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Due to the fluctuating and intermittent nature of wind energy, its prediction is
uncertain. Hence, this paper suggests a method for predicting wind power in the
short term and analyzing uncertainty using the VDM-TCN approach. This method
first uses Variational Mode Decomposition (VDM) to process the data, and then
utilizes the temporal characteristics of Temporal Convolutional Neural Network
(TCN) to learn and predict the dataset after VDM processing. Through
comparative experiments, we found that VDM-TCN performs the best in
short-term wind power prediction. In wind power prediction for 4-h and 24-h
horizons, the RMSE errors were 1.499% and 4.4518% respectively, demonstrating
the superiority of VDM-TCN. Meanwhile, the Gaussian Mixture Model (GMM) can
effectively quantify the uncertainty of wind power generation at different time
scales.
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1 Introduction

Wind power, being the world’s most significant new energy development focus, has seen
global annual new wind power installations exceeding 50 GW since 2015. In 2019 alone, the
newly installed capacity increased by 19% compared to 2018, reaching 60.4 GW (GWEC,
2022). Due to its inherent characteristics, accurate prediction of wind power is essential for
grid-connected operations to ensure the smooth functioning of the power grid (Zhou et al.,
2023). Hence, wind power prediction holds utmost importance.

In current wind power prediction research, the prediction time scale for wind power
varies due to the impact of scheduling strategies (Zhou et al., 2023). In the long-term and
medium-term prediction, wind power resources are generally predicted throughout the year
to target wind power siting (Desalegn et al., 2023). At the same time, the installed capacity of
wind farms is configured according to the range of prediction results. In addition, the results
of short-term and ultrashort-term predictions over a 3-day period are usually used for
bidding for feed-in services for wind power to guarantee power quality (Hong et al., 2019),
and the results of wind power predictions are used for day-ahead or intraday scheduling of
the grid (Jia et al., 2024).

In the realm of wind power prediction research, the prediction technology for wind
power under various scenarios is commonly categorized into physical prediction and
statistical prediction (Gu et al., 2021). Physical prediction studies typically involve the joint
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simulation of atmospheric conditions (Zheng et al., 2022), and wind
turbine behavior to forecast wind power generation over a specific
time frame (Yang Y. et al., 2023). Statistical prediction techniques
(Wang et al., 2024), which are typically applied to vast amounts of
wind power data, utilize neural networks, multiple regression
methods, and deep learning algorithms to model and predict
wind power for future time periods (Meng et al., 2024).

As the depth of learning in intelligent algorithms continues to
increase, the field of wind power prediction extensively employs
these algorithms to develop novel prediction systems (Zhang et al.,
2023). Within machine learning prediction models, temporal
characteristics are commonly leveraged to assimilate historical
wind power generation data (Sun and Zhao, 2020). Some
researchers utilize historical and future forecast data from
numerical weather predictions (NWP) to establish correlations
between past inputs and outputs (Hong et al., 2019; Medina and
Ajenjo, 2020). Wei et al. addressed the issue of low accuracy in ultra-
short-term wind power prediction by proposing the use of LSTM for
learning and prediction. They compared it with the traditional
ARIMA model and found a significant improvement in
prediction accuracy (Wei et al., 2023). Zhang et al. (2024)
proposed a CNN-BiLSTM algorithm theory for multi-layer wind
farm prediction, demonstrating a higher level of accuracy compared
to traditional methods. While machine learning techniques have
been widely applied in wind power prediction research, most studies
have focused on their use for predictive purposes.

However, the accuracy of wind power prediction is influenced
by various factors, and most individual algorithms are unable to
address these challenges (Lin et al., 2024). Therefore, in recent
years, hybrid algorithms have been commonly utilized in wind
power prediction research (Zhu et al., 2023). For example, Yuan
et al. introduced a hybrid model that combines the Least Squares
Support Vector Machine (LSSVM) and the Gravitational Search
Algorithm (GSA) for wind power generation prediction. They used
the GSA algorithm to optimize the parameters of the LSSVM
model in order to improve the prediction quality (Yuan et al.,
2015). Zhou et al. (2019) proposed a K-Means-LSTM network
model for wind power prediction and a bandwidth-optimised non-
parametric kernel density estimation (KDE) model for
probabilistic interval prediction of wind power. The K-Means
clustering method is used to form different clusters of wind
power impact factors to generate a new LSTM sub-prediction
model. As well as non-parametric kernel density estimation
generates intervals with narrower prediction intervals, higher
interval coverage and higher prediction accuracy. Another study
(Yuan et al., 2015) proposed a wind power prediction model based
on the hybrid GWO-Copula approach to address the issue of wind
power prediction distribution. It was observed that incorporating
Copula with GWO (Grey Wolf optimization algorithm)
significantly enhanced prediction accuracy without additional
complexity. Additionally, Tu et al. developed an ARIMA-
GARCH-T model to tackle the intricate timing challenges in
wind power prediction, rectifying timing learning flaws and
enhancing prediction accuracy (Tu et al., 2021). While the
aforementioned research has made significant progress in
optimizing wind power model parameters and improving model
learning, there remains a limited focus on feature information
processing.

In order to further enhance its ability of time series information
extraction as well as anti-interference generalization, a combination
of machine learning and load decomposition algorithms is often
used (Zhang et al., 2018). To address the issue of poor model
learning effectiveness, Deng D and colleagues developed a
prediction method based on EEMD-GRU-MLR utilizing data
characteristics. The Ensemble Empirical Mode Decomposition
(EEMD) algorithm was employed for data decomposition,
followed by evaluation of the prediction performance (Deng
et al., 2020). EEMD serves as an enhanced version of Empirical
Mode Decomposition (EMD). This technique necessitates the
addition of white noise to the original signal to address spectral
overlap, decay fluctuations, and trend information present in EMD.
It filters out minor non-noise component fluctuations in the initial
data, leading to irreversible loss of information. Consequently, the
algorithm exhibits inherent limitations (Papazoglou et al., 2023).

Comparatively speaking, the signaling principle of the VMD
algorithm is not complex, and the computational load is significantly
smaller compared to EMD and EEMD. Moreover, its theoretical
foundation is more robust. Unlike its predecessors, VMD does not
rigidly define the meaning of each component but allows for
independent selection of the number of components, enabling
decomposition based on specific requirements (Kousar et al.,
2022). However, new challenges have emerged with this
algorithm. As each dimension of the data needs to be
decomposed, predicted, and reconstructed separately, the
computational time required remains substantial. To address
issues related to limited algorithm accuracy, high computational
complexity, lengthy model training times, low model generalization,
and insufficient information extraction, this paper proposes a
prediction method based on VDM-TCN for achieving high-
precision wind power predictions.

Analyzing the uncertainty of wind power prediction is crucial. In
uncertainty analysis methods, it can be divided into parametric
methods and non-parametric methods. Parametric methods are
based on point prediction models and assume the form of error
distribution. However, this method may have limitations when
dealing with diverse error distribution characteristics. In contrast,
non-parametric methods use non-parametric estimation methods,
do not need to assume the form of the target distribution, and can
more accurately express the prediction error distribution, improving
the analysis accuracy. For the uncertainty of wind power prediction,
commonly used confidence interval methods are used for qualitative
and quantitative analysis. The calculation of confidence intervals for
uncertainty in wind power prediction can use parametric methods,
non-parametric methods, and the decomposition and superposition
of uncertainty factors. These methods help to better understand and
address the uncertainty of prediction errors.

To ensure power grid stability, accurate assessment of future
uncertainties in wind power bidding is crucial. While existing studies
have delved into wind power prediction and uncertainty analysis, further
exploration is needed to characterize multi-scale wind power prediction
and uncertainty analysis. This study introduces a new wind power
prediction framework based on VDM-TCN-EM-GMM to
comprehensively investigate the relationship between the law and
uncertainty of wind power prediction. By utilizing the VDM
algorithm for data feature decomposition, the TCN algorithm for
data prediction learning, and applying EM-GMM for qualitative and
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quantitative analysis, this study redefines the performance of wind power
prediction uncertainty across multiple time scales, elucidating
uncertainty patterns in wind power prediction at different time
scales. The research aims to thoroughly examine uncertainties in
wind power prediction, aiming to establish a robust prediction
framework and provide valuable insights in this field. The process is
shown in Figure 1.

(1) The key contributions of this study include the development
of the comprehensive VDM-TCN-EM-GMM model,
addressing challenges in quantitative wind power
prediction and standardizing the process of wind power
prediction uncertainty analysis. Compared to existing
prediction algorithms and uncertainty analysis models, this
framework can evaluate multi-time scale wind power
prediction models comprehensively, enhancing the stability
and accuracy of prediction results.

(2) Additionally, an in-depth investigation into prediction
patterns and uncertainty characteristics across different
time scales in various wind farms has been conducted,
offering valuable data support and theoretical guidance for
accurate wind power prediction in the future, bringing
important insights for the development and application of
the wind power industry.

Section 2 of this paper will introduce the principles and
structures of the TCN model, the EM-based mixture Gaussian
distribution model, and the confidence interval calculation
model. Section 3 will present example analyses of the predictions
for a wind farm using different models and time periods, along with
uncertainty analysis and a comparison of the uncertainties in the
confidence intervals. Finally, this study will be summarized
in Section 4.

2 VDM-TCN model principle

The VDM-TCN model combines the advantages of variational
mode decomposition (VDM) principles and time convolutional
neural network (TCN) in a hybrid network. The VDM
component decomposes the input wind power feature dataset
into different modes, allowing the model to capture various
fluctuation patterns present in the data. These modes are then
fed into the TCN component, which utilizes temporal
convolutional layers to learn the temporal dependencies and
relationships of the wind power data features. The integration of
VDM for mode decomposition and TCN for temporal modeling
enhances the learning effectiveness of TCN, thereby improving
prediction accuracy.

2.1 Principles of the TCN model

Temporal Convolutional Networks (TCNs) represent a neural
network architecture specifically crafted for handling sequential
data. TCNs employ one-dimensional convolutional layers to
capture temporal relationships present in the input data.
Through the utilization of dilated convolutions, TCNs can
significantly enlarge the receptive field without a notable rise in
the parameter count. This capability enables TCNs to effectively
model extensive dependencies within the input sequence.
Furthermore, TCNs integrate residual connections to aid in the
training of deeper networks and address the issue of vanishing
gradients (Yang S. et al., 2023).

In this model, the wind power feature dataset X �
x1, x2, x3.....xt{ } always corresponds to the wind power

FIGURE 1
The VDM-TCN-EM-GMM technical process.
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generation dataset O � o1, o2, o3.....ot{ }. At the same time, an
intermediate hidden layer H � h1, h2, h3.....ht{ } is introduced. All
outputs satisfy the causal condition restriction, i.e., the current
output yt is only related to x1, x2, x3.....xt{ }, and is not related to
the “future” input xt+1, xt+2, xt+3.....xt+T{ }. This is also in line with
most of the time-series models in real life. This is consistent with
most real-life applications, where future states are predicted with
only historical data.

The relationship in the output can be represented as Eq. 1:

o1, o2, o3.....oT � f x1, x2, x3.....xT( ) (1)

What sets TCN apart from CNN models is that it
incorporates both causal convolutions and dilated
convolutions. Based on the actual data types and
distributions, the network architecture of TCN for wind
power prediction models in this study is depicted in Figure 2.
The dimension of wind power input for x1, x2, x3.....xt{ } is 10,
and output for O � o1, o2, o3.....ot{ } is 1.

2.1.1 Causal convolutional layer
In a time convolutional neural network, a causal convolutional

layer ensures that each output element depends only on past input
elements, In current wind power prediction model, this primarily
refers to the correspondence between the wind speed, wind
direction, temperature, and other data input at time t and the
wind power generation at time t. This means that the layer does
not have any connections to future input elements, preventing
information leakage from the future. This property is crucial for
tasks where the model should not have access to future information,
such as in time series prediction or sequence modeling. The hollow
causal convolution used in this paper combines the temporal
constraints of causal convolution with the characteristics of
dilated convolution in terms of skip sampling, ensuring that the
output at the current time step depends only on the preceding states
and is independent of the subsequent states (Guo et al., 2023). The
formula for hollow causal convolution calculation is as follows Eq. 2.

f x( ) � o*f( )x � ∑k−1
t�0

f i( )Xo−di (2)

Where X is the input, f is the filter, d and k are the dilation
factor and convolution kernel size respectively. In the wind power
prediction model based on the TCN algorithm in this study, the
dataset’s dilation factor is set to 8, and the convolution kernel is
set to 20.

This paper incorporates dilated convolutional layers into the
constructed TCN model. The expansion convolutional layer plays a
crucial role in capturing complex patterns and relationships within
the temporal data by increasing the richness of the learned
representations. This process enables the network to extract more

FIGURE 2
Structure of temporal convolutional network.

FIGURE 3
Diagram of residual block.
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intricate features and enhance its ability to learn and generalize from
the input data.

2.1.2 Residual convolutional layer
Due to the large-scale data feature quantities and datasets required

for wind power prediction training, using deeper networks can lead to
the problem of gradient explosion. However, residual convolution can
also improve the learning effectiveness of deep convolution. The residual
convolutional layer in TCN (Temporal Convolutional Network) plays a
crucial role in capturing long-range dependencies in sequential data. By
incorporating residual connections, the network is able to learn the
residual information between the input and output of each layer,
allowing for easier optimization and training of deep networks. This
enables the network to learn more effectively from the input data and
improve the overall performance of themodel. Furthermore, the residual
convolutional layer in TCNallows for the efficient extraction of temporal
features from sequential data by applying convolutional operations with
shared weights across different time steps. This helps the network to

capture complex patterns and dependencies in the data, leading to better
generalization and prediction capabilities.

To address the channel width issue of wind power prediction data in
matrices, thewidth of residual tensors is adjusted using 1*1 convolutions.
As shown in Figure 3, in order to achieve complete coverage of the
receptive field, residual blocks need to be incorporated into the TCN
model. The width of the receptive field increases twofold with the
addition of each residual block. Also, in order to avoid the saturation
problem with multi-layer residuals, we increase the sparsity of the
network by adding a corrected linear unit (ReLU) function to each
layer of residuals. The calculation formula are as follows Eqs 3, 4:

r � 1 +∑n−1
i�0

2 × k − 1( ) × bi (3)

ReLU x( ) � max 0, 1( ) (4)

In this context, r represents the receptive field, k denotes the
kernel size, and b stands for the dilation base.

FIGURE 4
Wind power prediction process for VDM-TCN-EM-GMM.

FIGURE 5
Annual wind farm power data.
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Finally, F(X) is added to X to obtain the output value y as in
Eq. 5.

O � Activation x + f x( )( ) (5)

where f(x) denotes the output of the convolutional layer and
Activation(.) denotes the activation function.

In terms of loss function design, this study uses the mean
squared error (MSE) function to measure according to the actual
characteristics of the training data as well as the specific network
structure, and optimises the overall model by minimising the above
error. The details are shown in Eq. 6.

MSE � 1
N

∑N
i�1

yi − y′
i( )2 (6)

In this study, we found through experimental comparisons that
RMSPropOptimizer can better ensure the stability of the error gradient of
temporal convolutional neural networks during the training process, and
it canmodify the traditional gradient accumulation into an exponentially
weighted moving average, so that it can adaptively regulate the change of
the learning rate. Therefore, this study uses RMSPropOptimizer as an
optimiser for TCN networks to better optimise the network model
parameters. The formulas are given in Eqs 7, 8.

Sdw � βSdw − 1 − β( )dw2 (7)
W � W − α

dw����
Sdw

√ (8)

where β is the smoothing constant, dw refers to the square of the
gradient and W is the learnable parameter.

FIGURE 6
4-h wind power prediction results.
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2.2 Variational modal decomposition

VDM(VariationalModeDecomposition) is a data-driven technique
used for signal processing and analysis. It decomposes a signal into a set
of modes that represent different oscillatory components of the signal.
The process ofVDM involvesfinding a set ofmodes that best capture the
variations in the signal. This is achieved by formulating an optimization
problem where the modes are obtained by minimizing a cost function
that measures the differences between the original signal and its
reconstructed version using the modes. The key idea behind VDM is
to decompose the signal into a finite number of modes that are
orthogonal to each other and capture different frequency
components of the signal. This allows for a more efficient
representation of the signal and can help in identifying and analyzing
the underlying dynamics of the signal (Zhao et al., 2023).

Therefore, VDM needs to first use the Hilbert transform to
calculate the analytic signal of each modal function uk(t), then mix
the analytic signals of each mode with the central frequency e−jwkt,
and finally demodulate the signals using Gaussian smoothing and
the gradient square criterion to obtain the bandwidth of each
decomposition mode. The formula are as follows Eqs 9, 10:

min ∑K
k�1

‖βt β t( ) + g

πt
( )λk t( )[ ]e−gkwt‖22⎧⎨⎩ ⎫⎬⎭ (9)

s.t.∑K
k�1

uk � f (10)

Furthermore, the optimization is enhanced by effectively solving
through the utilization of penalty function α and Lagrange
multiplier β.

L uk{ }, wk{ }, λ( ) � α∑K
k�1

‖βt β t( ) + g

πt
( )λk t( )[ ]e−gkwt‖22+‖f t( ) − λk t( )[ ]‖22

+ γ t( ), f t( ) −∑K
k�1

λk t( )⎡⎣ ⎤⎦ (11)

The alternating direction multiplier method is used in VMD to
solve the variational problem of Eq. 11 by alternately updating ukn+1,
ωk

n+1, and λk
n+1 to solve the improved Lagrangian expression

“saddle point”, i.e., the optimal solution of the constrained
variational model in Eq. 9. where the modal components of the
solution are new uk and centre frequency ωk, respectively:

ûk
n+1 �

f̂ ω( ) − ∑
i≠k

ûi ω( ) + ûi ω( )
2

1 + 2α ω − ωk( ) (12)

ωn+1
k � ∫∞

0
ω ûk ω( )| |2dω∫∞

0
ûk ω( )| |2dω (13)

2.3 EM-GMM model

As wind power prediction is affected by dataset errors as well as
characterisation factors, a strong uncertainty is reflected in the
prediction results, which is also known as error fluctuation. In
order to ensure the competitive bidding of electricity and the
stable operation of wind power, the uncertainty of wind power
needs to be described to qualitatively and quantitatively analyse the
prediction error of wind power to control the fluctuation range of
the uncertainty error. Therefore establishing an error distribution
for wind power prediction as well as establishing confidence
intervals for wind power prediction is the best way to quantify
the uncertainty of wind power prediction errors. The distribution
models based on the combination of genetic algorithms and GMM
are able to optimise these Gaussian mixture parameters using the
selection, crossover and mutation operations of genetic algorithms
to help the GMM fit the data distribution better. The advantage of
this approach lies in its ability to fully leverage the global search
capability of genetic algorithms while utilizing the flexible modeling
capability of GMM, resulting in a more accurate description of the
data distribution. Additionally, this combined approach can
overcome the drawback of GMM being prone to local optima,

TABLE 1 Comparison of RMSE and MAE values for different prediction
models in February.

RMSE SDE MAE

VDM-TCN 1.4999 1.3345 1.2225

CEEMDAN-TCN 2.0777 0.5046 1.7029

GRU 2.3859 2.2493 1.9842

BILSTM 2.4608 2.3237 2.0019

LSTM 2.7103 1.9744 2.1992

TCN 2.2041 2.1749 1.4753

4 h PSO-BP 3.9827 1.3007 3.7643

BP 4.6284 1.3607 4.4238

WNN 6.1861 1.2952 6.049

VDM-TCN 4.4518 4.2343 3.0803

CEEMDAN-TCN 5.0996 4.9920 4.0605

GRU 5.7955 5.7254 4.1027

BILSTM 5.5582 5.5575 4.0593

LSTM 5.9286 5.8766 4.3306

TCN 5.3731 5.1953 4.1386

Feb 24 h PSO-BP 7.2572 5.5628 6.5352

BP 7.3778 5.7249 6.6567

WNN 10.3357 5.1188 9.6935

VDM-TCN 6.9254 6.9144 4.9209

CEEMDAN-TCN 7.5615 7.2244 6.2156

GRU 9.0590 7.8007 7.4141

BILSTM 8.8224 7.1544 7.8590

LSTM 9.7594 7.6034 8.176

TCN 7.8642 7.8526 6.3630

72 h PSO-BP 10.2066 7.1924 8.483

BP 10.4728 7.1958 8.8248

WNN 17.6777 7.5986 16.0872
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thereby improving the robustness and generalization ability of
the model.

2.3.1 Gaussian mixture models
GMM is a probabilistic model that represents a

combination of multiple Gaussian distributions. Its structure
is a method of approximating the probability distribution of a
variable by linear mixing using a certain number of
Gaussian functions.

Since each Gaussian component in the GMM mixture model is
characterized by its mean and covariance matrix, these matrices
determine the shape, position, and orientation of the distribution. At
the same time, the data is generated by a mixture of Gaussian
distributions under multiple weights and selections. Therefore, it is

necessary to perform iterative training based on the EM algorithm,
which estimates the parameters of the Gaussian components by
maximizing the likelihood of the observed data, thus obtaining the
optimal Gaussian parameter values. GMM is commonly used for
clustering and density estimation tasks, aiming to divide the data
into different groups based on the underlying distribution of the
data. By using a combination of simple Gaussian components to
capture the complex structure of the data, it is represented as
follows Eqs 14, 15:

P Xt( ) � ∑K
i�1
ωiμ Pt, γi,∑i

( ) (14)

μ Pt, γi,∑i
( ) � 1

2π( ) n
2 ∑i

∣∣∣∣ ∣∣∣∣ 12 exp −1
2
Pt − γi( )T∑−1

i
Pt − γi( )( ) (15)

FIGURE 7
24-hours wind power prediction results.
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where n is the dimensionality of the pixel point in the high

dimensional space, ωi is the weight ∑K
i�1
ωi,t � 1, μi and m are the

mean and covariance matrices.
The parameter estimation of GMM is generally optimised by

using the algorithm of EM for nonlinear probability functions
during the training process, which greatly improves the
implement ability of the algorithm under the premise of
guaranteeing the accuracy. The specific principle is as follows.

Assuming xj � (ωj, μj,∑j), j � 1, 2,/, K, there are a total ofK
Gaussian models for the GMM, and all the parameters of the GMM
are estimated through the sample set X: Θ � (x1, x2,/, xK)T, then
the sample P is the log function with e as the base in Eq. 12, i.e., it can
be written as ln, but the vast majority of representations of the log-
likelihood function are still expressed in Eq. 16:

C P Θ|( ) � log∏T
m�1

HK Pi( ) � ∑T
m�1

log∑R
j�1
ωjμj Pi; γj,∑j

( ) (16)

where T is the total number of samples, the parameters of the mixed
model appropriate to the current sample set will maximise the log-
likelihood function of Eq. 13, i.e., the estimation of the statistical
parameters of the mixed model satisfies Eq. 17.

Θ0 � argmax
θ

C Θ( ) (17)

The EM algorithm is initially a statistical method that is an
iterative algorithm. Assuming an initial estimate of the GMM
parameters as Θ(0), and assuming that the mixed model
parameters for the q step iteration are Θ(q), the q + 1 step
iteration process is:

(1) Calculate the expectation (E-Step)

Calculate the posterior probability that each data belongs to the
j − th class of distribution according to the parameters Θ(q) of the
current mixture model (Eq. 18):

FIGURE 8
72-h wind power prediction results.
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ϖ q+1( )
ij � ω

q( )
j μj Pj;Θ q( )( )∑K

m
ω

q( )
r μj Pj;Θ q( )( ); 1≤m≤T, 1≤ j≤R (18)

(2) Maximising expectation (M-Step)

After obtaining the posterior probability that each data belongs
to each subclass, Eq. 14 is solved using gradient descent to obtain an
estimate of Θ at step q + 1.

Update the weights (Eq. 19):

ω a+1( )
j � ∑N

i�1
ϖ q+1( )

ij (19)

Update mean values (Eq. 20):

μ
q+1( )

j �
∑N
i�1
ϖ q+1( )

ij Xi

∑N
i�1
ϖ q+1( )

ij

(20)

Update covariance matrix (Eq. 21):

∑ q+1( )
j

�
∑N
i�1
ϖ q+1( )

ij Xi − μ
q+1( )

j( ) Xi − μ
q+1( )

j( )T

∑N
i�1
ϖ q+1( )

ij

(21)

Repeat steps (19), (20), (21) until ‖Θ(q+1) − Θ(q)‖ sufficient
hours to stop.

TABLE 2 Comparison of RMSE and MAE values for different prediction
models in August.

RMSE SDE MAE

VDM-TCN 1.0344 0.9949 0.3687

CEEMDAN-TCN 1.2949 1.5188 0.9967

GRU 2.5317 1.2042 2.2517

BILSTM 3.2332 2.5696 2.6362

LSTM 3.3593 2.9562 2.7157

TCN 1.3011 1.2643 1.0480

4 h PSO-BP 4.3548 3.1014 4.0159

BP 4.6529 3.2495 3.8920

WNN 7.5868 2.8236 7.0418

VDM-TCN 3.3869 3.3771 2.6583

CEEMDAN-TCN 3.4552 3.3031 2.6473

GRU 4.5569 4.1813 3.4885

BILSTM 4.2636 3.7984 3.1175

LSTM 4.6174 4.5279 3.7009

TCN 3.5913 3.4681 2.9193

August 24 h PSO-BP 4.9861 4.2973 3.7836

BP 5.2140 4.7103 3.8039

WNN 9.5918 6.3797 7.6712

VDM-TCN 6.9690 6.0642 5.7049

CEEMDAN-TCN 7.2858 6.6284 6.3456

GRU 8.9160 7.8879 6.5391

BILSTM 8.1683 7.2741 6.0462

LSTM 9.9912 9.097 7.461

TCN 7.9496 6.1311 6.7782

72 h PSO-BP 10.5957 7.6008 7.8764

BP 11.0357 7.7612 8.3986

WNN 23.2394 11.1917 20.5747

TABLE 3 MW level t-test distribution.

Time Model Error RMSE

p t p t

72 h

CEEMDAN-TCN 1.02E-07 −5.37 0.006 −3.12

TCN 3.01E-14 −7.24 0.0021 −3.61

BILSTM 3.02E-12 −7.01 0.0006 −4.73

GRU 8.24E-09 −5.14 0.0002 −5.12

LSTM 2.71E-12 −8.02 0.0007 −4.14

PSO-BP 6.84E-23 −17.17 0.0003 −5.22

BP 3.78E-23 −10.35 4.10E-05 −6.20

WNN 7.77E-42 −12.91 3.53E-04 −4.21

24 h

CEEMDAN-TCN 0.0121 −1.24 0.0178 −1.93

TCN 3.82E-04 −2.78 0.0104 −2.11

BILSTM 1.12E-04 −4.55 0.0108 −2.45

GRU 0.0187 −1.98 0.005 −3.56

LSTM 3.21E-05 −4.12 0.0013 −3.69

PSO-BP 4.10E-10 −6.57 3.56E-03 −4.58

BP 1.24E-08 −4.77 4.42E-03 −4.61

WNN 5.05E-27 −12.15 1.58E-04 −5.14

4 h

CEEMDAN-TCN 0.3212 −0.23 0.0121 −2.78

TCN 0.2457 −0.48 0.0456 −2.54

BILSTM 0.196 −0.68 0.0014 −3.45

GRU 0.3257 −0.47 0.0031 −3.47

LSTM 0.8796 −0.0023 2.98E-04 −4.23

PSO-BP 0.02678 −1.57 2.12E-04 −5.74

BP 0.23747 −1.18 1.47E-04 −5.78

WNN 4.75E-04 −3.15 4.45–06 −7.01
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2.3.2 Confidence intervals based on GMM
Based on the use of GMM, this study incorporates confidence

interval calculation to quantitatively describe the uncertainty of
predictions.

The wind power prediction error is the difference between the
predicted value of wind power Pfore and the actual value of wind
power Pture at a certain point in time, as shown in Eq. 22.

e � Pfore − Ptrue (22)

The formula is as follows:

P αlow < α< αup( ) � 1 − θ (23)

In Eq. 23, [αlow , αup] is the refers to the upper and lower limits of
the confidence interval. 1 − θ is the reliability of the true value in
the interval.

For uncertainty analysis modeling, it is challenging for overall
error modeling or single-point error modeling to consistently
demonstrate high reliability and adaptability at all times.
Therefore, this study employs standard predictive analysis
methods and Gaussian Mixture Model (GMM) for
comprehensive analysis to enhance the clarity of predictions in
uncertain scenarios.

The overall calculation steps are: Step1 Firstly, use the GMM
method to establish the corresponding wind power error probability
density map and calculate the wind power error probability
density curve.

Step2 Under the given confidence level, find a shortest
interval, so that the probability of the deterministic
prediction error value falling into the interval is equal to the
confidence level.

Step3 Use the (αup and αlow) to derive the upper and lower limits
of the wind power.

2.4 Data preprocessing techniques and
predictive evaluation indicators

There are many factors affecting the prediction results in
wind power prediction, among which the accuracy of the data
and the size of the data volume often determine the prediction
results, so it is necessary to carry out relevant preprocessing of
historical data.

2.4.1 Wind power data screening
In the actual wind power generation process, due to turbine

maintenance or shutdown, the power generated will be negative
or zero value, as well as non-normal circumstances NWP value
sudden change, such as the wind speed is greater than 40 m/s.

TABLE 4 Comparison of RMSE results for VDN-TCN models with different residual convolution and number of VDM decompositions.

VDM0-TCN0 VDM0-TCN10 VDM6-TCN10 VDM6-TCN20

Count 10 10 10 10

Mean 10.98884 10.54142 10.26444 9.87834

Std 2.0306 1.9514 0.9786 0.4066

Min 10.77 10.1686 9.7089 9.385

25% 10.799475 10.3333 10.0377 9.70555

50% 10.8646 10.6576 10.3815 9.8457

75% 11.078975 10.716475 10.517675 10.02035

Max 11.5925 10.8061 10.5914 10.4822

FIGURE 9
The 72-h probability density distribution of wind power
prediction error under different distribution models.

FIGURE 10
The 24-h probability density distribution of wind power
prediction error under different distribution models.
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These data in the learning and prediction process will
inevitably affect the learning effect, taking into account these
factors, this paper in the data preprocessing of the data to
be deleted.

2.4.2 Data standardisation
In order to improve the model’s fitting results and reduce errors,

the article conducted standardization processing with the following
formula (Eq. 24):

xnorm � x − min

max − min
(24)

Where xnorm is the standard value of wind power;max indicates
the maximum value of wind power data; min indicates the
minimum value.

2.4.3 Evaluation index of deterministic
prediction error

The root mean square error (RMSE) and mean absolute error
(MAE) are used to evaluate the wind power forecast model. The
formula are as follows Eqs 25–28.

RMSE �

����������������
1
N

∑N
t�1

Ptrue − Pfore( )2
√√

(25)

PRMSE �

���������������
1
N ∑N

t�1
Pture − Pfore( )2

√
Pcap

(26)

MAE � 1
N

∑N
t�1

Ptrue − Pfore| | (27)

FIGURE 11
Distribution of confidence intervals for the 4-h prediction of the VDM-TCN model.
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PMAE �
1
N ∑N

t�1
Ptrue − Pfore| |
Pcap

(28)

Pcap is the total installed capacity of the wind farm. PRMSE and PMAE

is the ratio of the RMSE and MAE to the installed capacity.

2.4.4 Error evaluation indexes of uncertainty
analysis methods

The coverage rate is used to evaluate the quality of the
confidence intervals, as shown in Eq. 29.

ρp � 1
m

× ∑m
i�1
ρi (29)

where ρi is the coverage factor.
The technical route for short-term prediction and uncertainty

analysis of wind power based on TCN-EM-GMM proposed in this
paper is shown in Figure 4.

3 Case study

3.1 Data sources

The wind power data originates from a wind farm located in
northern China, at 114°E longitude and 41°N latitude. The wind
farm has an average elevation of 1,600 m and is equipped with
90 wind turbines, each with a power capacity of 1.5 MW. The
entire dataset of a wind farm with a total installed capacity of
180 MW was chosen for prediction. The rotor diameter of the
wind turbines is 70.5 m, and the tower height is 67 m. The wind
power prediction data used in this study includes actual output
power data from the wind farm’s Supervisory Control and Data
Acquisition (SCADA) system, as well as Numerical Weather
Prediction (NWP) data for the wind farm. The time resolution
of the actual output power data is 15 min. The NWP data is
sourced from the National Meteorological Center, with a spatial
resolution of 1 km. Therefore, there are multiple spatial grid

FIGURE 12
Distribution of confidence intervals for the 24-h prediction of the VDM-TCN model.
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points with NWP data within the wind farm, and the average of
these grid points’ NWP data is used in this study. NWP data
attributes include wind speed, wind direction, air pressure,
temperature, and humidity, with a time resolution of 15 min.
The experimental results are also in accordance with
IEC standards.

As shown in Figure 5, we selected data from the entire year of
2010 and the first half of 2011 as the study data, with a time granularity
of 15 min. To evaluate the effectiveness of the algorithm, we examined
data from two specific intervals (February 10–13, 2011, andAugust 1–3,
2011) to understand their patterns across different time scales and
seasons. The input data dimension is 10, which includes 6*n
decomposed data groups from VDM-decomposed wind speed, and
1*n feature data groups for wind direction, air pressure, temperature,
and humidity. The output dimension is 1*n wind power generation
data, where n equals the number of data points at 15-min intervals
required for training and prediction.

3.2 Wind power prediction and its
uncertainty analysis

3.2.1 Wind power prediction analysis
The results of wind power generation prediction for 4-h

intervals on February 4th and August 3rd in winter are presented
in Figures 6A, B. The red solid line represents the VDM-TCNmodel.
It can be observed that the VDM-TCN model aligns most closely
with the actual values represented by the black solid line, followed by
the CEEMDAN-TCNmodel. Furthermore, based on the values of 4-
h RMSE and MAE displayed in Table 1, it is evident that learning
conducted after VDM decomposition leads to a reduction in RMSE
of over 0.8% compared to learning without decomposition.
Additionally, the TCN model outperforms the LSTM, BP, PSO-
BP, and WNN models in the 4-h prediction. The WNN model
exhibits the poorest predictive performance, yet still remains within
7%. This can be attributed to the utilization of wavelet functions in

FIGURE 13
Distribution of confidence intervals for the 72-h prediction of the VDM-TCN model.
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the activation function of the WNN, which results in suboptimal
handling of the features of wind power data.

(Figures 7A, B) illustrates the 24-h wind power prediction
outcomes for the 4th of February and 3rd of August during the
winter season. The results indicate that VDM-TCN exhibits the
highest prediction accuracy throughout the 24-h wind power
prediction process. We observed a significant improvement in
the prediction accuracy of the TCN algorithm after decomposing
the wind power characteristic dataset, with an increase in RMSE
of 0.3% compared to the undecomposed dataset. Additionally,
the decomposition of the VDM algorithm exhibited higher
adaptability than the CEEMDAN algorithm, showing superior
predictive performance in February and August. From Figure
7A, it can be observed that, apart from VDM-TCN, the models
exhibit significant discrepancies between the predicted results
and the ground truth within the first 50 data points. This
disparity can be attributed to the utilization of VDM for data
decomposition, wherein certain anomalous frequency band data
are extracted post decomposition. Consequently, the TCN
model, by incorporating the anomalous characteristics of this
data during the fitting process, achieves a more stable
prediction outcome.

The forecast results for 72 h in Figure 8A, B show that in the 3-
day forecast, VDM-TCN still maintains a significant advantage with
better stability and more stable predicted values. TCN also
demonstrates high predictive performance. However, data
decomposed by VDM shows better learning and prediction
compared to not using it. As shown in Figure 8B, although the
learning and prediction effect of VDM on TCN is greatly sacrificed,
some outliers still occur in small frequency bands. Through research,
it was found that this is due to certain errors in the NWP values, and
most importantly, the shutdown of some wind turbines in the wind
farm due to wake effects and equipment damage reduces the
matching degree between data and wind speed. This will also be
a focus for future improvements.

Based on the comprehensive analysis of Figures 6–8 and
Tables 1, 2, it is evident that VDM-TCN demonstrates superior
predictive performance across various time scales. Additionally,
the TCN model exhibits high stability during predictions, thus
validating the effectiveness of the VDM-TCN model in wind
power prediction. These findings provide data support for

subsequent uncertainty analysis, with all RMSE prediction
results falling within 8%.

The author employed a t-test to assess the significance of
differences in prediction errors and RMSE results for May data
from the same sample. A p-value ≤0.05 led to the rejection of the null
hypothesis, indicating a significant difference in the predictive
outcomes of the two models. Conversely, a p-value ≥0.05 resulted
in the acceptance of the null hypothesis, suggesting no significant
difference between the models’ predictions. As presented in Table 3,
there were statistically significant differences between the VDM-
TCNmodel and othermodels in terms of 72-h and 24-h forecasts for
both prediction error and RMSE, with negative t-values, indicating
that the mean prediction error and RMSE of the VDM-TCN model
were lower than those of the other models, thus confirming its
superior predictive performance.

In order to better verify the accuracy and applicability of the
model, we conducted ablation experiments for the VDN-TCN
model with different residual convolution and number of VDM
decompositions. Through Table 4, it can be clearly seen that the
stability and accuracy of the prediction results are increasing
with the addition of VDM and the introduction of residual
convolution.

3.2.2 Wind power forecast and quantitative
distribution analysis

Although the prediction errors of wind power generation can be
qualitatively analyzed, it is still challenging to quantify them. In
order to characterize the distribution of prediction errors in wind
power generation quantitatively, this study utilizes GMM estimation
to establish confidence intervals.

To calculate the confidence intervals for wind power generation
prediction, the computation of probability density distribution is
first required. In this study, a mixture of Gaussian model (GMM)
and non-parametric kernel density estimation method are employed
to obtain the probability density distribution of wind power
prediction errors. Figures 9, 10 illustrate the probability
distributions of wind power generation forecast errors for 72 h
and 24 h. It can be observed that the non-parametric kernel density
estimation method is more accurate than GMM in capturing trends
across a wide range of distributions, but falls short in capturing
certain abrupt changes at small scales compared to GMM. This
discrepancy arises from the non-parametric kernel density
estimation method’s use of smoothing kernel functions to fit
observed data points for modeling the true probability
distribution curve, which is susceptible to bandwidth and
data influences.

In order to better demonstrate the superiority of the GMM
algorithm, we chose non-parametric kernel density estimation
(NPKDE) and Gaussian modelling (GM) to contrast with the
GMM algorithm and compare the uncertainty ranges of the
predictions of different algorithms.

From the data, it can be observed that for Figures 11–13, the
probability of the prediction values for the entire wind energy
decreases with confidence intervals greater than the current
confidence level. However, some forecasted values are not
included in the confidence intervals due to actual output
power changes caused by NWP errors, changes in operating
states or gusts, and other factors. Furthermore, as the

TABLE 5 Coverage rate of confidence interval for wind power based on
VDM-TCN model.

month Confidence
level

72 h (%) 24 h (%) 4 h (%)

97.5 98.26 97.93 100

95 96.53 95.87 100

February 90 90.28 90.72 94.12

85 86.46 85.54 88.24

97.5 98.26 97.94 100

95 96.18 95.88 100

August 90 92.71 91.76 94.12

85 88.19 90.72 88.24
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confidence level increases, the width of the confidence interval
also increases, with a higher probability of encompassing the
forecasted values, which aligns with the principles of confidence
interval calculations.

As shown in Table 5, we observe that the prediction intervals of
the VDM-TCN model have high coverage rates at different
confidence levels. Additionally, the VDM-TCN demonstrates
high stability across various time ranges. Its coverage area meets
the basic requirements of including the true values. This also proves
that the GMM algorithm can accurately quantify the requirements
of wind power prediction uncertainty.

4 Conclusion

This study innovatively proposes a method for short-term wind
power prediction and uncertainty analysis using the VDM-TCN-
GMM approach, which facilitates multi-scale short-term predictions
of wind power via the VDM-TCN model. By applying variational
mode decomposition technology to decompose the NWP, this
method enhances feature diversity and improves data
assimilation. Furthermore, the TCN model is utilized to identify
and extract relationships among sequential features, thereby
facilitating learning within a time-series framework. The
Gaussian mixture model is also used to qualitatively analysis the
uncertainty of wind power prediction and establish confidence
intervals for quantitative analysis, and the following conclusions
are drawn:

(1) The proposed VDM-TCN model not only has a temporal
recursive nature, but also has an obvious advantage in feature
extraction learning, which makes the VDM-TCN model have
an obvious advantage in predicting wind power with time
series characteristics.

(2) The prediction errors of the VDM-TCN model are all within
8%, with an improvement in RMSE prediction performance
of over 1%.

(3) GMM is able to quantitatively calculate the distribution range
and quantitative analysis of the prediction uncertainty in
wind power generation. The coverage of the confidence
interval is larger than the confidence level in 4 h, 24 h,
and 72 h wind power prediction.

Although we have carried out multi-scale prediction and
uncertainty analysis of wind power using VDM-TCN and EM-
GMM algorithms, there is still a large amount of work that needs to
be carried out for further research, and some of the much-needed
work is as follows: 1) Wind power prediction needs to be further
explored in terms of the impact of multi-source feature datasets on
wind power prediction. 2) More algorithms need to be introduced
into the field of wind power prediction to demonstrate the
prediction performance of different models in different
environments. 3) In terms of wind power uncertainty analysis,
wind power uncertainty models will be further developed in the
future to provide more accurate qualitative and quantitative analyses
of wind power prediction.
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