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Currently, most of the wells in X Oilfield are self-flowing wells. In order to adjust
the production system of oil wells in time according to the production
requirements of oilfields, it is necessary to predict the ceasing–flowing time.
Therefore, how to accurately predict the ceasing–flowing time is the main
problem faced by the self-flowing well. As the conventional prediction
methods only consider the influence of a single variable, the prediction results
are not ideal. Combining the production prediction based on the long short-term
memory (LSTM) neural network and the inflow and outflow dynamic curves, this
study proposes a comprehensive method for predicting the ceasing–flowing
time of a flowing well by considering multiple factors. Using the minimum
wellhead pressure prediction method, the changes in bottom hole flowing
pressure and reservoir pressure are also considered. The practical application
results in X Oilfield show that the calculated and predicted results are highly
consistent with the actual production data, verifying the reliability of this method.
This study can provide a reference for the prediction of oil well ceasing–flowing
in other oilfields.
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1 Introduction

The bottom hole flowing pressure and reservoir pressure are the basis for analyzing the
production performance of the oil wells and are also important parameters that affect the
production capacity and adjustment scheme of the oilfield. The determination of the
bottom hole flowing pressure and reservoir pressure is a prerequisite for the stable and high
production of the oil well. Currently, the main ways to obtain the bottom hole flowing
pressure are instrument measurement and calculation methods. Ye et al. studied the
relationship between fluid density and pressure drop gradient under different flow
conditions based on the liquid level folding algorithm and applied the calculus method
to calculate the bottom hole flowing pressure (Ye et al., 2017).

Due to the significant impact of factors such as pipeline size and fluid properties on
pressure decrease, it is difficult to establish a unified model that comprehensively considers
various flow conditions to calculate the wellbore pressure gradient. The existing models are
mainly divided into two categories, namely, empirical models and mechanism models.
Duns and Ros, Hagedorn and Brown, Orkiszewski, Beggs, and Brill, and Mukherjee
and Brill are empirical models, while Aziz, Ansari, and Hasan are mechanism models
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(Duns and Ros, 1963; Brill et al., 1966; Orkiszewski, 1967; Aziz et al.,
1972; Beggs and Brill, 1973; Mukherjee and Brill, 1983; Hasan and
Kabir, 1988; Ansari et al., 1994). Through comprehensive research
and comparisons with the previously mentioned methods, the Beggs
and Brill method is widely applicable to vertical, inclined, and
horizontal wells. In addition, the theory of the Beggs and Brill
method is mature and convenient for programming and debugging.
Therefore, in this study, the Beggs and Brill model was selected to fit
the pressure and temperature of the wellbore profile and then
combined with the Bayesian automatic algorithm to calculate the
bottom hole flowing pressure.

Currently, scholars mainly use the following methods to
calculate reservoir pressure: 1) directly obtaining reservoir
pressure through pressure recovery testing and well shut-in
pressure measurement, but the pressure recovery time is long,
making it difficult to test each well (Chen et al., 2017); 2) the
wellhead pressure reduction algorithm, but the establishment of
empirical formulas requires a large amount of testing data (Zhang
et al., 2021); 3) the theoretical formula method, which uses the
production capacity equation, requires the production capacity
equation to be accurate and the pressure and production at the
wellhead to be relatively stable (Yang and Cun, 2009); and 4) the
material balance method, which was chosen in this study to calculate
reservoir pressure as it can accurately calculate reservoir pressure
and is not limited by factors such as data completeness and
applicability (Wu et al., 2022).

Considering the time characteristics of oil well production data,
it is necessary to use a time-series model for predicting production
and pressure. Currently, time-series models have made significant
progress in the field of artificial intelligence and are successfully
applied in the dynamic prediction of oil and gas well production
(Frausto-Solís et al., 2015). These prediction models improve
universality as they only consider historical data. This study
selects a deep learning algorithm suitable for time-series analysis
based on the decline curve of oil well production.

Because the BP neural network shows a large deviation in
prediction results, scholars put forward the concept of a recurrent
neural network (RNN) to try to enhance the grasp of the timing of
information (David et al., 1986; Elman, 1990). However, the RNN is
difficult to be used for practical operations because the system will be
unstable with time. Therefore, Hochreiter and Schmidhuber proposed
the long short-term memory (LSTM) neural network method, which is

a variant of the RNN (Hochreiter and Schmidhuber, 1997). To solve the
problem of the RNN model, researchers introduced unit states and
three control gates. The main goal of LSTM is to address long-term
dependencies between data and iteratively transmit the impact between
each level of data. Unit states were used to determine information
retention between different time steps, and control gates were set to
adjust the information transfer function between different positions
(Xue et al., 2023). The modified neural network structure is shown
in Figure 1.

There is a phenomenon of production decrease in actual oil well
production, but traditional neural network methods only train the
original dataset for calculation and do not consider this factor.
Therefore, in the process of yield prediction, it is necessary to
introduce a suitable prediction model and combine it with neural
network methods to improve the training performance of the neural
network. In recent years, scholars have proposed many prediction
models for production prediction. The decline curves analysis (DCA)
model has the advantages of simplicity and efficiency and is widely used
in the prediction of oil and natural gas production. Song et al. proposed
amodel based on the LSTMneural network to address the limitations of
traditional methods in time-series production rate prediction, taking
production constraints into account (Song et al., 2020). Li et al.
developed a deep learning model based on the LSTM neural
network model that can consider the influence of manual
operations. This model can predict the ceasing–flowing time, choke
size, and oil well production rate (Li et al., 2022).

The oil wells in X Oilfield are mostly self-flowing wells, and to
adjust production systems on time, accurate prediction of
ceasing–flowing of oil wells is necessary. The conventional
methods for predicting the ceasing–flowing time mainly include
1) calculating the ceasing–flowing pressure through a formula and
predicting future flow pressure changes. The corresponding time
when the flow pressure reaches the ceasing–flowing pressure is the
ceasing–flowing time (Yang et al., 2014); 2) determining the
minimum wellhead pressure and regressing the trend of oil
pressure changes; 3) calculating the minimum bottom hole
flowing pressure and predicting changes in bottom hole flowing
pressure; and 4) calculating the minimum reservoir pressure and
regressing the trend of reservoir pressure changes (Wang et al.,
2014). However, the aforementioned methods only consider a single
factor when predicting the ceasing–flowing time, and the accuracy of
the prediction results is poor. Therefore, this study proposed a

FIGURE 1
Long short-term memory (LSTM) neural network structure (Xue et al., 2023).
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comprehensive method that considers multiple factors to predict the
ceasing–flowing time of a flowing well, taking into account both
changes in flow pressure and reservoir pressure based on the
minimum wellhead pressure prediction method. First, a suitable
multiphase pipe flow model was selected based on data such as fluid

pressure testing and production performance and fitted with the
flow pressure and reservoir pressure using the Bayesian algorithm
and material balance method. Furthermore, the LSTM neural
network algorithm driven by the DCA model was used to predict
the production, pressure, and oil-recovery index. Then, based on the

FIGURE 2
Fitting results of pressure profiles of A-well.

FIGURE 3
Process of automatic bottom hole flowing pressure fitting.

TABLE 1 Change ranges of uncertainty coefficients.

Uncertain coefficient Range of change multiple Uncertain coefficient Range of change multiple

Gravity (1.10:1.20) Water cut (0.92:1.31)

Oil relative density (0.81:1.06) Water relative density (0.88:1.12)

Gas relative density (0.93:1.30) Saturation pressure 1

Temperature gradient 1 Tube inner diameter (0.8:1)
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predicted production, the predicted inflow performance relationship
(IPR) and wellhead performance relationship (WPR) curves were
drawn to determine the minimum wellhead pressure for the well to
ceasing–flowing. Finally, the warning level for each well can be
determined by the difference between the current and minimum
wellhead pressure. This method fully considers the current
development status of X Oilfield, and the prediction results were
relatively accurate, which can provide a technical reference for the
analysis and research of stopping flow prediction in flowing wells.

2 Calculation of bottom hole flowing
pressure and reservoir pressure

2.1 Bottomhole flowing pressure calculation

As shown in Figure 2, to further verify the applicability of the
Beggs and Brill method in X Oilfield, the fitting results of
different bottom hole flowing pressures and test pressure
profiles for A-well were compared. The comparison results

FIGURE 4
Automatic fitting result of uncertain coefficients.

FIGURE 5
Bottom hole flowing pressure and reservoir pressure calculation results of A-well.
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show that the Beggs and Brill method has extremely high
fitting accuracy.

Based on the Beggs and Brill method, this study used the Python
platform for programming the calculation of bottom hole flowing
pressure and developed modules for basic parameters, physical
parameter calculation, temperature calculation, pressure loss
calculation, and pressure and temperature gradient calculation.
Moreover, to improve the fitting accuracy of the test profile data
and reduce human interference, the Bayesian optimization
algorithm was further combined to realize the automatic fitting
and optimization of the uncertain sequence array.

Based on the bottom hole flowing pressure obtained by the
Beggs and Brill model, the automatic bottom hole flowing
pressure fitting was carried out in combination with the
Bayesian optimization algorithm. The process of automatic
bottom hole flowing pressure fitting is shown in Figure 3.
First, the unit is normalized based on pressure, density, and
temperature profile data, and the search space is defined based
on basic parameters such as GOR. Then, when the iteration
times (N) is less than the maximum limit, the profile and
normalized mean squared error (MSE) loss were calculated
compared to the test data, which is a multi-target
optimization process. Next, acquisition function (AF) was
updated, and a new hyperparameter was acquired. Finally, the
aforementioned process was repeated until the loss converges.

Using the Bayesian optimization algorithm, the uncertainty
parameters were taken as optimization variables, and the average
error between the calculated pressure profile and measured
pressure profile and between the calculated temperature and
measured temperature of the reservoir was minimized as an
optimization objective. Test data were added to iterative

optimization to complete profile fitting, and the average
fitting error was less than 5%. The average fitting time was
5–7 min, which greatly improves the efficiency and accuracy of
pressure profile fitting. As shown in Table 1, the range of
variation was set for each parameter, and the change in each
parameter with production time is shown in Figure 4. Most
parameters change with the change in bottom hole flowing
pressure, but the amplitude of the change in each parameter
was significantly different. The changes in water cut and gas
relative density were significant, while saturation pressure and
temperature gradient remained constant.

2.2 Reservoir pressure calculation

Based on the accurate acquisition of bottom hole flowing
pressure data, further research and calculation of producer
inflow dynamics are necessary to accurately assess whether
the producers are naturally flowing. To obtain the inflow
performance characteristics of producers at a certain time, the
first step is to predict the reservoir pressure at that time. In this
study, the reservoir pressure was calculated based on the
material balance method, i.e., the oil well and its drainage
area are regarded as closed reservoir units, and the oil–water
two-phase and oil–gas–water three-phase reservoir pressure
prediction models were established. Combined with the least
square method and Newton’s iterative method, the reservoir
pressure at different times was calculated according to the
relationship between cumulative production and reservoir
pressure decrease.

The principle of material balance is as follows (Li, 2011):

FIGURE 6
LSTM neural network method combined with the DCA model (Xue et al., 2023).
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Np Bo + Rp − Rs( )Bg[ ] +WpBw −WiBw − GiBg �

N Bo − Boi( ) + Rsi − Rs( )Bg + 1 +m( )Boi
Cf + SwcCw( )
1 − Swc( ) ΔP[

+mBoi
Bg

Bgi
− 1( )] +We,

where Bo + (Rp − Rs)Bg is oil and dissolved gas production, WpBw

is water production, WiBw is water injection, GiBg is gas
injection, (Bo − Boi) + (Rsi − Rs)Bg is oil and dissolved gas
expansion, (1 +m)Boi

(Cf+SwcCw)
(1−Swc) ΔP is the compression of pore

space and connate water expansion, mBoi
Bg

Bgi
− 1( ) is gas cap

expansion, and We is water influx.
Using the aforementioned method, this study compared the

calculated reservoir pressure and measured reservoir pressure of

each well in different layers, and the results show that the
aforementioned method can be used to calculate reservoir
pressure with certain accuracy.

2.3 Bottom hole flowing pressure and
reservoir pressure calculation result

The aforementioned method was used to calculate the daily
bottom hole flowing pressure and reservoir pressure of each well.
The calculated pressure was fitted with the measured pressure.
According to the fitting results of reservoir pressure and bottom
hole flowing pressure, the time-series curves of reservoir pressure
and bottom hole flowing pressure in different production dates were
drawn, as shown in Figure 5. In general, the fitting results were good,
and the time sequence bottom hole flowing pressure and reservoir
pressure calculated by each well have a high accuracy. The
aforementioned theory and method can be used to calculate the
bottom hole flowing pressure and reservoir pressure.

3 Production prediction based on the
LSTM neural network and DCA model

Based on the historical production data such as oil production
rate, gas production rate, and wellhead pressure, we used the LSTM
neural network model constrained by the DCA production decline
model to predict the production and pressure. The dynamic curves
of inflow and outflow were drawn, and then the curves of the
coordination point change were obtained.

3.1 LSTM neural network

Each cell state is composed of three multiplicative gating
connections, namely, input gate (it), forget gate (ft), and output gate
(ot). The function of each gate can be interpreted as write, reset, and read
operations, concerning the internal cell state. The gates in amemory cell
facilitate keeping and accessing the internal cell states over long periods.
The LSTM output would depend on all previous inputs. Previous
information is neither completely discarded nor completely carried over
to the current state. Instead, the influence of the previous information
on the current state is carefully controlled through the gate signals.

The forget gate ft at time t is calculated as follows (Xue
et al., 2023):

ft � σ Wfxt + Ufht−1 + bf( ),
where σ represents the sigmoid function;Wf and Uf are the weight
parameters; bf represents the bias of the forget gate; and ht−1 is the
output information of the hidden layer.

The input gate it at time t can be expressed as follows:

it � σ Wixt + Uiht−1 + bi( ),
where Wi and Ui are the weight parameters and bi represents the
bias of the input gate. It outputs a value to send unit status
information. Simultaneously, it can be determined which
information from the previous unit status should be retained
or discarded.

FIGURE 7
Dynamic indicator prediction results of A-well: (A) predicted
results of the oil and gas production rate; (B) predicted results of
wellhead pressure; and (C) time-series curves of IPR and WPR.
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The candidate unit status Ct at time t can be calculated
as follows:

Ct � tanh Wcxt + Ucht−1 + bc( ),
where tanh represents the hyperbolic tangent activation function;
Wc and Uc are the weight parameters of the LSTM cell; and bc
represents the bias of the input gate.

The output gate ot at time t is calculated as follows:

ot � σ Woxt + Uoht−1 + bo( ),
whereWo and Uo are the weight parameters and bo is the bias of the
output gate.

The cell state can be expressed as follows:

ht � ot tanh Ct( ).

The aforementioned equations summarize formulas for the
LSTM network forward pass. In an LSTM cell, activation
functions are point-wise nonlinear functions that are
typically logistic sigmoids for the gates and hyperbolic
tangent (tanh) for input to and output from a node. In the
full-precision LSTM, the lengths of all vectors are considered to
be 32 bits.

3.2 Production forecasting jointly driven by
the DCA model and data

The decline curve model can provide theoretical and empirical
validation for the study of dynamic characteristics of oil production,
and this validation information can serve as a reasonable constraint
in the calculation process of neural network models (Xue et al.,
2023). In this way, based on the actual historical production
performance data of oil wells in the oilfield, the production
performance data are organized into a time-series dataset. The

LSTM neural network method driven by the DCA model is used
to find and extract the internal relationship between the segments of
the dataset and then predict the future production characteristics of
the oil wells. A neural network model is established and trained, as
shown in Figure 6. By combining the DCA model, the neural
network training process can converge to its optimal state more
quickly and accurately, improving the accuracy of its
prediction results.

The DCA empirical model only needs to calibrate parameters
based on the production data. Before combining the DCA model
with the LSTM neural network model, it is necessary to select a
suitable DCAmodel. Due to the complexity of fluid flow patterns,
the ARPS model is not suitable for unconventional reservoirs
(Arps, 1945; Nelson, 2009). For this reason, later scholars
proposed models such as the stretched exponential decline
model (SEPD) and the Duong model (Valkó and Lee, 2010;
Duong, 2011). The calculation formula for the DCA model is
as follows:

The ARPS model:

q t( ) � qie
−Dit,

q t( ) � qi 1 + bDit( )−1/b,
q t( ) � qi 1 +Dit( )−1.

The stretched exponential decline model:

q � qi exp − t/τ( )nSEPD[ ].

The Duong model:

q � qit
−mD exp aD t1−mD − 1( )/ 1 −mD( )[ ].

These five models are fitted to the training and testing datasets
and are based on the fitting performance of these five DCA models.
Then, the optimal model is selected and incorporated as a driving
condition into the neural network.

FIGURE 8
Ceasing–flowing warning using the minimum wellhead pressure method.
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3.3 Production and pressure
prediction result

We predicted the future oil production index by fitting the recent oil
production index changes. Based on the LSTM neural network machine
learning model and DCAmodel, the oil production rate, gas production

rate, and wellhead pressure were predicted. The production prediction
results are shown in Figure 7A, and the wellhead pressure prediction
result is shown in Figure 7B. Finally, the changes in coordination points
were achieved, as shown in Figure 7C. It can be seen that the LSTM
machine learning prediction results based on the production decline
model have a good fitting effect with the historical production data.

FIGURE 9
Production performance prediction results of B-well based on theminimumwellhead pressurewarningmethod: (A) production rate and cumulative
production change; (B) time-series IPR curves (the production rate value at the red dot in the figure represents the production rate corresponding to the
production days); and (C) wellhead pressure and triggering condition.
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According to the predicted IPR and WPR curves, the minimum
wellhead pressure can be determined when the oil well is
ceasing–flowing. Then, the subsequent method was used to predict
the ceasing–flowing time of oil wells.

4 Minimum wellhead pressure
ceasing–flowing warning model based
on nodal analysis

X Oilfield is in the early stages of development, and most of the oil
wells are produced by self-flowing. As production progresses, the
reservoir pressure continues to decrease, and some oil wells gradually
produce water. More and more oil wells are facing ceasing–flowing. To
timely grasp the production situation of oil wells and adjust production
systems, it is necessary to accurately predict the ceasing–flowing of oil
wells. In this study, theminimumwellhead pressuremethodwas selected
for predicting the ceasing–flowing of oil wells.

As shown in Figure 8, the main steps of the minimum wellhead
pressure ceasing–flowing warning are summarized as follows (Li, 2009):
first, the future production rate and cumulative production are obtained
by the LSTM network method. Then, by combining the reservoir
pressure prediction method given in Section 2.2, the bottom hole
pressure at that production rate can be obtained by drawing IPR
curves, and the corresponding wellhead pressure value can be
obtained by using the wellbore pressure calculation method. The
yellow lines in the figure are the wellhead pressure curves (WPR)
predicted by different production rates at a certain time in the future.
When the curve intersects with the green line of theminimumwellhead
pressure, it indicates that the oil well will not be able to self-flow after
this moment. Thus, the difference between the current wellhead
pressure and the minimum wellhead pressure can be used as a
judgment for a ceasing–flowing warning.

In addition, this project selected C-well as a representative well and
applied the minimum pressure warning method based on the LSTM
network method to carry out production performance prediction, as
shown in Figure 9. We obtained the daily and cumulative production
change curves given in Figure 9A for the next 1 year according to the
LSTM. In addition, the daily and cumulative production change curves
were combined with the material balance method to obtain the
corresponding time-series IPR curves in Figure 9B and the predicted
value of bottom hole flowing pressure and wellhead pressure in
Figure 9C for the next 1 year. When the downstream pressure of the
nozzle decreases to the minimum external pressure required for the
wellhead, the oil well stops flowing. According to the predicted IPR and
WPR curves, the minimum wellhead pressure of ceasing–flowing is
determined. Therefore, the triggering condition is set to whether the
wellhead pressure decreased to 300 psi.

5 Conclusion

1. The wellbore flow model based on the Beggs and Brill method
was established, and by defining the uncertain parameter group and
combining it with Bayesian automatic fitting, high-precision calculation
results of bottom hole flowing pressure were obtained. Based on the
principle of material balance, the reservoir pressure of each well was
fitted, and the fitting results demonstrate the rationality of this method.

2. Based on the inflow and outflow dynamic curves, a
comprehensive method for predicting the ceasing–flowing time of
oil wells is proposed, which considers multiple factors. Based on the
minimum wellhead pressure prediction method, the changes in flow
pressure and reservoir pressure are also considered. The results
provide a reference for predicting the ceasing–flowing time of self-
flowing wells in other similar reservoirs.

3. Based on the LSTM machine learning method and using
empirical production decline models for constraints, the
prediction results of daily oil production, water production,
and daily gas production in the next year were obtained. The
prediction results provide a basis for the selection of artificial
lifting time, ensuring the stable and efficient development of
X Oilfield.
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