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1 Introduction

The installation of solar photovoltaic (PV) systems has been stimulated by
governmental incentive mechanisms and the continual reduction in technology costs in
recent years (Chattopadhyay and Alpcan, 2015). However, with the substantial integration
of distributed PV systems at high penetration levels (Chen et al., 2019a), reverse power flow
in the distribution network has been observed, thus triggering issues such as voltage
violations and reverse overloads (Ismael et al., 2019; Wu et al., 2021). Therefore, the
evaluation of maximum PV hosting capacity of the distribution network can assist
distribution network planners in making decisions regarding PV generation (SUN et al.,
2021). The current evaluation method considering safe operation constraints is traditional
planning method of optimal power flow (Chen et al., 2016) and random scenario simulation
method (Ding and Mather, 2016) which can ensure the randomness of PV configuration.
To enhance the PV hosting capacity, strategies such as reactive power control (Astero and
Söder, 2018), voltage control using OLTC (Wang et al., 2016), energy storage technologies
(Hashemi and Østergaard, 2016), and network reconfiguration (Fu and Chiang, 2018) are
continuously proposed. With the increasing proliferation of distributed resources, a
promising approach to enhancement is also presented by power aggregation (Müller
et al., 2017; Wang and Wu, 2021) and proactive control of diversified flexibility
resources along feeders. Therefore, this research aims to provide insightful viewpoints
and discussions on the assessment method of the maximum PV hosting capacity of the
distribution network based on the aggregation of diversified flexibility resources.

The main contributions of this work can be twofold as listed: (1) A highly constrained
zonotope aggregation model for diversified flexibility resources is proposed, and a two-stage
adaptive robust framework is employed to innerly approximate the projection region of the
high-dimensional original space of diversified flexibility resources; (2)A PV hosting capacity
evaluation method with flexibility space boundaries is presented to accommodate
distributed PV by maximizing the net load during peak PV output on the load side.
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2 Highly constrained zonotope
aggregation model of diversified flexibil
ity resources

Due to diversified flexibility resources’ small scale, dispersion,
and large number, coordinating their control is highly challenging
(Chen and Li, 2021). Aggregating flexibility resources on feeders can
fully utilize the potential flexibility, reduce invocation difficulty, and
lower computational complexity. Specifically, the process of
flexibility aggregation can be described as the projection of the
power feasible domain of all flexibility resources onto the total power
feasible domain of feeders (Wei et al., 2015; Tan et al., 2019; Chen
and Li, 2021). Based on the acquisition of the power feasible
domain of all flexibility resources on feeders, upon observation of
the strong constraints imposed by the network of the distribution
network when the aggregation scale is large (Wang and Wu,
2021), the high-dimensional precise original space of flexibility
resources is constituted. The analytical form of computing its
dimensionality reduction projection onto the precise power
flexibility space of the feeder is highly challenging; thus, most
studies are focused on approximation methods (Chen and
Li, 2021).

Firstly, the power-adjustable range of individual flexibility
resources, including energy storage devices, electric vehicles, and
HVAC-like energy storage devices, is described through a virtual
energy storage model in this paper (Hughes et al., 2016). Given the
discrete scheduling decision cycle with N scheduling points and a
time interval of Δt and a quantity of M flexibility resources, we
consider Pflx

i,t and Eflx
i,t representing the power and energy of

individual flexibility resources within the scheduling interval
t ∈ [kΔt, (k + 1)Δt], where (k � 0, ..., N − 1), the corresponding
quantification model is established as follews:

Ωi �
Pflx,min
i,t ≤Pflx

i,t ≤P
flx,max
i,t

Eflx,min
i,t ≤Eflx

i,t ≤E
flx,max
i,t

Eflx
i,t+1 � Eflx

i,t + Pflx
i,tΔt

⎧⎪⎪⎨⎪⎪⎩
⎫⎪⎪⎬⎪⎪⎭ (1)

χ � Ω1,Ω2, ...,ΩM{ } (2)

Where i ∈ EV,ESS,HVAC{ }, Pflx,max
i,t and Pflx,min

i,t respectively
represent the upper and lower limits of the power of flexibility
resource i during time period t; and Eflx,min

i,t respectively represent
the upper and lower limits of the energy; Ωi denotes the operational
feasible region of flexibility resource i, χ denotes the operational
feasible region of the whole flexibility resource, which can be
described as the convex polytope characterized by the
aforementioned set of M constraints.

The linear method outlined in (Bernstein et al., 2018) is employed
to derive the network power flow model, whereby the magnitudes of
node voltage v, branch current i, and feeder line aggregated active
power pagg, can be expressed as the following linear expressions:

v � Dpflx + d (3)
i � Fpflx + f (4)

pagg � Hpflx + h (5)

Where D, d, F, f, H, h, J and j are the system parameters. It is
necessary to ensure that node voltages and branch currents are not
exceeded, as follows:

v ≤ v ≤ �v
i ≤ i≤�i

{ (6)

Where v and �v represent the upper and lower limits of node
voltages respectively, and�i and i denote the upper and lower limits of
branch currents respectively. The convex polytope formed by Eq. 2 is
intersected by Eq. 6’s constraints, resulting in irregular polytopes,
while the high-dimensional strong constraint primal space Z of
flexibility resources is formed by Eqs 1–6.

Then, the feeder power flexibility space P, representing the
dimensionality reduction projection of the high-dimensional
constrained space Z, is approximately obtained using the
zonotope U as shown in Figure 1A. For the N-dimensional
zonotope (Müller et al., 2017), its representation can be
established with the central point c, a specific generator matrix
G, and a scaling factor �β. Ng denotes the number of generator
vectors. The directions along which the zonotope can be extended
are described by the generator matrix G � [g1, ..., gNg]T ∈ RN×Ng .
The extension range along each generator vector direction is
determined by the scaling factor by Eqs 7, 8:

U � pagg ∈ RN
∣∣∣∣∣pagg � c + Gβ,−βmax ≤ β≤ βmax{ } (7)

G �
gi � 0, ..., 0,

i
1
, 0, ..., 0[ ]T

∈ RN

gN+i′ � 0, ..., 0,−1/ �
2

√
︸���︷︷���︸

i′

, 1/ �
2

√
︸��︷︷��︸

i′+1
, 0, ..., 0

⎡⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎦
T

∈ RN

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(8)

The advantage of zonotope projection approximation over
ellipsoidal projection (Cui et al., 2021) and cuboidal projection
(Chen et al., 2019b) lies in its generator vectors gi and gN+i′,
which can respectively depict the power and energy constraints
of flexibility resources. Therefore, the operationally feasible region of
flexibility resources aligns more closely with the characteristics of the
zonotope shape.

3 Two-stage adaptive robust method
for inner approximation of power
flexibility space

The feeder power flexibility space obtained after
dimensionality reduction projection becomes more intricate and
challenging to obtain. The inner approximation requires ensuring
that the approximated flexibility space is optimally bounded
internally. Simultaneously, it is imperative to ensure that any
aggregated power trajectory within the approximated flexibility
space can be realized through scheduling without violating
operational constraints, thereby guaranteeing the feasibility of
the disaggregation (Chen and Li, 2021).

In this paper, the power flexibility aggregation and
disaggregation problem are formulated as a two-stage adaptive
robust optimization problem as shown in Figure 1B, where power
aggregation is treated as uncertain variables, and the requirement
to ensure the feasibility of disaggregation is regarded as adaptive
robust constraints (Hua et al., 2024). In the first stage, the objective
is to determine the optimal approximation space for the aggregated
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feeder power. In the second stage, the objective is to ensure the
feasibility of disaggregation.

The construction of any S normal vectors, denoted as
αs ∈ RN(s � 1, ..., S), is performed. The diameter, denoted as ρκ,
of the zonotopeU in the direction of the normal vectors is calculated
by Eq. 9. The problem of determining the diameter, denoted as ρτ , of
the feeder power flexibility space P in the direction of the normal
vectors can be addressed using Eqs 10, 11. Thus, the similarity
between the approximate and the original region is defined as shown
in Eq. 12. As its value increases, the zonotope’s approximation to the
power flexibility space of the feeder becomes larger (Müller
et al., 2017).

ρκ � 2 αsG| |βmax (9)

ρτ � max
pagg

αspagg − ε( ) −min
pagg

αspagg − ε( )
∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣/ αs‖ ‖2 (10)

s.t. (11)
equation (1)–(6)

ηs �
ρκ
ρτ

(12)

The introduction of ξ as an uncertain variable acting on scaling
factors applied to each generator vector of the zonontope, the

uncertain set is denoted as C � ξ|0≤ |ξi ≤ 1, i � 1, ..., Ng{ }. An
uncertain zonotope region is constructed, with its parameter
feasible domain as Q � pagg ∈ RN: pagg � c + Gβ · ξ, ξ ∈ C{ }.
Therefore, a two-stage adaptive robust power aggregation
solution model is established as shown in Eqs 13–16.

Obj. max
c、β

1
S
∑S
s�1

ρκ
ρτ

+min
ξ∈U2

max
pflx ξ( )

0 (13)

c + Gβ · ξ � Hpflx ξ( ) + h (14)
Epflx ξ( )≤ σ (15)
Qpflx ξ( )≤ γ (16)

In the first stage, the zonotope parameters (c、β) are decision
variables, and the optimal inner approximation region is so the
uncertain set ught using Eq. 13. In the second stage, the power
scheduling scheme pflx(ξ) is the decision variable, ensuring the
feasibility of disaggregation. Eqs 15 and (16) represent the linear
compact form of the highly constrained space of diversified
flexibility resources pflx mentioned earlier. Eq. 14 represents the
projection of the highly constrained space of diversified flexibility
resources pflx onto the lower-dimensional space of feeder
aggregated power pagg. The solution of this model can be
implemented using the column-and-constraint generation

FIGURE 1
The proposed model, approximation method and PV hosting capacity evaluation. (A) Highly constrained zonotope aggregation model. (B) Inner
approximation of power flexibility space. (C) PV hosting capacity evaluation of distributed networks.

TABLE 1 Comparison of PV hosting capacity evaluation method.

Method Inherent hosting
capacity total(MW)

Maximum hosting
capacity total(MW)

Maximum hosting
capacity of feeder(MW)

Computational
time(s)

Our method 7.12 12.25 0.63 574

Demand response enhancement
(SUN et al., 2021)

- 12.34 0.64 755

Stochastic scenario simulation
(Ding and Mather, 2016)

6.10 11.14 0.56 193
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algorithm. This process is not further elaborated in this paper (Hua
et al., 2024).

4 PV hosting capacity evaluation of
distributed networks with flexibility
space boundaries

As the penetration rate of PV systems in distribution networks
continues to increase, the occurrence of peak PV output not
coinciding with peak load power (Xiong et al., 2020) may lead to
phenomena such as reverse power flow and overvoltage in low-
voltage distribution networks (Zhang et al., 2018; Li et al., 2020). The
increase in node voltages within distribution networks becomes the
primary factor limiting the integration of distributed PV systems
(Lee et al., 2020). Reference (Cao et al., 2024) ensures magnitudes of
each bus are maintained within the safety range due to the load
shedding. Therefore, effectively increasing the net load during
periods of high PV output on the load side helps mitigate the
risk of operational constraints exceeding limits, thereby enhancing
the hosting capacity of distributed PV systems (Zhou et al., 2021).

In a low-voltage distribution network with H feeders, pagg,i,t

represents the aggregated power of the feeder i at time t, while
pagg,i,t

min and pagg,i,t
max represent the upper and lower limits of power at

that time, respectively. tpv,0 and tpv,end represent the starting and
ending times of PV output. During this period, each feeder
utilizes the upper boundary of the aggregated power flexibility
space, maximizing distributed PV integration (Ding and Mather,
2016). In subsequent periods, the lower boundary is employed to
reduce the load on the distribution network, ensuring its stable
and safe operation, as depicted in Eqs (17), (18).

pagg,i,t
min ≤pagg.i,t ≤pagg,i,t

max (17)

pagg.i,t � pagg,i,t
max, t ∈ tpv,0, tpv,end[ ]

pagg,i,t
min, t ∉ tpv,0, tpv,end[ ]

⎧⎨⎩ (18)

The PV penetration rate range selected in this paper is 0%–300%,
with an incremental step size of 10%. Using the Monte Carlo method,
the quantity, location, and capacity of PV grid connections are
randomly simulated, with the PV grid connection capacity
increasing according to the PV penetration rate (Ding and Mather,
2016). The steady-state power flow of the system is then calculated.
For each PV penetration rate λPV, multiple samples are drawn to
compute the total installed PV capacity and maximum voltage of
system nodes for each random scenario. These values serve as the
abscissa and ordinate to construct a scatter plot of random
simulations, depicted in Figure 1C, where each point represents
one simulation result. In the low-voltage distribution network, the
voltage per unit value (Vt

i ) of each feeder line must satisfy the
constraint given by Eq. 19, and the scatter plot intersects with the
upper voltage constraint of 1.07 per unit at points HC1 and HC2.

0.93p.u.≤ Vt
i

∣∣∣∣ ∣∣∣∣≤ 1.07p.u. (19)

Two lines parallel to the vertical axis are drawn respectively at
points HC1 and HC2 to divide the coordinate graph into three
regions: A, B, and C. In region A, points represent scenarios where
the capacity of PV systems connected to the distribution network is

less than HC1. Regardless of the node in the distribution network
where PV systems are connected, the system voltage remains within
the permissible range of the supply voltage. In region B, points
represent scenarios where the capacity of PV systems connected to
the distribution network falls between HC1 and HC2. If the selection
of PV integration positions and capacity allocation is unreasonable,
it may lead to excessively high or even over-limit system voltage
levels. In such cases, the distribution network planner must ensure
that the PV systems are appropriately allocated. In region C, points
represent scenarios where the capacity of PV systems connected to
the distribution network exceeds HC2. Regardless of the installation
scheme employed, it will lead to over-limit system voltage. The
aggregation and regulation of flexibility resources on the load
side result in the accommodation of distributed photovoltaics,
leading to the rightward shift of HC1 and HC2, with HC1

increasing to HC*1 and HC2 increasing to HC*2.

5 Case studies

In this section, the enhancement effect of PV hosting capacity by
aggregated and coordinated diversified flexibility resources is
demonstrated through numerical simulations based on the
proposed method. IEEE 33-bus distribution network system is
employed as a case study for simulation verification, with a radial
configuration and a standard voltage level set at 12.66 kV. All the
algorithms are executed with an AMD Ryzen 7 5800H with Radeon
Graphics CPU running at 3.20 GHz, and 16.0 GB RAM. The
optimization model involved in the proposed method is
programmed and solved using the commercial solver Gurobi
10.0.3. The comparison between results of PV hosting capacity and
computational time under different algorithms is shown in Table 1.

As shown in Table 1, it can be seen that the proposed method,
compared to the random scenario simulation, can increase the PV
hosting capacity by over 9.96%. Due to the necessity of considering
flexible resource power aggregation and proactive control, the
computational time is comparatively longer. When the scale of
flexible resources is large, aggregation can shorten the computational
time compared to distributed scheduling. However, our method show a
slight decrease in the PV hosting capacity compared to the demand
response enhancement method, which is attributed to the approximate
feasible domain of the aggregation solution, leading to certain accuracy
errors. Overall, the method proposed can effectively assess the PV
hosting capacity of the distribution network.

6 Discussion and conclusion

In this paper, the flexibility resource power regulation model,
feeder power aggregation model, two-stage robust aggregation
solution method, and PV hosting capacity assessment strategy is
elaborately investigated. The key findings are summarized as
follows: 1) A highly constrained zonotope aggregation model of
diversified flexibility resources is proposed, and a two-stage adaptive
robust method is introduced to internally approximate the power
flexibility space, ensuring the optimality of aggregation and the
feasibility of disaggregation; 2) The aggregation and control of
flexibility resource power on the load side can accommodate high
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peak output from distributed PV, thereby enhancing the PV hosting
capacity of the distribution network and simultaneously reducing
the computational complexity of dispatch decision-making.
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