Skip to main content

ORIGINAL RESEARCH article

Front. Energy Res.
Sec. Smart Grids
Volume 12 - 2024 | doi: 10.3389/fenrg.2024.1403883

• Grid-Integrated Solutions for Sustainable EV Charging: A Comparative Study of Renewable Energy and Battery Storage Systems

Provisionally accepted
  • 1 University of Azad Jammu and Kashmir, Muzaffarabad, Azad Kashmir, Pakistan
  • 2 University of Dubai, Dubai, United Arab Emirates
  • 3 Qatar University, Doha, Qatar

The final, formatted version of the article will be published soon.

    The integration of electric vehicles (EVs) into the power network challenges the 1) grid capacity, 2) stability, and 3) management. This is due to the 1) increased peak demand, 2) infrastructure strain, and 3) intermittent charging patterns. The previous studies lack comprehensive integration of renewable energy and battery storage with EV charging. To address these challenges, this study explores the effectiveness of incorporating renewable energy resources (RERs) and battery energy storage systems (BESS) alongside the traditional grid. The proposed study utilizes the HOMER Grid ® and conducted a comprehensive analysis. The proposed study compares two grid integrated scenarios: 1) Case-1 (grid and photovoltaic (PV) systems), and 2) Case-2 (grid, PV systems, and BESS). Both these scenarios are compared against a Base case relying solely on grid power. The evaluation employed techno-economic analysis while focusing on 1) net present cost (NPC), 2) cost of energy, and 3) annualized savings. Additionally, the proposed study analyzed 4) seasonal variations in EV charging demand, 5) grid interactions, 6) PV production, and 7) the operation of BESS in both summer and winter. The comparative analysis reveals that the Base case incurs a net present cost (NPC) of $546,977 and a cost of energy (COE) of $0.354 per kWh. In contrast, Case-1, which integrates a 100 kW PV system, shows a significantly lower NPC of -$122,962 and a reduced COE of -$0.043 per kWh, with annualized savings of $61,492. Case-2, incorporating both the 100 kW PV system and a BESS with a capacity of 9.8 kWh, has a higher NPC of $309,667 but a COE of $0.112 per kWh and provides annual savings of $51,233 compared to the Base case. Seasonal analysis highlights that Case-2 achieves the lowest carbon emissions in summer, ranging from 2.0 to 2.5 tons, while Case-1 shows the lowest emissions in winter, ranging from 3.2 to 3.4 tons. This model 1) reduces operational costs, 2) minimizes carbon emissions, while 3) making it compelling for future energy systems in increasing EV adoption.

    Keywords: Charging station, Electrical vehicles, Energy Management, Environmental impact, Renewable energy resources

    Received: 20 Mar 2024; Accepted: 30 Aug 2024.

    Copyright: © 2024 Rehman, Khalid and Muyeen. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

    * Correspondence: Haris M. Khalid, University of Dubai, Dubai, United Arab Emirates

    Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.