
Examining performance
calibration in smart power system
electricity metering based on
environmental perception
attention LSTM-network

Bo Zhang1,2*, Xin Xia1,2, Chuanliang He1,2, Wei Kang1,2 and
Jinxia Zhang1,2

1Beijing Electric Power Science and Smart Chip Technology Company Limited, Beijing, China, 2Beijing
Smart-Chip Microelectronics Techno1ogy Co., Ltd., Beijing, China

The operating environment greatly influences the accuracy of power metering
devices, resulting in variations and inconsistencies in measurement results across
different working situations. A calibration model for power metering devices is
proposed in this study, considering a range of environmental circumstances. The
first step involves investigating the environmental conditions that impact the
accuracy of power metering devices. Themutual information approach is utilized
to identify environmental disturbances affecting device accuracy. A machine
learning-driven symmetry attention Long Short-Term Memory (LSTM) network
addresses measurement errors, capitalizing on the network’s symmetry data
knowledge. Ultimately, the efficacy of the suggested approach is substantiated
through the utilization of performance indicators, namely, Mean Absolute
Percentage Error (MAPE), Root Mean Square Error (RMSE), and Mean Absolute
Error (MAE). The results show that the proposed method can effectively reduce
the errors of the power measurement device in all quarters, and the error
reduction effect is over 10% in the spring, which is better than other models,
demonstrating exemplary performance in correcting the calibration errors of the
power measurement device.
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1 Introduction

In the study of modern electric power systems, the accuracy and reliability of electric
power metering equipment are considered crucial for ensuring the safety and stability of the
power grid and the fairness of electricity transactions. Recent research has made progress in
enhancing the performance of these devices, especially in the development of error analysis
and prediction methods. However, these traditional methods have shown limitations in
handling the complexity of large-scale electric power data. Introducing machine learning
techniques offers a new perspective for the error diagnosis and correction of electric power
metering data. However, how to effectively apply these techniques for error correction
under complex electric power system conditions remains a question that needs to be fully
answered. This study introduces advanced deep learning technologies to propose an
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innovative method for predicting and correcting electric power
metering errors to address and solve this challenge more accurately.

Intelligent power systems continuously generate a vast amount
of electrical data during operation. Electrical metering equipment to
measure these data is critical to ensuring the safety and stability of
the power grid (Xu et al., 2021). emphasizes the application value of
expert systems in fault detection through their research on fault
diagnostic methods for electric energy metering equipment,
providing an efficient fault diagnostic framework for electrical
metering devices. In recent times, governments worldwide have
placed a high emphasis on the implementation of electric power
metering and data analysis, which has resulted in allocating
substantial human, financial, and material resources to collect,
research, analyze, and utilize electric power metering data,
thereby facilitating the development of the national electricity
metering industry.

As specialized instruments within intelligent power systems, the
accuracy and reliability of data produced by electrical metering
devices significantly impact power transactions, directly affecting
the fairness and justice among stakeholders in the power sector.
Literature (Sun et al., 2022) demonstrates the potential of artificial
intelligence technologies to enhance the accuracy of electric energy
metering by exploring the state detection of metering devices using
computer neural networks. In recent years, many researchers and
experts have investigated the measurement error issues of electrical
metering devices. What’s more, Literature (Li et al., 2018) analyzes
the wiring error problem of electric energy metering equipment. It
proposes a correction technique based on voltage and current
measurement parameters, significantly reducing measurement
errors caused by wiring errors. Furthermore, Literature (Ma et al.,
2021) proposes an error prediction method for predicting electricity
metering errors considering extreme environmental conditions and
compares it with several advanced forecasting techniques. The results
show that the proposed method has superior outlier detection and
error prediction capabilities, even with a limited sample size.
Furthermore, Literature (Zhang F. et al., 2023) tackles efficiency,
safety, compatibility, and accuracy challenges in high-voltage electric
energy metering equipment verification methods. It proposes a
remote verification system design based on the electric power
cloud platform. It demonstrates comprehensive error accuracy
within 0.02 during test applications, meeting the high precision
requirements for remote calibration of large high-voltage metering
devices. Similarly, Literature (Zhou et al., 2016) also focused on the
randomness of measurement error changes in electrical metering
devices caused by various factors, proposing an improved dynamic
time warping (MDTW) algorithm and designing a novel hybrid
semi-trapezoidal Monte Carlo generator. The effectiveness of this
method was verified using field test data from electric energy
metering devices at a 110 kV substation. While much of the
literature discussed has addressed the measurement errors of
electric power metering devices, some approaches rely on
manually defined rules or calculations based on physical models.
However, these methods need assistance when dealing with the large
datasets generated by electrical metering devices, as data complexity
and diversity increase, leading to increased computational
inaccuracies.

As technology for big data has advanced, machine learning has
become a prominent tool in correcting errors in power metering

devices. Literature (Zhang et al., 2020a) introduces a method based
on beetle swarm optimization (BSO) for backward propagation
neural networks (BPNN) to address challenges such as omissions,
false alarms, and low manual judgment accuracy. This method
provides a method for developing anomaly diagnosis models for
electricity meters. This model significantly improved error
prediction performance and the accuracy of diagnosing
instrument anomalies. Similarly, Literature (Zhang J. et al., 2023)
proposes a T-distribution-based model for verifying errors in
electrical metering instruments. This model can distinguish
between error data types and uses a Kalman filter-expectation
maximization method to correct measurement data errors.
Another study by Literature (Xia et al., 2022) proposes a method
using an enhanced BP neural network to estimate measurement
errors in distributed intelligent meters. This method establishes a
theoretical basis for accurately predicting common errors caused by
aging or malfunction in distributed intelligent meters, supported by
real-case scenarios. Literature (Liu et al., 2021) further develops an
error prediction model for electricity meters using BP neural
networks, correcting erroneous data through prediction. While
these studies have shown promising results in error correction,
they have not fully considered the impact of complex operational
conditions of power systems on the errors of electrical metering
devices. Literature (Bartolomei et al., 2020) introduces a new testing
procedure combining actual and quasi-real-time harmonic
interference to evaluate three Class B m. The results indicate that
harmonic interference significantly impacts certain meters.
However, this study did not address the interference of
unpredictable external environmental factors on measurement
errors, and the networks used did not consider processing data
symmetry information. Notably, the measurement errors of
electrical metering devices are influenced by their internal
mechanisms, measurement principles, and environmental factors.
Literature (Yang et al., 2022) analyzes the impact of network systems
in microgrids from economic and reliability perspectives, providing
a new angle to understand the performance of electrical metering
devices in complex power systems.

In spite of the substantial contributions made by the studies
above to the analysis of measurement errors and the performance
calibration of electric power metering devices, several issues
necessitate further comprehensive investigation: 1) While existing
studies have addressed and rectified measurement errors in electric
power metering devices using various methodologies, many studies
have not fully considered how environmental conditions affect the
accuracy of measurements in the intricate operating settings of
power systems. This oversight may result in error correction
outcomes that require improvement to meet practical application
demands. 2) Most studies rely on computational methods grounded
in rules or physical models to rectify errors in electric power
metering devices. However, as datasets grow in scale, complexity,
and diversity, these methods may prove less practical, potentially
leading to increased computational inaccuracies. 3) The potential of
machine learning technologies in the error correction of electricity
metering devices needs further exploration, especially the
capabilities of deep learning technologies in handling complex
data and enhancing prediction accuracy.

Despite the detailed enumeration of the numerous efforts made in
the field of measurement error correction for electric metering devices
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in recent years, existing literature still falls short in several key aspects.
Firstly, current research often focuses on specific types of error
correction techniques or algorithms, with relatively less discussion
on integrating and optimizing these techniques in the complex
operational environment of power systems. Existing methods often
struggle to adapt when faced with increased data complexity and
diversity in practical applications. Secondly, although some studies
have begun to utilize machine learning technologies, systematic
research remains on how to fully leverage these advanced
technologies for large-scale, highly complex power data analysis and
error correction. Additionally, there is scant discussion in the existing
literature on the impact of environmental changes on the accuracy of
electric metering devicemeasurements, which is particularly important
in the increasingly complex and variable reality of power systems. This
study aims to fill the knowledge above gaps by introducing an
integrated methodology that considers the performance
enhancement of electric metering devices and the impact of
environmental changes on the accuracy of device measurements.
We employ advanced machine learning technologies, especially
deep learning models, for their powerful data processing and
pattern recognition capabilities, to analyze and correct errors in
electric power metering data. This approach can effectively handle
large-scale and highly complex power data sets, while also adapting to
and recognizing data variations in complex operational environments,
offering a new solution to improve the accuracy and reliability of
electric metering devices. Moreover, our work also pays close attention
to the impact of environmental factors on measurement errors,
verifying the robustness and adaptability of the proposed method
under different ecological conditions. Through these efforts, this study
not only aims to enhance the measurement precision of electric
metering devices but also supports the stable and reliable operation
of power systems, holding significant theoretical and practical
implications for researchers and practitioners in the field of electricity.

2 Mutual information-based screening
for multiple environmental factors

2.1 Mutual information

Mutual information stands as a crucial notion derived from
information theory. It is initially introduced to gauge the correlation

level between two signals and depicts the information transmitted or
received by a variable to specific variables (Miao et al., 2018).
Nowadays, it is extended to measure the interdependence
between two variables and is used to portray how much
information one random variable contains about another (Zhang
et al., 2020b). The equation defining the exchange of information
I(X,Y) for two discrete-type random variables X and Y is depicted
as follows:

I x, y( ) � ∑
x⊂X

∑
y⊂Y

P x, y( )log2 P x, y( )
P x( )P y( ) (1)

where P(x, y) denotes the joint probability distribution function
between variables X and Y; P(x) and P(y) are the marginal
probability distributions of X and Y.

Derived from the principle of mutual information, a value equal
to 0 signifies an absence of shared information between two
variables, implying that variables are either independent or
unrelated. Conversely, a substantial value suggests significant
shared data, indicating a solid interdependence between variables
Y. Therefore, considering the amount of the mutual information
value, the quantitative analysis of the association relationship
between variables can be achieved.

2.2 Analysis of environmental influences on
the performance of power metering devices

The geographical and climatic environments in which the
power metering devices are located will negatively impact their
metering effect (Ma et al., 2022). In practical environments,
smart meters and other power metering equipment may
encounter different product problems, such as high cold, high
altitude, and high humidity and heat. For example, low
temperatures can cause the equipment to run slower and
experience crashes, a high-altitude environment will make the
device’s heat dissipation ability decline, insulation performance
degradation, and a high humidity environment will cause
corrosion of the device pin, battery leakage, and so on. This
paper summarizes the environmental factors affecting power
metering devices (Gong et al., 2018; Qiu et al., 2020; Verhelst
et al., 2023), as shown in Figure 1.

FIGURE 1
The environmental factors affecting the power measurement device.
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2.3 Environmental factor screening based on
mutual information

According to the research literature (Lloret et al., 2016), different
geographical areas have different environmental characteristics and
factors influencing power metering devices. Filtering the environmental
factors shown in Figure 1 through appropriate technical methods is
crucial to identifying and retaining those substantially affecting power
measurement device performance. Simultaneously, it is essential to
eliminate elements with negligible impact, identify and incorporate
relevant input features for model training, enhance training efficiency,
ensure optimal model fitting, and improve the calibration accuracy of
power measurement devices.

To assess how environmental conditions affect the performance
of power metering devices, this research focuses on the signs of
metering variation in power metering devices, the use of mutual

information methods to judge the degree of correlation between the
environmental factors and the metering deviation of the power
metering device, the indicator size is used as the basis for screening,
and the procedures are as follows:

2.3.1 Indicators of measurement bias
Eq. 2 represents the metrological deviation of power metering

devices (Cheng et al., 2019):

r′ � R − r| |
R

(2)

where r′ is the metering deviation index of power metering device; R
and r are the true value and error value of power metering,
respectively.

2.3.2 Data normalization
As different environmental factors have different scales and the size

of their numerical intervals varies greatly, it is crucial to standardize the
ecological parameters and metering deviation indicators of the power
metering equipment to ensure the reliability of correlation analysis
utilizing the mutual information technique and the normalization
formula is shown below (Chowdhury et al., 2020):

x′ � x − xmax − xmin( )/2
xmax − xmin( )/2 (3)

where x′ is the normalized value; x normalized values for variables;
xmax and xmin represent the highest and lowest values of the
variables, respectively, and after normalization by Eq. 3, the
interval of the values of the variables becomes [-1,1].

2.3.3 Mutual information computing
After normalizing the variables such as environmental factors and

metering deviation of power metering devices using Eq. 3, based on the
historical data of power metering devices, Eq. 1 is used to measure the
value ofmutual information between various environmental factors and
metering deviation indicators, respectively, and the numerical interval
of mutual information value is [0,1].

FIGURE 2
The unit structure of LSTM.

FIGURE 3
The unit structure of Attention.

Frontiers in Energy Research frontiersin.org04

Zhang et al. 10.3389/fenrg.2024.1405725

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1405725


2.3.4 Screening for environmental factors
Expert judgment defines the screening threshold based on the

degree of association, which decreases as the mutual information
value decreases. The ecological factor is excluded when the value of
the mutual information between an environmental factor and a
power metering device deviation indicator is smaller than the

threshold. When it is larger than the threshold, the factor is
included in the power metering device performance correction
model (Bai et al., 2019).

By steps 1) to 4), the screening of environmental factors
influencing the performance of the power metering device based
on mutual information can be realized.

FIGURE 4
Structural schematic diagram of power metering device performance calibration algorithm based on Attention-LSTM.

FIGURE 5
Overall algorithm flowchart.
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3 Machine learning-driven
performance calibration of power
metering devices

3.1 Short- and long-term memory networks

LSTM Networks were first developed by Recurrent Neural
Networks (RNN). RNNs produce problems such as gradient
explosion and gradient disappearance when dealing with long

sequence data, and the proposal of LSTM solves this problem, so
it has been more widely used in dealing with extended sequence
information (Miraftabzadeh and Longo, 2023). LSTM’s neural
unit consists of three kinds of gating: input gate, forgetting gate,
and output gate. LSTM employs gating mechanisms to manage
and seize information within time series data, facilitating its
capability for both prolonged and brief memory retention.
Figure 2 illustrates the structure of an LSTM unit.

In Figure 2, ht-1 and Ct-1 denote the outputs and cell states
obtained from the preceding time step; xt represents the current
input; ht and Ct are the inputs and cell states of the
current moment.

In LSTM, the cell state C can be controlled by the three gate
mechanisms of input gate i, forget gate f and output gate o,
whose relationships are expressed in Eqs 4–9
(Sherstinsky, 2020).

it � σ Wiht−1 + Uixt + bi( ) (4)
ft � σ Wfht−1 + Ufxt + bf( ) (5)
ot � σ Woht−1 + Uoxt + bo( ) (6)

~Ct � tanh Wcht−1 + Ucxt + bc( ) (7)
Ct � ft × Ct−1 + it × ~Ct (8)

ht � ot × tanh Ct( ) (9)
where W denotes the neuron’s weight; b represents the neuron’s
bias; σ refers to the sigmoid activation function.

FIGURE 6
Laboratory data acquisition part.

FIGURE 7
Laboratory instrument error correction part.

TABLE 1 The mutual information values of different environmental factors.

Environment variable Mutual information value Environment variable Mutual information value

Temperature 0.924 Humidity 0.872

PH value 0.827 Pneumatic 0.604

Illumination 0.522 Magnetic field density 0.325

frequency 0.486
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3.2 Attention mechanism

The attention mechanism emulates the human behavioral
process when observing a specific region or object, i.e., focusing
on a particular focus range and investingmore attention resources to
selectively obtain more effective and rich detailed information and
ignore the useless information (Qin et al., 2022). In sequence data,
the data information at different moments has different degrees of
influence on the prediction results; by introducing the attention
mechanism in LSTM, the importance assessment is carried out for
the data at various moments to ensure that LSTM extracts the
critical information in the sequence data more efficiently, and
enhances the model’s training efficiency.

Figure 3 illustrates the structure of the attention mechanism, in
which, x1, x2 . . . . . . xt are the input features; xk are the total output
features; h1, h2 . . . . . . ht represents the hidden layer associated with
the input; hk represents the hidden layer related to the total input; aki
refers to the attention weight assigned from past inputs to the
current one. c represents the final value of the attentional weight
accumulated with the hidden layer; Hk is the final hidden vector and
k is the number of nodes.

The formula for its calculation is (Zhan et al., 2021):

eki � v tanh Whk + Uhi + b( ) (10)
aki � exp eki( )∑T

j�1 exp ekj( ) (11)

C � ∑T
i�1
akihi (12)

HK � H C, hk, Xk( ) (13)
where b denotes the associated bias value; W signifies the weight
coefficient for the overall input related to the hidden state; U
represents the weight coefficient for the initial hidden state; ekj is
the intermediary value used in computing the attention probability.

3.3 Attention-LSTM network

Combining the Attention mechanism with LSTM and assigning
different weight coefficients to the LSTM implicit layer through
mapping weights and a learning parameter matrix can overcome the
problem of LSTM’s performance degradation and training inefficiency
with the growth of the data sequence. This ensures that LSTM focuses
on critical areas, strengthens the fitting of important information, fully
utilizes historical data, and reduces information loss (Aslam et al., 2021;
He et al., 2022). This research uses the Attention-LSTM network
structure to construct a multi-environmental element power
metering device performance correction model based on the
Attention-LSTM network structure, shown in Figure 4. The core of
the attention-LSTMmodel is embedding the attention mechanism into

FIGURE 8
Multi-environmental factors mutual information heat map.

TABLE 2 The parameters of LSTM.

Parameter Value Parameter Value

Hidden function 3 Activation function Sigmoid

Neuron 128,64,64 Epoch 5

Fully connected layer SoftMax Pacemaker 10

Frontiers in Energy Research frontiersin.org07

Zhang et al. 10.3389/fenrg.2024.1405725

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1405725


the LSTM network to automatically learn and focus on the most critical
information in the input sequence. In traditional LSTM networks, the
output at each time step is fixed, regardless of which part of the input
sequence influences the output at the current time step. However, the
attention-LSTMmodel can adaptively calculate the output at each time
step based on the content of the input sequence, making the model
more flexible and accurate.

The working principle of the attention-LSTM model is as follows.

1) An embedding layer transforms Each input sequence element
into a vector representation.

2) The LSTMnetwork processes the output of the embedding layer
to generate a sequence of outputs containing all time steps.

3) The attention mechanism calculates a weight vector for each
time step output, representing the importance of each element
in the input sequence at the current time step.

4) The outputs of all time steps and their correspondingweight vectors
are weighted and summed to generate the final representation.

5) The final representation passes through a fully connected layer
to output the model’s prediction results.

3.4 Modelling evaluation

To validate the accuracy of the constructed power metering
device performance correction model, the authors utilize three
widely recognized error evaluation indices: Mean Absolute
Percentage Error (MAPE), Root Mean Square Error (RMSE), and
Mean Absolute Error (MAE) (Chen et al., 2016). These indices are
calculated as follows:

eMAPE � 1
m
∑m
i�1

ŷi − yi

yi

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣ (14)

eRMSE �













1
m
∑m
i�1

ŷi − yi( )2√
(15)

eMSE � 1
m
∑m
i�1

ŷi − yi

∣∣∣∣ ∣∣∣∣ (16)

where m is the sample size, ŷi and yi are the corrected value of the
performance correction model and the actual value of the measure,
respectively.

FIGURE 9
Comparison of calibration results using different methods.
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These error evaluation metrics comprehensively assess the
model’s performance correcting power metering device
measurements. In the results section, the authors will present the
calculated values of MAPE, RMSE, and MAE to demonstrate the
precision and effectiveness of our model.

3.5 Calibration error

“The Standard Electric Energy Meter" is a Chinese national
standard implemented on 1 December 2011. The principle of
standard metering for verifying electric energy meters involves
comparing a standard meter with the meter under test. A
standard meter is rigorously calibrated and has a high level
of accuracy. After calibration, the influence of environmental
factors on it can be disregarded, making it suitable as a reference
standard for calibrating other energy meters. In order to analyze
the calibration error of the powermeasuring device, three single-
phase energy meters and two three-phase energy meters are
selected as the basis for analysis. According to the verification
provisions, using the standard energy meter method for
verification of the measurement error of the power meter, the
following formula is used to calculate the inspection power
meter’s verification error (Kai et al., 2021).

γ � W1 −W2

W2
× 100% (17)

where W1 is the value of the inspected electrical energy
representation; W2 is the value of the standard electrical energy
representation, i.e., the agreed true value.

3.6 Overall flow of the algorithm

The mutual information correlation analysis first screens the
environmental influence factors in the proposed power device
performance correction method considering multiple link
elements. The environmental factors that significantly
influence the power device’s performance are extracted by
setting the corresponding thresholds. Then, the power
device performance correction model is constructed by
combining the historical measurement data through the
LSTM network. The complete algorithm process is depicted
in Figure 5.

4 Result and discussion

In the current body of knowledge, research on error correction
methods for electric metering devices primarily focuses on
enhancing measurement accuracy and stability, often overlooking
the impact of environmental factors on device performance.
Especially in complex application environments, factors such as
temperature, humidity, and magnetic fields directly and significantly
affect the accuracy of electric metering devices. Although existing
research outcomes provide specific solutions at theoretical and
experimental levels, they still need more comprehensive
consideration and effective correction of the integrated impact of

TABLE 3 The comparison of results of different methods.

Calibration method 5 March 5 June

MAPE RMSE MAE MAPE RMSE MAE

Comparison groups 12.62 13.32 14.34 12.37 13.05 14.05

LSTM-Attention 1.91 2.11 2.58 1.87 2.07 2.53

LSTM 3.09 3.15 3.46 3.03 3.09 3.39

CNN 2.59 2.96 3.21 2.54 2.90 3.15

DNN 3.77 4.28 4.77 3.69 4.19 4.67

Calibration method 5 September 5 December

MAPE RMSE MAE MAPE RMSE MAE

Comparison groups 12.12 12.79 13.77 12.98 13.72 14.77

LSTM-Attention 1.83 2.03 2.48 1.97 2.17 2.66

LSTM 2.97 3.02 3.32 3.18 3.24 3.56

CNN 2.49 2.84 3.08 2.67 3.05 3.31

DNN 3.62 4.11 4.60 3.88 4.41 4.91

TABLE 4 The model effect without accounting for environmental
influences.

Method MAPE RMSE MAE

Attention-LSTM 3.14 3.38 3.81

LSTM 4.38 5.14 5.77

CNN 3.61 4.42 4.71

DNN 4.77 5.41 5.78
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environmental factors. This study aims to fill this knowledge gap by
constructing an LSTM network model integrated with an attention
mechanism. This model not only focuses on the direct correction of
errors but, more importantly, is capable of intelligently identifying
and addressing the impact of environmental factors on electric
metering errors. The model demonstrates how to effectively
enhance the correction accuracy of electric metering devices by
considering vital ecological variables such as temperature, humidity,
and PH values. Experimental results validate the model’s superior
performance under different seasonal and various environmental
conditions compared to traditional LSTM, CNN, and DNNmodels.
This method significantly improves error reduction, model stability,
and adaptability.

4.1 Introduction to the experimental
platform and experimental data

The case study analysis utilizes 1 year of sampling data from an
electric power metering device in a particular region of China to
verify the practical feasibility of the error correction method for
electric power metering devices and to validate its effectiveness. The
data spans from 1 January 2018, to 31 December 2018. At the same
time, an experimental platform for error calibration of power
metering devices was built. The experiment uses the German
ZERA power calibration device (shown in Figure 6) and the

American Fluke 8508A digital multimeter (shown in Figure 7) as
experimental equipment to simulate different environmental
conditions in the laboratory environment and complete the
corresponding experiments, to further verify the effectiveness and
reliability of the error calibration method. The experimental
environment consists of laboratory data collection and
instrument error correction segments. The error correction
model is constructed on the Python platform, and all simulation
experiments are conducted on a PC equipped with 16 GB of RAM
and an Intel i5-9400 processor. The specific setup of the
experimental environment is illustrated in Figures 6, 7.

4.2 Selection and analysis of environmental
factors based on mutual information

This section elaborates further on the selection process for
multiple environmental factors based on mutual information. It
details the specific computation process and analyzes the correlation
of different environmental factors with their impact on electric
power metering devices.

Based on the sampling data of the electric power metering device
from Section 3.1, the measurement deviation index is calculated
using Formula (2). The environmental factors and the measurement
deviation index of the electric power metering device using Formula
(3) are normalized to obtain a series of normalized data. According

FIGURE 10
Single-phase electric energy meter 1 verification error comparison.
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to Formula (1), the mutual information values between various
environmental factors and the measurement deviation index of the
electric power metering device are calculated. The results are
presented in Table 1. A heatmap of mutual information values
for various environmental factors derived from these mutual
information values is shown in Figure 8.

From Table 1 and Figure 8, it is evident that environmental
temperature and humidity significantly impact the measurement
performance of electric power metering devices, with mutual
information values of 0.924 and 0.872, respectively, corresponding to
the lightest colors on the heatmap. In contrast, the influence ofmagnetic

induction intensity on the measurement performance of electric power
metering devices is minimal, with a mutual information value of 0.325,
indicated by the darkest color on the heatmap. Generally, a mutual
information value greater than 0.5 suggests a noticeable association
between two variables. Therefore, the seven environmental variables
analyzed all impact the measurement performance of electric power
metering devices. However, considering that too many input features in
the model could degrade the fitting effect, this paper selects 0.8 as the
threshold for environmental factor selection through expert analysis
and multiple simulation tests. Thus, the model training considers
temperature, humidity, and PH value as ecological factors.

FIGURE 11
Three-phase electric energy meter 1 verification error comparison.

TABLE 5 Verification error results.

Power metering
devices

Calibration error after
calibration/%

Calibration error before
calibration/%

Calibration error correction
rate/%

Single-phase energy meter 1 0.179 0.199 9.81

Single-phase energy meter 2 0.173 0.190 9.86

Single-phase energy meter 3 0.168 0.185 10.18

Triple Energy Meter 1 0.161 0.177 9.96

Triple Energy Meter 2 0.163 0.180 10.20
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FIGURE 12
Single-phase energy meter 1 energy measurement data.

FIGURE 13
Three-phase energy meter 1 energy measurement data.
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4.3 Model training parameter configuration

The LSTM model parameters are shown in Table 2. Three
hidden levels are specified because too many layers will make the
model’s convergence difficult (Abdel-Nasser and Mahmoud, 2019).
This setting aims to ensure the model learns more data information
while enhancing the training efficiency. The three buried layers are
set to have 128, 64, and 64, respectively, with a step size of 10. The
activation function used is Sigmoid, the dropout rate is 0.25, and the
model will train for five epochs.

Besides the abovementioned parameters, a preventer is
introduced in the LSTM model to prevent overfitting. During
the LSTM training iteration process, the Drop layer randomly
hides some neurons to carry out training and optimization. This
approach enhances the model’s generalization ability and
prevents overfitting. The LSTM model in this paper has a
Dropout parameter set at 0.25.

4.4 Correction method for electric power
metering device performance

This part creates a correction model for measuring the
performance of electric power metering equipment using the
Attention-LSTM network to study how different environmental
factors affect error correction.

Typical daily data from each of the four seasons within a year are
selected to correct the test set data. The dates chosen for comparison
with the test dataset are March 5th, June 5th, September 5th, and
December 5th, representing spring, summer, autumn, and winter,
respectively. Moreover, to further validate the performance of the
proposed electric power metering device performance correction
method, this section also includes comparisons with the
measurement data from electric power meters without performance
correction and methods such as LSTM (Li et al., 2019), Convolutional
Neural Networks (CNN) (Haq et al., 2023), and Deep Neural Networks
(DNN) (Hossen et al., 2018). Figure 9 displays the comparing results.

Figure 9 illustrates that the performance correction techniques of
all four electric power metering devices can minimize measurement
inaccuracies and enhance performance. The traditional LSTM and
CNN methods have the least effective correction results. As the
number of measurements by the metering device increases, the
method proposed in this paper demonstrates the best correction
effectiveness compared to the DNN method, with the most
significant reduction in error across all four seasons.

Subsequently, the analysis using the formulas for MAPE, RMSE,
andMAE, as shown in Eqs 14–16, examines different error evaluation
indicators for the electric power metering device under various
environmental factors. The results are presented in Table 3.

The LSTM-Attention correction model has an average MAPE of
1.895, as shown in Table 3, which is a reduction of 38.21%, 26.35%,
and 97.36% compared to LSTM, CNN, and DNN, respectively. The
average RMSE and MAE values of the LSTM-Attention correction
model are also significantly lower than other correction models,
indicating that the performance correction model based on
Attention-LSTM proposed in this paper has the best performance
correction effects. It is attributed to introducing the Attention
mechanism, which enhances the correction model’s sensitivity to

multiple environmental factors and strengthens its ability to extract
environmental factors’ features in different seasons. Moreover,
compared to the control group without performance correction,
the LSTM-Attention correction model reduced the error by more
than 10%, effectively lowering the error of the electric power
metering device in summer, autumn, and winter. To validate the
impact of environmental factors on the performance correction
model, Table 4 displays the results of the performance correction
model without considering environmental factors.

Combining the results from Tables 3, 4, it is evident that fully
considering the impact of environmental factors in the electric
power metering device performance correction model can further
improve the model’s correction level, validating the effectiveness of
the proposed method.

4.5 Analysis of calibration error correction

To confirm the applicability of the proposed correction model,
under the consideration of multiple environmental factors, the
performance correction model for electric power metering devices
based on Attention-LSTM is used to correct the electric power
metering data. Subsequently, Formula (17) is applied to calculate
the verification errors before and after the performance correction for
single-phase and three-phase electricity meters, assuming a power
factor of 1. The comparison analyzes the verification errors and the
verification error correction rates before and after the correction for
both single-phase and three-phase electricity meters. Figure 10 shows
the comparison of verification errors for single-phase electricity meter
1, and Figure 11 shows the comparison for three-phase electricity
meter 1, with specific experimental results presented in Table 5.

As shown in Figures 10, 11, with the increase in the number of
tests, the correction rates of verification errors for single-phase and
three-phase electricity meters are concentrated around 10%. The
verification errors after correction are significantly lower than
before, indicating that the verification errors have been effectively
corrected. In addition, it can be observed that the verification errors of
three-phase electricity meters are lower than those of single-phase
electricity meters, suggesting that three-phase electricity meters have
superior performance. In addition, Figures 12, 13 show the changes in
the electrical energy measurements before and after calibration and
their comparisonwith the standardmeasurements of electrical energy.

According to Table 5, the verification errors of three single-
phase electricity meters and two three-phase electricity meters after
correction are all lower than those before correction, and the
correction rates of verification errors are close to 10%. It
indicates that the performance correction model for electric
power metering devices based on the Attention-LSTM network,
which considers multiple environmental factors as proposed in this
paper, can effectively correct the verification errors of electric power
metering devices and reduce them by about 10%.

According to Table 5, the verification errors of three single-phase
electricity meters and two three-phase electricity meters after correction
are all lower than those before correction, and the correction rates of
verification errors are close to 10%. It indicates that the performance
correction model for electric power metering devices based on the
Attention-LSTM network, which considers multiple environmental
factors as proposed in this paper, can effectively correct the
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verification errors of electric power metering devices and reduce them
by about 10%. Therefore, the performance correction model for electric
metering devices based on the Attention-LSTM network demonstrates
significant advantages over other machine learning methods. The long-
term dependency learning capability of the LSTM network, combined
with the introduction of the attention mechanism, endows the model
with efficient recognition and processing capabilities for crucial
information in time series data. This model can dynamically focus
on the most critical parts of the data while considering the impact of
environmental factors, thereby achieving a comprehensive
understanding of the fluctuations in electric meter readings. The
integrated application of this methodology optimizes the processing
of complex electrical data. It significantly enhances the predictive
accuracy of performance correction tasks, reflecting its outstanding
performance in the electric metering device performance correction.

5 Conclusion

A method for correcting the performance of electric power
metering devices, considering multiple environmental factors, is
proposed. This method quantifies the influence of different
environmental elements on the measurement deviation of electric
power metering devices using mutual information correlation
analysis, which reduces the input dimensions of the electric power
metering device performance correctionmodel and enhances training
efficiency while ensuring the model’s fitting effect. An Attention
Mechanism-LSTM network-based performance correction model
for electric power metering devices is constructed, providing the
LSTM network extracts critical information from the electric
power measurement sequence data more effectively, thereby
further improving the model’s accuracy. Compared to other
methods, the constructed performance correction model exhibits a
superior correction level, achieving an approximate 10% correction
rate for verification errors of electric power metering devices. In the
future, the impact of operational conditions of electric powermetering
devices on measurement accuracy will be considered to enhance the
model’s engineering adaptability further.
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