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1 Introduction

In 2023, the global installed capacity of photovoltaic (PV) power generation broke
another record. The International Energy Agency recently released the 2023 annual report
shows that last year, the global PV power generation new installed capacity of about
375 GW, an increase of more than 30 per cent (Szalóczy et al., 2024). Among them, China is
the world’s largest PV market and product supplier (Fu et al., 2024). However, the inherent
intermittency and volatility of distributed PV power generation introduce considerable
uncertainty, necessitating the modeling of PV scenarios to mitigate this uncertainty and
support the growth of the PV industry. Among the various factors influencing PV output,
weather conditions play a significant role in causing fluctuations and uncertainties in PV
generation. However, the vast majority of the current PV scenario generation literature
generates PV scenarios directly, which can overlook the important impact of weather on PV
(Cai et al., 2023). To account for weather-related uncertainties and impose stricter physical
constraints on PV power generation models, the PV scenario is modeled by simulating
weather scenarios, enabling both specificity and generality in the models. Consequently, the
development of a stochastic simulation model for year-round weather scenarios becomes
essential to provide accurate weather information for PV power generation modeling
(Rohani et al., 2014).

Current weather generation models mainly rely on mathematical approaches involving
probabilistic calculations. The most common approach is to directly fit the distribution of
weather data with probability distributions, such as sunlight intensity following a Beta
distribution (Rathore et al., 2023) and wind speed following aWeibull distribution (Hussain
et al., 2023). Li et la. proposed a two-stage scheme. In the first stage, weather sequences are
simulated from a single-site multivariate weather generator, and in the second stage, the
empirical Copula method is used to reproduce the inter-variable and inter-site
dependencies as well as the temporal structure (Li et al., 2019). Richardson proposed
WGEN based on a dynamic two-parameter Gamma distribution model and a two-
parameter Beta distribution model (Richardson, 2018). WGEN is currently one of the
widely used weather generator models, and many other weather generator models are
developed based on improvements and extensions of WGEN, such as CLIGEN developed
by the United States Department of Agriculture Agricultural Research Service. Sparks et al.
proposed a novel method by transforming partial time series into an inferred linear function
model, considering weather variables as Gaussian variables with temporal behavior (Sparks
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et al., 2018). Sun et al. utilized Copula for simulating multivariate
joint distributions between observed and predicted weather
variables, alongside Bayesian theory to derive conditional
probability density functions for specific weather forecast
scenarios, facilitating large-scale weather scenario generation (Sun
et al., 2020). However, these probabilistic model-based approaches
fail to fully capture the complexity of weather data.

In recent years, with the rapid advancements in artificial
intelligence, deep learning has emerged as a pivotal technology in
various domains, including electricity and agriculture (Fu and Zhou,
2023). Currently, several deep generative models tailored for time-
series data have emerged to inform weather scenario generation.
Yang et al. combined LSTM and Generative Adversarial Networks
(GAN) to generate health time series data (Yang Z. et al., 2023).
Li et al. fused transformer and GAN to ensure temporal consistency
in generating time-series data (Li et al., 2022). Yi et al. utilized a
diffusion model based on U-net with attention mechanism to
generate time-series data, preserving frequency features (Yi et al.,
2023). In PV scenario generation, Li et al. used a time series
correlation evaluation mechanism and a GAN-based generator-
assisted updating mechanism to generate PV scenarios with long
and short time scale time series correlation (Li et al., 2023). Xu et al.
used Deep Convolutional GAN (DCGAN) to generate high-
accuracy PV scenario (Xu et al., 2023). Zhang et al. used Spectral
Normalization GAN (SNGAN) to improve the training stability and
generate PV scenarios with probabilistic characteristics. However,
these methods primarily focus on preserving the temporal
characteristics and uncertainty of the generated data, neglecting
the diversity aspect. We believe that diverse weather data is crucial
for generating PV scenarios and analyzing uncertainty in PV
systems, enabling comprehensive performance simulation across
various environmental conditions. This aids in optimizing the
design and operational strategies of PV systems, enhancing their
stability and reliability under diverse climate conditions. Hence,
generating diverse weather data remains pivotal for weather
generation in the context of power applications.

In recent years, style-based GAN (StyleGAN) has become a
research and application hotspot due to its ability to ensure diversity
in generated image data (Karras et al., 2020). Sauer et al. utilized
StyleGAN to meet the specific requirements of large-scale text-to-
image synthesis (Sauer et al., 2023). Xiong et al. utilized StyleGAN to
achieve fast generation of high-quality 3D digital humans (Xiong
et al., 2023). Yang et al. utilized StyleGAN to implement flipping and
editing operations on real face images (Yang S. et al., 2023).
StyleGAN excels at disentangling images, separating different
image features in a hierarchical manner to generate images with
diverse and realistic styles. In the context of weather scenario, we
utilize style-based learning to enhance the level of refinement and
granularity in weather simulations. Style-based learning enables the
separation of various levels of image features (Karras et al., 2019).
We believe that, in the case of weather data, it allows the matching of
overall trend features and local random features, respectively. This
allows for the generation of weather scenarios that capture the
accurate overall trend while incorporating nuanced variations.
However, style-based learning relies on convolutional neural
networks (CNNs) for data processing, which may limit
StyleGAN’s ability to learn temporal features from weather data.
To address this limitation, replacing the 2-dimensional CNNs in

StyleGAN with 1-dimensional CNNs could better model the
temporal characteristics of weather data.

2 Model for weather simulation

As shown in Figure 1, we present a novel stochastic simulation
approach for generating year-round PV scenarios utilizing weather
scenarios generated on Conditional Style-based Generative
Adversarial Networks (C-StyleGAN). The weather scenarios
consist of three variables, temperature, direct radiation and
diffuse radiation, which are placed side by side during the
training of the model to facilitate the neural network to learn the
correlation between the variables. An increase in temperature causes
a decrease in the power generation efficiency of the PV panels
because high temperatures increase the resistance to electron flow
within the PV panels. Direct radiation is the main source of energy
for PV panels, while diffuse radiation affects the propagation path of
light and indirectly affects the amount of radiant energy received by
the PV panels. This method leverages real weather data as a
foundation for simulating weather scenarios. The weather data
generated using C-StyleGAN exhibits comprehensive diversity
and effectively captures temporal correlations through active
learning. The proposed method employs a Conditional
Generative Adversarial Network (CGAN) as the primary
framework, and the underlying neural network architecture is an
enhanced version of the style-based Generative Adversarial Network
(StyleGAN2). In Sections 2.1, 2.2, we will introduce the CGAN and
the improved StyleGAN2, respectively. The generated PV scenarios
can be obtained by inputting the temperature, direct radiation and
diffuse radiation generated by C-StyleGAN into the PV model
(Yano et al., 2009).

2.1 CGAN using weather features as labels

CGAN is the main framework of this model and provides the
overall idea for the training and optimization of the model (Zhang
et al., 2021).

In a GAN framework, the primary components are the
generator and the discriminator. The objective of generator is to
learn the underlying distribution Pori(w) of the real data by
randomly sampling from real data. It takes a random noise
Pz(z) as input and converts it into a synthesized data Pgen(ŵ: θ)
using a network parameter θ. The primary objective of the generator
is to produce weather data samples that closely resemble real data,
with the intention of deceiving the discriminator. On the other hand,
the discriminator is a binary model responsible for distinguishing
between the data samples. Its role is to classify the weather data
samples, with the objective of labeling the generated weather data
samples Pgen(ŵ: θ) by the generator as “false” and the real weather
data samples Pori(w) as “true” to the best of its ability. In the training
process, both the discriminator and the generator are trained using
an adversarial approach. The generator’s primary objective is to
enhance its generation performance in order to deceive the
discriminator, while the discriminator aims to improve its
discrimination ability to accurately classify the weather
data samples.
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The training process of a GAN can be characterized as a
minimax game, which is formulated as a value function V(D,G)
by Eq. 1. In this game, the objective is to maximize V(D,G) with
respect to the generator G, while minimizing the value function V
with respect to the discriminator D. This minmax game provides a
clear understanding of the GAN training process.

min
G

max
D

V D,G( ) � Ex ~ Pori x( ) logD Pori w( )( )[ ]
+ Ex ~ P

gen x: θ( ) log 1 −D Pgen ŵ: θ( )( )( )[ ] (1)

However, the data generated by GAN is inherently random and
lacks control over specific output. To address this limitation, the
concept of Conditional GAN (CGAN) has been proposed,
incorporating the principles of supervised learning into GAN.
The fundamental idea behind CGAN is to introduce conditional
information into both the generator and discriminator. In our
model, we utilize weather features as conditional labels, such as
sunny, cloudy, overcast, and rainy/snowy, to steer and facilitate the
training. This approach enables us to generate weather data
sequences that align with specific desired features. The objective
function of our model (Eq. 2) is derived by adapting Eq. 1.

min
G

max
D

V D,G( ) � Ex ~ Pori w( ) logD Pori w( )∣∣∣∣y( )[ ]
+ Ex~Pgen ŵ: θ( ) log 1 −D Pgen ŵ: θ( )∣∣∣∣y( )( )[ ]

(2)
where, y denotes the condition and corresponds to the
weather features.

2.2 Style-based learning model

We draw inspiration from StyleGAN2, which leverages the
concept of style migration to learn from image data. The style-
based learning generator incorporates two main parts, namely the
Mapping network and the Synthesis network, to facilitate its
functionality. The Mapping network plays a crucial role in
decoupling complex features that are coupled together. On the
other hand, the Synthesis network incorporates two important

components for data processing: modulation-demodulation
convolutional layers (MD-C) and modulation convolutional
(M-C) layers. Eqs 3–6 (Karras et al., 2019) illustrate the
functioning of MD-C network blocks, while for M-C the
operation of Eq. 5 is omitted. y incorporating style-based
learning from StyleGAN2, we are able to enhance the fidelity and
realism of weather simulations. This approach enables us to capture
not only the overall global trends but also the localized variations in
the generated weather scenarios.

s � ωf · w + bf (3)
ωc′ � si · ωc

ijmn[ ] (4)

ωc″ � ωc′
ijmn													∑

i,m,n
ωc′
imn( )2 + ϵ

√⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (5)

ŵ � ωc″*xc + bc (6)
where, the w decoupled by the Mapping Network is first passed
through a fully connected layer with a weight ofωf and a deviation of
bf to obtain the style information s. The resulting s is then multiplied
element-wise with the convolution kernel ωc, producing modulation
weights ωc′. Subsequently, a demodulation weight ωc″ is computed
using a root mean square operation, incorporating an infinitesimal
constant ϵ. Utilizing ωc″ and the convolutional bias bc, a
convolutional operation is performed on xc which is the original
input. This operation enables the extraction of complicated features
from weather scenario.

The discriminator is predominantly implemented using a
residual Convolutional Neural Network (CNN). This choice of
architecture enables the discriminator to effectively identify
abstract features and uncover hidden invariant structures within
the weather data sequence. Within each residual block, average
pooling down-sampling is employed to reduce the temporal
resolution of the samples by half. Pattern collapse, a common
issue in GAN structures where only a subset of data patterns are
captured, is addressed by incorporating a small batch standard
difference layer into the network structure. This addition aims to
increase the diversity of reproducible samples generated, mitigating

FIGURE 1
Conditional style-based generative adversarial networks model for weather simulation of PV scenario.
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the problem. Towards the end of the discriminator, two fully
connected layers are applied to adjust the output shape. The
discriminator’s discriminant results being closer to 1 indicate a
more realistic weather scenario. These discriminant results are then
utilized to construct loss functions for both the generator network
and the discriminator network, as described by Eqs 7, 8. The purpose
of computing these losses is to optimize the parameters of each
component in the neural network using backpropagation, thereby
continuously improving the realism of the weather data generated
by the generator.

LossG � Relu 1 −D G z y
∣∣∣∣( )( )( ) (7)

LossD � Relu 1 +D G z y
∣∣∣∣( )( )( ) + Relu D w y

∣∣∣∣( )( ) (8)

where the function denoted as Relu is represented by Relu(x) �
max 0, x{ } and has the capability to be smoothed.

3 Discussion

Currently, almost all GAN-based PV scenario generation
models are directly based on renewable energy generation data
such as PV data or wind power data, and the proposed model is
also theoretically applicable to the direct modelling of the PV
scenario and the wind power scenario, as they are both essentially
time series data. However, these approaches often overlook the
crucial factor of weather scenarios. Weather conditions
significantly impact PV power generation, and PV power
models rely on factors such as direct radiation, diffuse
radiation, and temperature to simulate PV power output. Solar
radiation levels and temperature directly influence the
performance of PV modules, and the uncertainty in weather
scenarios contributes greatly to the uncertainty in PV power
generation. Therefore, solely relying on direct PV data simulation
neglects the physical constraints imposed by weather scenarios
on PV power generation, limiting the generalizability of PV
scenario modeling approaches. To address this limitation, we
propose a weather-based PV generation scenario simulation that
first models weather scenarios to accurately capture their realism.
By incorporating weather-based simulations, we can enforce
strict physical constraints on PV scenarios, thus ensuring a
higher level of generality in PV scenario simulation models.

Traditional methods for modeling weather scenarios primarily rely
on explicit methods based on probabilistic statistical approaches. These
explicit methods require formulating probability distribution functions
for PV generation data, leading to limitations such as small capacity,
poor generalization capability, and difficulties in handling high-
dimensional data. With the advancements in artificial intelligence
algorithms, deep learning methods, particularly unsupervised
learning methods based on GAN, have gained prominence. GAN-
based models do not necessitate explicit specification of probability
distribution functions for scenario data, nor do they require explicit
likelihood estimation. GAN is capable of capturing complex data
distributions due to its data-driven approach. GAN has the
flexibility to generate realistic weather simulations while effectively
capturing spatial and temporal dependencies. In addition, GANs
have the ability to generate high-resolution simulations and estimate
uncertainty, providing a powerful tool for weather prediction and

climate research. However, one limitation of GANs is the lack of
control over the generated data, as it is random and unpredictable.
CGAN enable GANs to transition from unsupervised to supervised
learning, allowing better control over the network’s output. In our
proposed model, we utilize weather features as labels, such as sunny,
cloudy, overcast, and rainy/snowy, to generate weather scenarios based
on specified weather conditions. By incorporating weather features as
labels, we can generate weather scenarios according to our specific
requirements. To achieve better control over the overall probabilistic,
temporal, and correlation characteristics of weather scenario data, as
well as the diversity represented by local differences, we propose a style-
based weather data simulation algorithm. This algorithm enables us to
learn the trend characteristics and local uncertainty random variation
characteristics of weather data, representing high and low image
characteristics, respectively. By separating these characteristics, we
can generate weather scenarios with consistent trends but diverse
variations.

4 Conclusion

For PV scenario modeling, generating weather data sequences
with specific features is crucial. We propose a conditional style-
based generative adversarial network for stochastic weather scenario
simulation.

In conclusion, two key points stand out. Firstly, methods based
on weather data for generating PV scenarios can comprehensively
consider weather’s impact on PV system performance, enhancing
simulation accuracy. This aids in understanding PV system behavior
under various conditions and supports system design and operation.
Secondly, current time-series data generation models and PV
scenario generation models often lack scenario diversity
consideration. StyleGAN, an advanced image generation
technology, holds significant potential for weather data
generation. Leveraging its hierarchical feature control and
continuous latent space, StyleGAN can generate richer, more
diverse, and realistic weather scenarios. This increases data
diversity and enhances simulation realism.

Moreover, AI advancements, like ChatGPT, are promising for
weather scenario generation. It can automate dataset annotations,
improve data quality, and analyze discrepancies between generated
and real data, aiding GAN training and refining generated results.
This opens avenues for processing higher-dimensional and larger-
scale weather data.
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