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Temperature compensation is the main measure to solve the problem that the
detection accuracy of non-dispersive infrared CO2 gas sensor is affected by
temperature. As the measurement accuracy of the non-dispersive infrared CO2

gas sensor is easily affected by the ambient temperature, this article analyzes the
reasons why the sensor is affected by temperature, and proposes a temperature
compensation method that integrates the Whale Algorithm (WOA) and BP neural
network. The whale algorithm is used to optimize the weights and thresholds of
the BP neural network to build a temperature compensation model for the non-
dispersive infrared CO2 gas sensor and compare the superiority with the
traditional BP neural network model and particle swarm optimization (PSO) BP
neural network model. The experimental results show that the temperature
compensation model error of WOA-BP algorithm is lower than 30 ppm, and
the average absolute error percentage is 3.86%, which is far better than BP neural
network and PSO-BP neural network, and effectively reduces the influence of
temperature on the accuracy of the sensor.
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1 Introduction

In recent years, global climate change caused by the massive consumption of fossil
fuels such as oil and coal has seriously threatened the sustainable development of
human society (Qin et al., 2020; Jiang et al., 2020; Wang et al., 2022; Xiao et al., 2023a).
In order to cope with global climate change, China, as a responsible big country, has
committed to achieve carbon peak by 2030 and carbon neutrality by 2060. Therefore, in
order to achieve the dual-carbon goal and promote sustainable low-carbon
development, real-time and accurate CO2 concentration monitoring is of great
significance.

At present, non-dispersive infrared (NDIR) technology is the main CO2 concentration
monitoring method, and the sensors made by using NDIR technology have the advantages
of wide measurement range, high sensitivity, high accuracy, fast response speed, and
long lifetime (Zhang et al., 2021; Fu et al., 2023). However, relevant theories
and experiments have found that the working environment temperature has a
significant impact on the measurement accuracy of NDIR gas sensors. Therefore, it is
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important to take measures to reduce the effect of temperature on
sensor performance (Moumen et al., 2016; Yasuda et al., 2012). In
the existing research, the two main methods of temperature
compensation commonly used are hardware compensation and
software compensation (Wang et al., 2013). Hardware
compensation is to reduce temperature interference by adding
hardware circuits and related components. Pei et al. (2021)
carried out hardware compensation for infrared CO2 gas
sensor through the constant temperature control module,
which effectively suppressed the temperature drift
phenomenon. However, due to the high production cost and
poor versatility of the hardware compensation method, the
software compensation method is often chosen in practical
applications. Software compensation is the fusion of data
through segmented linear interpolation, multi-parameter
regression analysis, artificial intelligence algorithms and so on.
Tian et al. (2017) used the least square method to get the
compensation results at different temperatures. Zhang et al.
(2009) used radial basis function (RBF) neural networks to
compensate the temperature of carbon monoxide gas sensors.
The gas sensor developed by Liu et al. (2017) used a BP neural
network temperature compensation model. By combing through
the literature, it is found that BP neural network is a common
software temperature compensation method with powerful
nonlinear mapping and learning ability. However, it also has
some drawbacks, such as easily falling into local optimal solutions
and being sensitive to initial weights and threshold settings. To
overcome these shortcomings, a number of intelligent algorithms
have been proposed in recent years to optimize BP neural
networks: Li et al. (2018) proposed an adaptive artificial bee
colony optimization BP neural network method for temperature
compensation of infrared gas sensors. Gu et al. (2021) used GA-
BP neural network for humidity compensation of sensors. Chen
et al. (2017) proposed a hybrid particle swarm optimization error
backpropagation (PSO-BP) neural network prediction algorithm
for temperature and pressure compensation of SF6 gas sensors.
Mao et al. (2016) introduced an improved particle swarm
optimization algorithm based on particle survival value and
simulated annealing to optimize the BP neural network for
temperature compensation of methane gas sensors. The above
optimization algorithms have improved the performance of the
BP neural network to a certain extent while reducing the impact
of temperature on gas sensors. However, there are also
disadvantages such as low temperature compensation accuracy
and poor stability.

In summary, this paper proposes a model based on the fusion
of whale algorithm and BP neural network for temperature
compensation of non-dispersive infrared CO2 gas sensor. The
whale algorithm is used to optimize the initial weights and
thresholds of BP neural network with advantages such as fast
convergence speed, ability to avoid falling into the local optimal
solution, strong robustness, few adjustment parameters, and easy
operation (Zheng et al., 2019), which can effectively avoid BP
neural network falling into the local optimal solution and thus
improve the global search ability. The experimental results verify
the feasibility and superiority of the proposed algorithm, and
show that WOA-BP algorithm has a good temperature
compensation effect.

2 Effect of temperature on detection
accuracy of non-dispersive infrared
CO2 gas sensors

2.1 Effect of temperature on absorption
coefficient

The principle of operation of non-dispersive infrared gas sensors
is based on the fact that gas molecules selectively absorb specific
wavelengths of infrared light as it passes through them. After being
absorbed by a certain concentration of carbon dioxide gas, the light
intensity emitted by an infrared light source will be weaken, and its
attenuation relationship follows the Lambert Beer law (Hernán
R.,2021). According to this law, the concentration C of CO2 can
be derived as:

C � 1
KL

ln
I0
I

(1)

In Eq. 1, I0 and I respectively represent the light intensity of
infrared rays before and after passing through the gas to be
measured, C represents the concentration value of the gas to be
measured, L is defined as the length of interaction between infrared
light and gas from the infrared light source to the detector, and K is
the absorption coefficient.

The CO2 gas absorption coefficient at standard atmospheric
pressure can be expressed by the following equation:

K λ( ) � VCO2S T( ) ⊗ f L λ( ) ⊗ f G λ( ) (2)

In Eq. 2, VCO2 = 2.706 × 1,019 cm−3, S(T) is the molecular line
intensity of gas, fL(λ) is the Lorentz line, fG(λ) is the Doppler
broadening, where both spectral line intensity and Doppler
broadening are affected by temperature.

When the temperature rises, the activity of CO2 gas molecules
increases, which leads to an increase in its ability to absorb infrared
light, that is, the absorption coefficient becomes larger (Zhu et al.,
2017). Therefore, an increase in temperature leads to a decrease in
the light intensity received by the sensor’s measurement channel.
This weakened light intensity can cause the sensor to overestimate
the concentration of CO2 gas, which can lead to large
measurement results.

2.2 Effect of temperature on infrared
light source

Infrared light source is one of the core components of non-
dispersive infrared CO2 gas sensor, and its performance can also
affect the detection accuracy of the sensor. Considering the light
source as an approximate blackbody, according to Planck’s law, the
emissivity of the light source is a function of wavelength and
temperature, and its relationship can be described by the
following equation:

M λ,T( ) � 2πhc2

λ5
× e

hc
λkT − 1( )−1 (3)

In Eq. 3, λ is the wavelength; T is the temperature; h is the
Planck constant; C is the speed of light; k is the
Boltzmann constant.
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According to the Stefan-Boltzmann law, the relationship
between the total emission of a light source and the temperature
is as follows:

M T( ) � ∫+∞

−∞
M λ,T( )dλ � 2π5k4

15c2h3
� σT4 (4)

In the formula, σ is the Stefan-Boltzmann constant.
According to Formulas 3, 4, temperature will affect the
peak wavelength and total irradiance of the light source.
When the temperature rises, the peak wavelength will move
towards the short wavelength, and the total irradiance
will increase.

2.3 Effect of temperature on filter

The central wavelength of the filter will shift as the
temperature changes. The temperature change will make
the filter material expand or contract, resulting in the filter
center wavelength offset, which affects its selective
performance and thus triggers an error in the detector’s
received signal.

2.4 Effect of temperature on electronic
components

The change of temperature will cause the temperature drift
of electronic components, which will change the various
parameters of electronic components (especially
semiconductor components) and bring noise, thus affecting
the measurement accuracy.

3 Temperature compensation model
based on WOA-BP algorithm

3.1 BP neural network

BP neural network is composed of input layer, hidden layer and
output layer, and each layer consists of multiple neuron nodes (Xiao
et al., 2022). The principle is: after the sample data input, the weight
connection and activation function between the layers are calculated
to get the output results; then according to the error between the
actual output value and the theoretical value, the weights and
thresholds are adjusted by reverse calculation to gradually reduce
the error and improve the fitting ability of the network until the
predetermined stopping condition is reached. The topology of the
BP neural network is shown in Figure 1.

BP neural network has the advantages of solving nonlinear
problems and strong adaptability. However, its performance and
stability are affected by the initial weight setting, there is a risk of
falling into local optimal solutions, and its convergence speed is slow,
making it unsuitable for scenarios that require fast feedback. These
issues are difficulties that need to be solved in the current research.

3.2 WOA algorithm

The WOA algorithm is a new optimization algorithm based
on the migration and hunting behaviors of whales in nature,
which constructs mathematical models by simulating the whales’
behaviors such as searching, rounding up prey and feeding with
bubble nets.

The main mathematical model of the algorithm is as follows:

X t + 1( ) � Xb t( ) − A · D p< 0.5
D′ebl cos 2πt( ) + Xb t( ) p> 0.5{ (5)

FIGURE 1
BP neural network topology diagram.
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In Eq. 5, D′ � |Xb(t) − X(t)|, D � |C · Xb(t) − X(t)|,
A � 2a · r − a, C � 2 · r, a � (2 − 2t)/T, t is the number of
iterations, X (t) represents the current whale position, Xb (t) is the
position of the individual optimal solution, C is the coefficient, D is the
distance when surrounding, r is a random number between 0 and 1, the
parameter a decreases linearly from 2 to 0 throughout the iteration, T is
the total number of iterations, b is defined as a constant for the shape of
the spiral,D′ denotes the distance between the current whale individual
and the optimal solution at this point in time, and l is a uniformly
distributed random number with a value range of [−1, 1].

The first and second parts of the model simulate the
encircling predation method and the spiral bubble net
predation method, respectively. In the process of approaching
the prey, the whale optimization algorithm randomly selects one

of the above two predation behaviors based on the probability p
and the probability of selecting each behavior is 50%.

During the whales’ food search phase, the system randomly
selects an individual whale and updates the positions of other
whales. This updating mechanism increases the randomness of
the exploration process and also strengthens the search ability of
the global optimal solution of the WOA algorithm.

3.3 Construction of WOA-BP temperature
compensation model

Aiming at the problem that a single BP neural network is
sensitive to the setting of initial weights and thresholds, and

FIGURE 2
WOA-BP temperature compensation model construction process.
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easy to fall into the local optimal solution, which leads to low
accuracy, this paper proposes an optimization model combining
WOA algorithm and BP neural network for temperature
compensation of non-dispersive infrared CO2 sensors. This
method can reduce the impact of initial weights and
thresholds on the performance of BP neural networks, thus
improving the prediction accuracy and stability of BP neural
networks. The specific flow of WOA optimized BP neural
network to establish the temperature compensation model is
shown in Figure 2.

4 Experiment and analysis of
temperature compensation model for
non-dispersive infrared CO2 gas sensor

4.1 Experimental device

The self-developed non-dispersive infrared CO2 gas
sensor was chosen as the object of the experiment. The
sensor chooses STM32 as the microprocessor, the infrared
light source uses EMIRS 200 and the detector chooses
HTS-E21-F3.91/F4.26 thermopile infrared detector. The
structure of the experimental device is shown in
Figure 3.

As shown in Figure 3, the infrared light is absorbed by a
certain concentration of CO2 gas and transmitted to the
detector, and the detector will output the corresponding
electrical signal. Since the signal is very weak, it needs to be
processed by the weak signal circuit to meet the requirements.
Then, the signal is input to the microprocessor after A/D
conversion circuit, at the same time, the temperature sensor
also needs to collect the signal and transmit to the MCU.
Finally, a more accurate CO2 concentration can be obtained
after the received CO2 concentration and temperature are
passed through the WOA-BP temperature compensation
model.

4.2 Sample data collection and processing

The measured concentration Ct is obtained by passing CO2

gas with a standard concentration of C into the gas sensor, and
the temperature measurement value is T. Ct and T are used as
inputs to the WOA-BP model, and the corrected gas

FIGURE 3
Device structure.

FIGURE 4
Principle of temperature compensation.

TABLE 1 Original sample data.

C/ppm Ct/ppm

5°C 15°C 25°C 35°C 45°C

100 48.12 62.25 76.39 104.66 147.07

300 175.34 260.16 231.88 415.65 486.33

500 302.56 415.65 585.28 641.82 811.46

700 415.65 599.41 698.31 825.59 1,065.9

900 514.6 829.47 910.41 995.22 1,363.68

1,100 627.69 996.95 1,148.99 1,348.62 1,645.47

1,500 1,009.36 1,334.39 1,532.39 1,744.43 2,111.96

2,000 1,306.21 1,772.69 1,984.74 2,239.18 2,705.67
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concentration C is obtained after model temperature
compensation. The principle of gas sensor temperature
compensation is shown in Figure 4.

Five temperature points within the range of [5, 45]°C were
selected for the experiment, and the experiment was conducted in
a high-low temperature and humidity chamber. The atmospheric
pressure was set as standard atmospheric pressure and the
humidity was constant at 60%. The temperature of the
experiment chamber was adjusted to test points at 5, 15, 25,
35°C, and 45°C successively. At these 5 temperature test points,
the non-dispersive infrared CO2 gas sensor is passed into the
concentration of 100, 300, 500, 700, 900, 1,100, 1,500, and
2,000 ppm CO2 gas configured by the gas diluter, and 40 sets
of sample data will be obtained, of which 30 sets of data are used
as the training set and the rest as the test set. The experimental
data are shown in Table 1. In order to speed up the convergence
of the model and avoid local optimal solutions, mapminmax
method is first used to normalize the sample data in the range
[−1, 1]. The formula is as follows:

y � 2 x − xmin( )
xmax − xmin

− 1 (6)

In Eq. 6, x is the sample data or temperature, xmim is the sample
data and temperature minimum, and xmax is the sample data and
temperature maximum.

4.3 Parameter setting of WOA-BP
temperature compensation model

The maximum number of training times of the BP neural
network is set to be 1,000, and the expected minimum error is
0.000001; the network adopts a 3-layer structure, and due to the
fact that the input values are gas sensor concentration
measurement values and temperature values, and the output

values are concentration prediction values, the number of
nodes in the input and output layers is 2 and 1, respectively.
Usually, the number of nodes in the hidden layer is not unique,
and the range of the number of nodes can be determined by the
Eq. 7, and the optimal number of nodes can be selected by
training the mean square error.

l � �����
m + n

√ + α (7)

In Eq. 7, l is the number of nodes, m is the number of nodes
in the input layer, n is the number of nodes in the output layer, α
is the coefficient, which can be 1 to 10. Through the
formula calculation, the value range of l is 2–11, and the
following results are obtained by inputting it into the model
calculation:

As shown in Figure 5, the minimum mean square error is
0.00143, and the corresponding number of hidden layer nodes
is 9. Therefore, 9 is chosen as the number of hidden layer nodes in
this experiment. In addition to the above settings, the parameter
settings of WOA algorithm in this experiment are shown
in Table 2.

4.4 Compensation results and error analysis

After setting the parameters of the WOA-BP model, the data
were brought into the model for training, while the PSO-BP
algorithm and a single BP neural network were introduced for
comparative analysis in order to verify the superiority of the
WOA-BP algorithm. Figures 5, 6; Table 3 show the results
of temperature compensation after training of these
three models.

According to the analysis of Figure 6, the temperature
compensation effect of WOA-BP model is the best, and the
compensation value basically coincides with the standard value.
Compared with the single BP neural network, the accuracy has been
greatly improved, and it is better than the PSO-BP temperature
compensation model.

As can be seen from Table 3; Figure 7, the traditional BP neural
network has the worst compensation effect, the maximum error
reaches 717.42 ppm, the minimum error also reaches 126.44 ppm,
and the average error is the largest; the PSO-BP model improves
the accuracy compared to the BP model, but the error is still larger,
in the range of ±494 ppm; compared to the BP model and PSO-BP
model, the WOA-BP model has the smallest error, which is only in
the range of 30 ppm. Compared with the BP model and PSO-BP
model, the WOA-BP model has the smallest error, only in the
range of 30 ppm, which is much smaller than the compensation
error of the previous two models, and the error fluctuation is
the smallest.

FIGURE 5
Training error of models with different numbers of hidden
layer nodes.

TABLE 2 WOA algorithm parameters.

Parameter Value

Minimum error of training target 0.0001

Maximum evolution algebra 50

Initial population size 30
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Therefore, the above results show that the accuracy and stability
of the WOA-BP temperature compensation model are much higher
than the traditional BP neural network and PSO-BP algorithm,
which greatly reduces the influence of temperature on the non-
dispersive infrared CO2 gas sensor and improves the performance of
the sensor.

5 Conclusion

This paper analyzes the reasons why the non-dispersive
infrared CO2 gas sensor is affected by temperature and

proposes a temperature compensation method based on the
optimization of BP neural network by WOA algorithm, and
verifies that the proposed algorithm has higher
compensation accuracy by comparing it with the traditional
BP neural network and PSO-BP algorithm. The
experimental results show that after the temperature
compensation by WOA-BP algorithm, the measurement error
of the sensor is within 30 ppm, which effectively reduces the
influence of the sensor by temperature and improves the
sensor accuracy. This study provides a new method for the
temperature compensation of non-dispersive infrared CO2

gas sensor.

TABLE 3 45°C WOA-BP model and PSO-BP, BP model temperature compensation results.

Sample
number

Standard
value/ppm

WOA-BP PSO-BP BP

Compensation
value/ppm

Erro/
ppm

Compensation
value/ppm

Erro/
ppm

Compensation
value/ppm

Erro/
ppm

1 100 113.90 13.90 −393.86 −493.86 −175.56 −275.56

2 300 318.83 18.83 −6.20 −306.20 −114.28 −414.28

3 500 522.53 22.53 442.51 57.49 116.71 −383.29

4 700 687.41 12.59 794.62 94.62 566.03 −133.97

5 900 894.79 5.21 1,138.71 238.71 1,204.50 304.5

6 1,100 1,116.26 6.26 1,365.45 265.45 1,461.47 361.47

7 1,500 1,527.55 27.55 1,598.56 98.56 1,626.44 126.44

8 2,000 1,988.94 11.06 1,907.14 −92.86 2,717.42 717.42

FIGURE 6
Comparison of temperature compensation values and standard values for three models.
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