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Reservoir numerical simulation is an important tool and method for the
reasonable and efficient development of shale reservoirs. Accurate description
of three-dimensional fractures in shale reservoir development is a necessary and
sufficient condition to improve the accuracy and robustness of shale reservoir
numerical simulation. This paper achieves precise characterization of complex
fracture shapes and oil, gas and water flow by establishing an embedded discrete
fracture model based on a non-structural network, which has advantages in the
fine characterization of complex morphological fractures in the reservoir and the
grid division of the reservoir. In the large matrix solution method, the Newton-
Raphsonmethod is used to linearize the nonlinear equations, the Jacobianmatrix
is constructed, the ILU method is used for preprocessing, the conjugate gradient
method is used to solve the linear equations, and the shale oil quasi-elasticity is
established A fully implicit solution method for mathematical models of energy
development.
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1 Introduction

China’s continental shale formations are rich in huge shale oil resource potential, with
diverse lithofacies, frequent phase changes, developed bedding fractures, and strong
heterogeneity. In view of the characteristics of shale oil reservoirs with low permeability
and low porosity, which are difficult to be exploited through conventional development
methods, hydraulic fracturing is usually used to reform the reservoir first and then develop
it. Therefore, for shale oil reservoirs, whether they are artificial fractures or natural fractures,
the development of fractures has become a key technical issue. Naturally, in recent years,
domestic and foreign scholars have focused their research on the laws and mechanisms of
crack development and expansion (Meng, 2024). Hou Bing et al. conducted an indoor true
triaxial indoor fracturing physical simulation experiment and used concrete to wrap a full-
diameter downhole core to test the initiation and vertical extension of hydraulic fractures in
a true triaxial environment, thereby explaining the Chang 7 shale of the Yanchang
Formation in the Ordos Basin. The vertical propagation mechanism of oil reservoir
fracturing cracks (Zou et al., 2022). Numerical simulation is an important tool for
predicting and evaluating shale reservoir development effects. Whether it can accurately
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describe the three-dimensional fracture diffusion model is the key to
the accuracy of the numerical simulation results of shale reservoirs.
Wang Yizhao et al. established a shale oil multi-layered pseudo-
three-dimensional fracture propagation model based on the finite
element method (Wang et al., 2021). Hou Bing et al. established a
three-dimensional discrete element model of dense-cut fracturing
fracture propagation and studied the competitive expansion rules of
multi-cluster fractures (Zhang et al., 2021). Zhu Haiyan et al.
established a three-dimensional seepage-stress-damage model for
the dynamic expansion of multiple fractures in horizontal wells
(Hou et al., 2022).

However, how to accurately characterize multi-scale fractures in
numerical simulations and improve the accuracy of numerical
simulations of shale reservoirs is still a problem that needs to be
solved. Existing shale oil and gas numerical simulation models
mainly include dual media, multiple discrete media, and
equivalent media. Among them, dual media is the most widely
used because of its balance between calculation accuracy and speed
(Chen et al., 2018).

Current numerical simulations of reservoirs generally require
the establishment of explicit fractures in the matrix grid system.
Structured grids and unstructured grids are the two most commonly
used grid types in reservoir numerical simulation. Because
describing complex fractures often requires meshing to describe
complex shapes and arbitrary connected areas, it is difficult for
structured grids to achieve a precise description of this problem.
Therefore, this article chooses to use unstructured grids for
processing. The modeling process needs to consider the
arrangement of fracture grids and matrix grids at the same time,
which cannot satisfy the simulation of complex structural and
morphological fractures. Triangular grids are conventionally used
to describe fracture grids because the fluid flow direction is not
perpendicular to the grid edges. When calculating parameters such
as conductivity and circulation, it is necessary to calculate the angle
between the flow direction and the grid edge lines to obtain the fluid
flow through the grid. actual volume. Therefore, it has certain
disadvantages compared with PEBI grid in terms of calculation
accuracy and efficiency. The orthogonality between the flow
direction of the PEBI grid and the grid lines determines that the
fluid is considered to flow along the connections between grid nodes
during the numerical simulation calculation process. On the other
hand, since the width of cracks is usually on the millimeter or
centimeter level, in order to explicitly characterize the crack
morphology, current simulation methods generally use the
method of overall grid densification or local grid densification to
transition from the large-scale grid of the matrix to The small-scale
grid of cracks has too many grids after densification. Many
simulations can only use the good symmetry of the radial grid to
reduce the number of grids to achieve effective simulations, and a
large number of minimization grids are generated during
calculations, resulting in poor calculation convergence (Mirzaei
and Cipolla, 2012; Zhao et al., 2018). Therefore, the current grid
characterization technology cannot meet the needs of large-scale
complex fractured shale reservoir simulation.

This paper uses an embedded discrete fracture model based on a
non-structural network to accurately represent complex fracture
shapes and gas and water flows. The PEBI non-structured grid with
good local orthogonality is used for fracture characterization. At the

same time, a PEBI non-structured grid adaptive local refinement
partitioning method is established, which is better adapted to the
fine characterization of complex-shaped fractures in the reservoir
and the reservoir grid. divide.

Because shale oil reservoir development is mostly based on
reservoir stimulation methods such as fracturing, the pressure
within the well control range will be slightly higher than the
formation pressure within a certain period of time. Therefore, it
is different from traditional elastic energy development, taking
into account factors such as starting pressure gradient and stress
sensitivity, a mathematical model for quasi-elastic energy shale
reservoir development was constructed. In terms of solution, the
Newton-Raphson method is used to linearize the nonlinear
equation, the Jacobian matrix is constructed, the ILU method
is used for preprocessing, the conjugate gradient method is used
for matrix solving, and a mathematical model of shale oil quasi-
elastic energy development is established. Fully implicit
solution method.

2 Complex fracturing modeling

2.1 Grid modeling

The PEBI grid is an unstructured local orthogonal grid
(Figure 1). It is more flexible than the structured grid and can
well simulate the boundaries of irregular geological bodies and
facilitate local refinement; at the same time, it satisfies the finite
difference method. Due to the requirement of grid orthogonality, the
final difference equation is similar to the Cartesian grid finite
difference method. During the calculation process, it is not
necessary to calculate the actual flux of the fluid through reduced
projection. Therefore, in the field of reservoir numerical simulation,
the PEBI grid and the radial grid form a hybrid grid, which can avoid
over-density of the grid and improve the stability and speed of
numerical calculations.

FIGURE 1
PEBI local orthogonal grid system schematic.
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PEBI meshing adopts the method of first laying out mesh nodes
and then dividing the mesh. Therefore, the quality of the point
distribution algorithm determines the quality of the meshing. This
further affects the stability and speed of simulation calculations.
When selecting grid nodes, this paper gives four limiting conditions
from points, lines, domains, and surfaces, so as to obtain reasonable
grid nodes. When distributing grid nodes in the simulation area, the
following restrictions must be met.

1. Restricted point: The given point must become a
PEBI grid node.

2. Limiting line: The grid must be distributed along the given
polyline, and grids crossing the limiting line are not allowed.

3. Limited domain: Grids cannot appear within the internal
limited domain, and grids cannot appear outside the
external limited domain.

4. Limited surface: A small surface of the grid block must be on a
given plane piece, and grids that span the limited surface are
not allowed.

Due to the complex changes in the positional relationship
between boundaries and wells, the correctness of the grid must
be ensured through the distribution of grid nodes. Use boundary,
well and other information to divide the reservoir into several sub-
areas, and then distribute grid nodes on the sub-areas so that the
distributed grid nodes meet the limiting conditions in the sub-areas
and different areas are independent of each other. Then these mesh
nodes are subjected to Delaunay triangulation and Vornoni
meshing, and finally the PEBI mesh is obtained after removing
the invalid meshes.

2.2 Fracturing representation model

Actual shale reservoirs are highly heterogeneous and multi-
scale, and fractures have significant multi-scale characteristics.
Current methods for characterizing and simulating fractures
mainly include grid refinement method, dual-pore and dual-

permeability characterization method, and discrete fracture
method. Among them, the grid densification method
characterizes cracks through local or global grid densification.
However, since the width of cracks is usually in the millimeter-
centimeter level, and the width of the matrix grid is often in the
meter level, the grid densification method is used to characterize the
cracks. Refinement of the matrix grid to the fracture scale will easily
lead to too many grids and excessive calculations. At the same time,
the grid densification method makes it difficult to accurately depict
complex fracture morphology.

The dual-pore dual-permeability model simplifies the fracture
topology information, assumes that there are uniformly distributed
fractures around the matrix unit, and represents the difference in
fracture properties (density, etc.) through the heterogeneous
conductivity of the fracture grid. The dual-pore dual-permeability
model is commonly used for flow simulation in reservoirs with a
large number of natural fractures. However, for reservoirs with
strong heterogeneity, complex fracture structures and poor
connectivity, the model accuracy is low.

The discrete fracture model is a model with fully explicit
representation of fractures, which can accurately represent the
behavior and influence of fractures. When dealing with complex
fracture seepage problems, the discrete model with explicit
representation of fractures is more suitable. Discrete fracture
network simulation can directly use the information of discrete
fractures to simulate, and can capture the topology of fractures in
fine detail. The discrete crack model can be further divided into a
representation method based on unstructured grids and an
embedded discrete crack representation method based on
structured grids (Figure 2). The calculation results of the
characterization method based on unstructured grids are more
accurate, but not The division of structural mesh is more
difficult. In the embedded discrete crack representation method,
the crack direction does not affect the grid modeling, but due to the
cutting between the cracks and the grid, its calculation accuracy is
relatively low.

In order to improve the simulation accuracy, this paper adopts a
discrete crack characterization method based on unstructured grids.

FIGURE 2
(A) Discrete crack characterization method (B) Embedded discrete crack characterization method.
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Currently commonly used unstructured grids include triangular
grids and PEBI grids. The PEBI unstructured grid has better local
orthogonality, so there is no need for flux projection when
calculating matrix-fracture and matrix-matrix mass exchange.
Compared with the simulation method based on triangular grids,
it is more robust and can achieve accurate characterization of
complex fracture shapes (Figure 3) and gas and water flows.
Therefore, this paper uses PEBI unstructured grids to carry out
subsequent simulation research.

For shale reservoirs, a large number of microseismic monitoring
results show that the fractures generated after hydraulic fracturing
are not simple long straight fractures, but complex fracture networks
with a large number of secondary fractures (Figure 4A). The PEBI

FIGURE 3
(A) Planar grid diagram based on discrete crack and PEBI
unstructured grid (B) 3D grid diagram based on discrete crack and
PEBI unstructured grid.

FIGURE 4
(A) Complex fractures after hydraulic fracturing (B) Modeling of
complex hydraulic fracture morphology.

FIGURE 5
Fracture grid division schematic.
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non-structural meshing method established in this article has the
ability of adaptive local refinement. As the complexity of the fracture
shape increases, the grid node selection will follow the fracture
shape, which can be better adapted to the fine characterization and
delineation of complex shape fractures in the reservoir. Reservoir
meshing (Figure 4B).

3 Cross fracturing modeling

The discrete fracture model requires the use of non-structural
grids to mesh the simulation space, which can meet the needs of
complex cross-crack modeling (Figure 5). However, when solving
the model, the volume of the fracture needs to be considered, and
then the fracture and the Mass and energy exchange between matrix
and cracks. The flow betweenmatrix andmatrix, between cracks and
matrix, and between cracks is assumed to satisfy Darcy’s seepage

law, so the seepage velocity can be calculated according to the
following formula Eq. (1):

νβ→ � −ρβkrβ
Aμβ

TΔ pβ − ρβgD( ) (1)

In the formula, ρβ is the density of β phase, kg/m3, krβ is the
relative permeability of β phase; A is the cross-sectional area, m2, μβ
is the viscosity of β phase, Pa.s, T is the conductivity, m3, pβ is the
pressure of β phase, Pa, g is the gravity acceleration, m/s2; D is
the depth, m.

The discrete fracture model contains three types of connection
relationships between matrix and matrix, between matrix and
cracks, and between cracks and cracks. Among them, the
connection between cracks and cracks is relatively complex,
which includes both as shown in Figure 6A The connection
between two cracks (Ω1 and Ω2). At the same time, when
multiple cracks intersect, they will also face the connection
between multiple cracks (Ω1, Ω2, Ω3) as shown in Figure 6B
There is a connection situation. Karimi-Fard et al. studied the
various connection relationships mentioned above. They
introduced an interface control volume (Ω0) at the fracture
junction for processing, eliminated Ω0, and then obtained n grid
units (matrix or cracks). The general formula for conductivity
during connection is Eq. (2):

T � αiαj
∑n
k�1

αk

αk � Akkk
Dk

→
nk

·→
f k

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(2)

In the formula, Ak is the area of the kth grid connection surface,
m2; kk is the permeability of the kth grid, m2; Dk is the distance
between the center point of the connection surface and the kth grid
center point, m; →

nk
is the unit normal vector of the kth grid

connection surface; →
f k

is the unit vector between the center
point of the connection surface and the kth grid center point.

The above formula shows that when two fractures intersect, the
calculation of the conductivity is only related to the attribute values
of the two connected fractures, but whenmultiple fractures intersect,
the conductivity between the two fractures is related to all connected
fractures. Related to the attribute value.

FIGURE 6
(A) Cross of two fracture (B) Multiple fracture intersection.

FIGURE 7
Schematic of finite volume discretization.
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4 Establishment of a fully implicit
solution method for the development
of shale oil quasi-elastic energy model

The fully implicit solution method for the mathematical model
of quasi-elastic energy development of shale oil was established by
linearizing nonlinear equations using the Newton-Raphson method,
constructing the Jacobian matrix, preprocessing with the ILU
method, and solving the matrix using the conjugate
gradient method.

(1) Mathematical Model Discretization

The equation of mass conservation for the three components of
oil, gas, and water can be written in the following form Eq. (3):

∂Mκ

∂t
+ ∇ · �F

κ � qκ (3)

The integral form of the above equations, derived using the finite
difference method, is as follows Eq. 4:

d

dt
∫
Vn

MκdV � ∫
Sn

FκndS + ∫
Vn

qκdV (4)

In the equation, M presents the momentum of the fluid at
temperature k per unit time; F represents the force at temperature
k; Vn represents the volume of any nth micro unit; dV represents
the micro unit within this unit; Sn represents the outer surface
area of any nth micro unit; dS represents the micro area on the
surface of this unit; n represents the unit normal vector on the
surface of the micro unit (if the external normal is taken as
negative) (Figure 7).

For the nth discrete unit, the volume average yields Eqs (5), (6):

∫
Vn

MκdV � Mκ
nVn (5)

FIGURE 9
Stress sensitivity coefficient fitting.

TABLE 1 Basic parameter of a western shale reservoir.

Parameter Unit Value

Porosity % 6

Permeability mD 0.07

Initial Pressure MPa 53

Viscosity cP 0.5

Bubble point pressure MPa 23.2

Dissolved gas-oil ratio m3/m3 120

Depth m 2800

Thickness m 60

Length m 1000

Stages Number 20

Fracture half-length m 160

Diversion capacity mD·m 90

TABLE 2 PVT number of a western shale reservoir.

Pb,MPa Rs Bo Bg Vo, cp Vg, cp

345 0 1.03 0.397 1.2 0.01

1380 71 1.036 0.098 1.187 0.012

2320 120 1.044 0.055 1.166 0.013

6900 448 1.069 0.019 1.113 0.015

13800 920 1.111 0.009 1.021 0.018

20700 1392 1.152 0.006 0.93 0.025

27600 1863 1.193 0.005 0.838 0.037

41400 2807 1.276 0.004 0.654 0.079

53000 3600 1.345 0.004 0.5 0.133

62100 4222 1.4 0.003 0.4 0.183

FIGURE 8
Measured core stress sensitivity.
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∫
Vn

qκdV � qκnVn (6)

In the equation, Mκ
n and qκn represents the average value of M

K

and qK in the nth unit.
For the nth unit adjacent to many other units 1,2,3, etc., let’s

assume any unit is denoted as m. The interface area
between the mth and nth units is denoted as Amn The
average value of Fk along the normal direction within the
interface between unit n and unit m is denoted as Fκ

nm. Then,
for the nth unit Eq. 7:

∫
Sn

Fκ · ndS � ∑
m

AnmF
κ
nm (7)

This leads to the spatial discretization form of the control
equation as follows Eq. (8):

dMκ
n

dt
� 1
Vn

∑
m

AnmF
κ
nm + qκn (8)

Based on first finite differencing, the discretization of time is
performed. To ensure stability, the fluxes and source-sink terms are
treated using a fully implicit method Eq. (9):

Mκ
n,t+Δt −Mκ

n,t

Δt � 1
Vn

∑
m

AnmF
κ
nm,t+Δt + qκn,t+Δt (9)

Defining the residual as the difference between the left and right
sides of the above equation, we have Eq. (10):

Rκ
n,t+Δt � Mκ

n,t+Δt −Mκ
n,t −

Δt
Vn

∑
m

AnmF
κ
nm,t+Δt − Δtqκn,t+Δt � 0 (10)

(2) Mathematical Model Solution

Unit i: Oil, gas, and water, with primary variables xi,1 (po), xi,2
(po), xi,3 (po). The nonlinear equations within unit i are Eq. (11):

fi,1 � Mo
i,t+Δt −Mo

i,t −
Δt
Vi

∑
n

AinF
o
in,t+Δt − Δtqoi,t+Δt � 0

fi,2 � Mg
i,t+Δt −Mg

i,t − Δt
Vi

∑
n

AinF
g
in,t+Δt − Δtqgi,t+Δt � 0

fi,3 � Mw
i,t+Δt −Mw

i,t −
Δt
Vi

∑
n

AinF
w
in,t+Δt − Δtqwi,t+Δt � 0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(11)

Unit j: Oil, gas, and water, with primary variables xj,1 (po), xj,2
(po), xj,3 (po). The nonlinear equations within unit j are Eq. (11):

FIGURE 10
(A) Reservoir pressure field before fracturing and braising well (B) Reservoir pressure field after fracturing and braising well.
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fj,1 � Mo
j,t+Δt −Mo

j,t −
Δt
Vj

∑
n

AjnF
o
jn,t+Δt − Δtqoj,t+Δt � 0

fj,2 � Mg
j,t+Δt −Mg

j,t − Δt
Vj

∑
n

AjnF
g
jn,t+Δt − Δtqgj,t+Δt � 0

fj,3 � Mw
j,t+Δt −Mw

j,t −
Δt
Vj

∑
n

AjnF
w
jn,t+Δt − Δtqwj,t+Δt � 0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(12)

fi,1 is not only a function of its own primary variables xi,1, xi, 2, xi,3, but
also a function of the primary variables xm,1, xm,2, xm,3 of adjacent
units m (1,2 . . . ), due to the fluid flow between adjacent units:

The forms of units i and j in the system of equations (3N
nonlinear equations) are Eqs (13), (14):

..

.

fi,1 � fi,1 . . . xi,1, xi,2, xi,3 . . .xj,1, xj,2, xj,3 . . .( )
fi,2 � fi,1 . . . xi,1, xi,2, xi,3 . . .xj,1, xj,2, xj,3 . . .( )
fi,3 � fi,3 . . . xi,1, xi,2, xi,3 . . .xj,1, xj,2, xj,3 . . .( )

..

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
(13)

..

.

fj,1 � fj,1 . . .xi,1, xi,2, xi,3 . . .xj,1, xj,2, xj,3 . . .( )
fj,2 � fj,1 . . .xi,1, xi,2, xi,3 . . .xj,1, xj,2, xj,3 . . .( )
fj,3 � fj,3 . . .xi,1, xi,2, xi,3 . . .xj,1, xj,2, xj,3 . . .( )

..

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
(14)

Using the Newton-Raphson iteration method to solve the
system of multivariable nonlinear equations, considering an
n-element nonlinear equation system Eq. (15):

f x( ) � 0 (15)

As:

f �
f1 x1, x2/xn( )
f2 x1, x2/xn( )

/
fn x1, x2/xn( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �

0
0
/
0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (16)

Expanding the Taylor series at x and taking the linear part Eq. (17):

f x + Δx( ) � f x( ) + J x( )Δx (17)
The Jacobian matrix, J(x) of size n×n, represents the first-order

partial derivatives of the multivariable function arranged in a certain
order, with elements given by:

Jij � ∂fi

∂xj
(18)

Analytical derivatives are generally difficult to obtain, so we use
finite difference method:

FIGURE 11
(A) Water saturation field before fracturing and braising well (B) Water saturation field after fracturing and braising well.
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∂fi

∂xj
≈
fi xj + 10−8xj( ) − fi xj( )

10−8xj
(19)

Assuming x is the current approximate solution and x+Δx is the
next approximate solution, such that f (x+Δx) = 0, we can derive the
equation for Δx from Eq. 19:

Δx � − J x( )[ ]−1f x( ) (20)

The calculation steps are as follows.

1. Decompose the matrix using the ILU method to obtain a
sparse matrix.

2. Use the CG (Conjugate Gradient) algorithm for
iterative solution.

3. Estimate an initial value x.
4. Let f (x+Δx) = 0 and enter Eq. 16 to calculate f(x).
5. Use Eq. 18 to calculate J(x).
6. Substitute steps 4 and 5 into Eq. 20 to calculate Δx.

7. Let xnew←xold+Δx, repeat steps 4-7 until the error is less than
the error precision, that is, |Δx |<ε.

The Jacobian matrices of the i and j unit nonlinear equation
systems are respectively Eqs (21), (22):
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(22)

5 Numerical simulation

This paper selects the basic parameters of a shale oil reservoir in
the western region and constructs a numerical simulation model of
the reservoir. The basic parameters of the reservoir are shown in
Table 1, and the PVT parameters are shown in Table 2. The shale oil
reservoir is developed using horizontal wells, with a horizontal
section length of 1000 m. The basic parameters for hydraulic
fracturing are a segment length of 20 m and a half-length of 160 m.

Based on the results of physical experiments, the stress
sensitivity coefficient of the shale oil reservoir was fitted using an
exponential form, resulting in the stress sensitivity coefficient of the
shale oil reservoir (Figures 8, 9).

Considering stress sensitivity and pressure ramp-up gradient,
the complex fracture description method and fully implicit solution
method proposed in this paper were utilized to study the production
behavior of the shale oil reservoir. The fracture modeling method
proposed in this paper accurately depicts the changes in reservoir
pressure field before and after fracturing (see Figure 10).

Simultaneously, the model validates the reservoir water
saturation field and production behavior before and after
fracturing. The results show that after the injection of fracturing
fluid, it mainly distributes around the fractures, with relatively low
water saturation between the fractures. After fracturing, the area of
water saturation increase expands, and the water saturation between
fractures rises, indicating that fracturing fluid can enter the matrix
under the action of pressure differential and imbibition and achieve
oil displacement (see Figure 11).

FIGURE 12
(A) Daily production curve (B) Cumulative yield curve.
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The production capacity variation curve of the shale oil
reservoir block selected as an example is shown in Figure 12.
Due to the backflow of fracturing fluid, the initial daily water
production is the highest during the early stage of production.
As the production time increases, the pressure gradually
decreases, leading to a continuous decrease in water
production. The oil production shows an increasing trend
followed by a decreasing trend, with a maximum oil
production of 92 m3/d. However, due to the gradual
depletion of pressure in the reservoir modification zone at
the end of the depressurization development phase, the oil
production decreases rapidly after reaching its peak. In the
later stage of development, the cumulative oil and water
production gradually increases at a slower rate.

6 Conclusion

This paper uses an embedded discrete fracture model based
on a non-structural network to accurately represent complex
fracture shapes and gas and water flows. The PEBI non-
structured grid with good local orthogonality is used for
fracture characterization. At the same time, a PEBI non-
structured grid adaptive local refinement partitioning method
is established, which is better adapted to the fine characterization
of complex-shaped fractures in the reservoir and the reservoir
grid. divide. In terms of solution, the Newton-Raphson method is
used to linearize the nonlinear equation, the Jacobian matrix is
constructed, the ILU method is used for preprocessing, the
conjugate gradient method is used for matrix solving, and a
mathematical model of shale oil quasi-elastic energy
development is established. Fully implicit solution method.

The example data of a shale reservoir in the west was selected for
modeling and numerical verification. The complex fracture
description method in this article can accurately and quickly
display the changes in the reservoir field data during the
numerical simulation operation. At the same time, the fully
implicit solution method of the mathematical model for quasi-
elastic energy development of shale oil reservoirs established in
this article accurately describes production changes during the

calculation process, providing strong technical support for the
preparation of actual oil field development plans.
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