wind speed 0.1396 0.1608 0.1434 0.1929

100 m wind speed 0.1396 0.1596 0.1462 0.1978

Surface pressure 0.2579 0.2086 0.2985 0.2287

2 m temperature 0.1422 0.1463 0.1333 0.2021

Total cloud cover 0.1335 0.1539 0.1388 0.1564

Visibility 0.1298 0.1399 0.1205 0.1345

10 m wind direction 0.1601 0.1571 0.1518 0.2042

Medium cloud cover 0.1551 0.1541 0.1416 0.1345

Frontiers in Energy Research frontiersin.org09

Huang et al. 10.3389/fenrg.2024.1409957

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1409957


common factors encompass the majority of the effective information
within the sequences of 18 key input features. This is of significant
importance for interpreting the variations in the original data.

5.1.3 Test of feature extraction and factor-based
dimensionality reduction method based on
MV-UIC

To mitigate the non-stationarity of microgrid sources and loads,
an initial step involves employing VMD to decompose the time
series of source and load data for similar and forecast days. The
VMD decomposition results are presented in Supplementary
Appendix SB. This process yields various modal sub-sequences of
source and load power. Subsequently, the PE values are computed
for each sub-sequence. Sequences with PE values exceeding 0.55 are
designated as high-frequency sequences, those with PE values
ranging from 0.25 to 0.55 are categorized as mid-frequency
sequences, and sequences with PE values below 0.25 are
identified as low-frequency sequences. The decomposition results

of the spring forecast day source and load power are illustrated in
Supplementary Appendix Figure SFA1, revealing the absence of low-
frequency components in the wind power output sequence.

In order to validate the rationality of the proposed feature
extraction algorithm in different seasons, the study utilized the
all feature (AF) of the forecast day and input features extracted
based onMV-UIC-FA separately as inputs for the prediction model.
Three types of base learners—BP, LSTM, and BiLSTM—were
employed to individually predict the low, mid, and high-
frequency components of source and load power. The
corresponding evaluation metrics for the prediction results are
presented in Table 4, with a prediction step of 4 for all control
groups. Upon examination of Table 4, it is observed that compared
to using all weather features as input for the prediction model,
employing MV-UIC to extract and dimensionally reduce weather
features before prediction resulted in a reduction of 13.46% and
17.85% in RMSE and MAE for electric power prediction,
respectively. For load power prediction, the RMSE and MAE

TABLE 2 Total variance interpretation table.

Components Initial eigenvalues Extract sum of load Sum of rotating load

Total Percent
variance

Cumulative
%

Total Percent
variance

Cumulative
%

Total Percent
variance

Cumulative
%

1 3.421 38.014 38.014 3.421 38.014 38.014 3.040 33.775 33.775

2 2.013 22.367 60.381 2.013 22.367 60.381 1.787 19.853 53.628

3 1.264 14.040 74.421 1.264 14.040 74.421 1.033 11.478 65.106

4 0.888 9.869 84.290 0.888 9.869 84.290 1.011 11.234 76.339

5 0.661 7.344 91.633 0.661 7.344 91.633 0.981 10.898 87.237

6 0.570 6.332 97.966 0.570 6.332 97.966 0.966 10.729 97.966

7 0.174 1.932 99.898

8 0.005 0.056 99.955

9 0.004 0.045 100.000

TABLE 3 Factor score matrix.

Meteorological
characteristics

Factor score

Components
1

Components
2

Components
3

Components
4

Components
5

Components
6

Albedo −0.028 0.149 0.977 −0.070 0.014 0.103

2 m specific humidity −0.010 0.948 −0.029 0.079 −0.109 0.075

30 m wind speed 0.980 −0.058 −0.016 0.058 0.105 0.131

50 m wind speed 0.980 −0.060 −0.022 0.066 0.104 0.131

70 m wind speed 0.979 −0.060 −0.015 0.065 0.107 0.136

Surface pressure 0.214 −0.142 0.014 −0.110 0.960 −0.032

2 m temperature −0.131 0.909 0.241 −0.074 −0.056 0.023

10 m wind direction 0.285 0.092 0.114 0.062 −0.034 0.944

Medium cloud cover 0.117 0.011 −0.070 0.983 −0.103 0.056
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were reduced by 17.62% and 17.31%, respectively. This indicates a
significant improvement in prediction accuracy, validating the
effectiveness of the proposed approach across different seasons.

This simulation yielded the corresponding predictions as shown
in Figures 6, 7.

5.2 Simulation case 2: comparative testing of
accuracy of different prediction models

To verify the accuracy of the joint prediction model for microgrid
source and load power based onMV-UIC-FA proposed in this paper,
predictions of source and load power for four forecasting days were
initially conducted using the MV-UIC-FA prediction model.
Subsequently, comparisons were made with the results of three
single prediction models, namely BP (MV-UIC-BP, MV-B), LSTM
(MV-UIC-LSTM, MV-L), and BiLSTM (MV-UIC-BiLSTM, MV-Bi).
These models utilized dimensionally reduced input features.
Evaluation metrics such as RMSE and MAE for the corresponding
prediction results were obtained and are presented in Table 5 (with a
prediction step of 4 for all control groups). Additionally, comparisons

between the predicted results for source and load power for the four
forecasting days and the actual data are illustrated in Figures 8, 9.

From Figures 8, 9, it can be observed that among the predicted power
for the four forecasting days, the results of the three individual forecasting
models are similar, while the combined forecasting model fully exploits
the advantages of each individual forecasting model, yielding superior
forecasting results. As seen from Table 5, the proposed models in this
study outperform various baseline models in terms of their RMSE and
MAE. Specifically, compared to the forecasting results of the BP, LSTM,
and BiLSTM models, the employment of the proposed model in this
study reduces the RMSE and MAE of the power supply by 25.57%,
25.71%, 23.48%, and 33.4%, 31.41%, 26.92%, respectively, and reduces the
RMSE and MAE of the load power by 25.69%, 18.69%, 18.33%, and
26.79%, 17.71%, 19.07%, respectively.

5.3 Simulation case 3: comparative testing of
accuracy of different prediction models

In this section, the accuracy and robustness of the proposed joint
prediction model for microgrid source and load power based on

TABLE 4 Evaluation indexes of source and load power prediction models after dimensionality reduction of AF and MV-UIC-FA.

Input features April 30 (spring) June 30 (summer) August 31 (fall) February 28 (winter)

RMSE/
MW

MAE/
MW

RMSE/
MW

MAE/
MW

RMSE/
MW

MAE/
MW

RMSE/
MW

MAE/
MW

DG AF 2.0861 1.7307 1.1229 0.8462 4.5418 3.6165 3.3936 2.9253

MV-UIC-FA 1.7910 1.4537 0.9885 0.7241 4.067 3.1751 2.7818 2.0841

Load AF 8.9578 7.6002 14.1083 10.1921 9.0828 7.5761 11.7821 9.2057

MV-UIC-FA 6.9727 5.7600 11.8506 8.0875 7.5069 6.7075 10.0187 8.0180

FIGURE 6
Microgrid power prediction results for four prediction days. (A) Spring. (B) Summer. (C) Fall. (D) Winter.
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MV-UIC-FA are validated using the IEEE 118-bus standard
distribution network test system (Youssef et al., 2020) as shown
in Figure 10. Actual power and load data from the 2014 Global
Energy Forecasting Competition (GEFC) (Hong et al., 2016) are
utilized as the training and testing datasets. Controllable wind
turbines of the fourth generation, each with a rated capacity of
1 MW, are connected to buses 14, 25, 46, 49, 66, and 69 of the IEEE
118- bus test system. Load data and environmental weather
characteristic data from the 2014 GEFC are extracted, covering
the period from March 1st to 12th, 2005, with a sampling frequency
of 1 h, totaling 288 h of data. This dataset is used for experimental
simulations. Meteorological data utilized in the simulations are
sourced from the publicly available local weather information on
the website of the National Renewable Energy Laboratory (NREL)
(NREL, 2024) in the United States. The dataset includes load and

power sequences, temperature, weather type 1, humidity, visibility,
weather type 2, perceived temperature, pressure, wind speed, cloud
cover, wind resistance, precipitation intensity, dew point, and
precipitation probability. Normalization is applied to both power
and load data to meet simulation requirements. Missing values in
the dataset are filled, and normalization is performed. The training
and prediction datasets are divided in an 8:2 ratio. March 12th is
selected as the prediction day.

Based on the findings presented in Figure 11 and Table 6, it is
evident that the predictive performance of the method proposed
in this paper for forecasting source and load power within the
IEEE 118-bus standard distribution network surpasses that of
alternative individual methods, demonstrating superior
predictive accuracy and commendable generalization
capabilities.

FIGURE 7
Microgrid load prediction results for four prediction days. (A) Spring. (B) Summer. (C) Fall. (D) Winter.

TABLE 5 Evaluation indexes of RMSE and MAE for different prediction modelS.

Prediction model Spring Summer Fall Winter

RMSE/
MW

MAE/
MW

RMSE/
MW

MAE/
MW

RMSE/
MW

MAE/
MW

RMSE/
MW

MAE/
MW

DG MV-B 2.2125 1.9671 0.9573 0.7082 4.2045 3.5404 2.7744 2.2158

MV- L 2.0732 1.9361 1.1927 0.8617 4.2443 3.3818 2.3355 1.6197

MV- Bi 2.1235 1.9527 1.0177 0.8208 3.0152 1.876 3.4657 2.5119

The MV-UIC-VMD combined
prediction model

1.7910 1.4537 0.8585 0.6241 2.5884 1.7535 1.8183 1.2153

Load MV-B 10.8240 8.1104 9.9246 9.7192 21.6300 15.2434 25.2227 22.7800

MV- L 8.4671 6.3477 9.7702 9.0331 18.9970 14.1968 25.3980 21.1923

MV- Bi 8.8633 6.7884 7.6545 6.2334 19.0853 13.5598 23.7700 18.2401

The MV-UIC-VMD combined
prediction model

6.9727 5.7600 8.5803 7.9440 14.4447 10.3772 20.0735 16.4130
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5.4 Simulation case 4: with the prediction
results that consider only the distributed
power supply and load alone in correlation
with the weather feature

For comparative analysis, the influence of weather features only
on DG output and load power is set separately using the proposed
algorithm to predict the load in the above two scenarios. The
prediction results are shown in Figures 12, 13 and Table 7.

Based on the simulations of the two scenarios mentioned above,
it can be inferred that considering the correlation between DG

output, load power, and weather characteristics can further improve
the accuracy of load forecasting. Additionally, the proposed
algorithm in this paper has a prediction time of 33.18 s,
demonstrating good timeliness and meeting the requirements of
ultra-short-term load forecasting.

6 Conclusion

In response to the coexistence of distributed power sources
and loads in microgrids, wherein weather characteristics

FIGURE 8
Microgrid power prediction results for four prediction days. (A) Spring. (B) Summer. (C) Fall. (D) Winter.

FIGURE 9
Microgrid load prediction results for four prediction days. (A) Spring. (B) Summer. (C) Fall. (D) Winter.
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FIGURE 10
IEEE 118-bus standard power distribution system.

FIGURE 11
Results diagram of source and load power prediction of IEEE 118-bus standard distribution system. (A) DG. (B) Loads.

TABLE 6 Evaluation indexes of source and load power prediction models after dimensionality reduction of IEEE 118-bus standard distribution system.

Prediction model RMSE/MW MAE/MW

DG MV-B 1.108 0.6748

MV-L 0.9564 0.5899

MV-Bi 0.7693 0.5306

The MV-UIC-VMD combined prediction model 0.5361 0.2627

Load MV-B 0.2492 0.1709

MV-L 0.4066 0.3486

MV-Bi 0.2497 0.2084

The MV-UIC-VMD combined prediction model 0.1143 0.1143
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FIGURE 12
Only the predicted results of the DG output were considered. (A) Spring. (B) Summer. (C) Fall. (D) Winter.

FIGURE 13
Only the predicted results of the loads were considered. (A) Spring. (B) Summer. (C) Fall. (D) Winter.

TABLE 7 Evaluation indexes of source and load power prediction models after dimensionality reduction.

Prediction model Spring Summer Autumn Winter

RMSE/MW MAE/MW RMSE/MW MAE/MW RMSE/MW MAE/MW RMSE/MW MAE/MW

Only consider loads 6.30469 5.00133 5.01234 3.53141 2.44036 2.08708 2.28101 1.84892

Only consider DG 2.0457 1.5801 1.0663 0.8019 3.7107 2.9303 3.1595 2.3205

Both consider 1.5805 1.039 0.8585 0.6241 2.5884 1.7535 1.3818 0.8841
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concurrently influence their power, a joint short-term power
prediction model for microgrid sources and loads, considering
weather features and multivariable correlations, is proposed to
attain a rational match between microgrid sources and loads.
Illustrated by an analysis of the DTU 7K 47-bus system within
Denmark, an assessment of the accuracy, applicability, and
efficacy of the proposed prediction approach is conducted.
The principal findings are as follows:

(1) MV-UIC can effectively depict the simultaneous impact of
the same weather characteristics on the power of sources
and loads within microgrids, thereby revealing the
correlation between weather features and
microgrid power.

(2) By employing MV-UIC in conjunction with factor analysis
to reduce the dimensionality of input features for source
and load prediction, the power forecasting accuracy
surpasses that achieved when considering all weather
features as input. Compared to single prediction models,
utilizing the prediction model based on MV-UIC-FA for
source and load power also effectively reduces
prediction errors.

Upon deriving the predicted power for microgrid sources and
loads through the methodology advanced in this paper, the
subsequent phase will involve the modeling of the matching
degree between microgrid sources and loads, coupled with the
optimization scheduling research of microgrid clusters.
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