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Rapidly increasing global energy demand and environmental concerns have
shifted the attention of policymakers toward the large-scale integration of
renewable energy resources (RERs). Wind energy is a type of RERs with vast
energy potential and no environmental pollution is associated with it. The
sustainable development goals: affordable and clean energy, climate action,
and industry, innovation and infrastructure, can be achieved by integrating
wind energy into the existing power systems. However, the integration of
wind energy will bring instability challenges due to its intermittent nature.
Mitigating these challenges necessitates the implementation of effective wind
power forecasting models. Therefore, we have proposed a novel integrated
approach, Boost-LR, for hour-ahead wind power forecasting. The Boost-LR is
a multilevel technique consisting of non-parametric models, extreme gradient
boosting (XgBoost), categorical boosting (CatBoost), and random forest (RF),
and parametric approach, linear regression (LR). The first layer of the Boost-
LR uses the boosting algorithms that process the data according to their tree
development architectures and pass their intermediary forecast to LR which
is deployed in layer two and processes the intermediary forecasts of layer
one models to provide the final predicted wind power. To demonstrate the
generalizability and robustness of the proposed study, the performance of
Boost-LR is compared with the individual models of CatBoost, XgBoost, RF,
deep learning networks: long short-term memory (LSTM) and gated recurrent
unit (GRU), Transformer and Informer models using root mean square error
(RMSE), mean square error (MSE), mean absolute error (MAE) and normalized
root mean square error (NRMSE). Findings demonstrate the effectiveness of the
Boost-LR as its forecasting performance is superior to the compared models.
The improvement in MAE of Boost-LR is recorded as to be 31.42%, 32.14%, and
27.55% for the datasets of Bruska, Jelinak, and Inland wind farm, respectively
as compared to the MAE of CatBoost which is revealed as the second-best
performing model. Moreover, the proposed study also reports a literature
comparison that further validates the effectiveness of Boost-LR performance
for short-term wind power forecasting.
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1 Introduction

The daily surge in the world’s population drives up the power
demand continuously. At present, electric power requirements are
mainly fulfilled by fossil fuels as they cover 60% of global electricity
demand (Tiseo, 2023). According to the report of Reuters, the
United States (US) generated 59% of its electricity from fossil
fuels in 2023 (Gavin, 2023). The findings of the global carbon
project (GCP) state that the carbon emissions were 36.8 billion
tons in 2022 which have increased by 1.1% in 2023. These
rising numbers of carbon emissions will cause the temperature to
increase by 1.5°C for the next 7 years (Canadell, 2023). With the
growth of the world economy and technological advancements,
renewable energy is becoming the center of attention in fulfilling
the global energy requirements (Liu et al., 2019). Wind power
has grown rapidly in recent years as a significant and potential
source of energy to address issues such as shortage of energy and
environmental pollution (Liu et al., 2018). The superior economics,
minimal emissions of greenhouse gases, and endless wind resources
have made wind energy a more attention-drawing resource than
other energy transition options (Sari and Yalcin, 2024). However,
uncertainty is the key issue associated with wind energy. The
erratic nature of atmospheric elements such as wind direction
and speed, leads to volatility and unreliable integration of wind
energy into the present power system (Pinazo and Martinez,
2022). The uncertainties due to meteorological variables can be
minimized by using an accurate wind power forecasting model.
Based on a time scale and applications, wind power forecasting can
be classified into ultra-short-term, short-term, medium-term, and
long-term categories. Ultra-short-term forecasting has applications
in transient analysis and covers a period of a fewminutes to an hour.
Short-term forecasting (STF) has applications in unit commitment
and economic load dispatch, with a time horizon ranging from
1 hour to 1 week. Applications of medium-term forecasting include
reserve requirement determining and maintenance planning which
ranges from 1 week to 1 month. Long-term forecasting applications
incorporate sustainability planning and proceed for 1 month to
1 year or thereafter (Ahmed et al., 2023). Various studies present
different wind power forecasting techniques. In this proposed study,
our main focus is on the STF of wind power.

1.1 Related work

Various statistical, physical, and artificial intelligence-based
models have been reported in the literature to accomplish the task
of wind power forecasting. In (Che et al., 2023), a probabilistic
wind power forecasting model is developed to manage grid-
tied wind power. The K-forward neighbors based sparse dynamic
weighting (K-FSDW), spatial-temporal multi-scale characteristics,
and kernel density estimation (KDE) are used in the model
to quantify uncertainty. Datasets from offshore wind farms of
Penglai District, Shandong, China are used to confirm the model’s
viability and efficacy. In Dowell and Pinson (2015), an innovative
approach for fitting sparse vector auto-regressive is used to
model the location parameters which have a significant numerical
advantage. In He et al. (2015), the vector auto-regressive (VAR)
model’s parameters are improved and over-fitting problems are

reduced by creating a sparsified auto-regressive coefficient matrix.
This method uses data on farm layout, wind direction, and speed.
Turbine-level correlation shows a notable improvement as compared
to auto-regressive (AR) and multi-auto-regressive models (multi-
AR). Results indicate that the proposed approach, AR, andmulti-AR
record the MAPE of 5.88, 6.24, and 6.17, respectively.

The authors in Wahdany et al. (2023) have proposed a neural
network architecture to anticipate wind power while adjusting
for different energy systems. By implementing the optimization
approach to train the network, system expenses are minimized. The
error deviation and system cost lapses are mitigated based on an
account study. In (Ponkumar et al., 2023), a short-term forecasting
model leveraging machine learning techniques, such as extreme
gradient boosting (XgBoost), categorical boosting (CatBoost), and
light gradient boosting machine (LGBM), is presented.Themetrics,
R-squared, mean square error (MSE), and mean absolute error
(MAE) are used to gauge the model’s efficacy. Further, the CatBoost
model beats the RF and shows better outcomes with an RMSE
of 13.84 for the test set. In Karim et al. (2023), the recurrent
neural network (RNN) based forecasting model is presented. The
RNN model uses the Dynamic Fitness Al-Biruni Earth Radius
(DFBER) algorithm to predict wind power data patterns. When
it comes to dataset forecast and modelling, the optimized RNN-
DFBER performs better than other models due to its accurate
data visualizations and low root mean square error (RMSE). The
self-attention-based neural network (SANN) is designed for online
learning in Dai et al. (2023). By the self-attention mechanism,
the SANN model directly represents time relations with power
sequences.

In Khazaei et al. (2022), a high-accuracy hybrid method
combining numerical weather prediction data with historical
wind farm data has been suggested for short-term wind power
forecasting. The technique entails feature selection, prediction,
wavelet transform decomposition, and outlier identification. A
federated deep reinforcement learning (FedDRL) based model
that combines federated learning with deep reinforcement learning
(DRL) for ultra-short-term wind power forecasting is presented
in Li et al. (2023). The model is decentralized, removing sensitive
privacy issues and the deep deterministic policy gradient (DDPG)
algorithm is employed to increase predictive accuracy. According
to simulation results, FedDRL performs better than traditional
methods while maintaining data privacy. The study in Xing
and He (2023) explained a multi-modal, multi-step wind power
forecasting model that uses stacked deep learning, low-rank matrix
fusion, k-dimensional tree, and density-based spatial clustering
of applications with noise (DBSCAN). The inland and offshore
wind farms’ datasets are used to ensure the precision and stability
of the model. In Huang et al. (2023), a hybrid methodology
is implemented that employs the algorithm of fuzzy C-means
clustering to identify weather parameters across different places.
A three-tiered hierarchical structure has been designed to use both
the gathered data and prior knowledge. It gets trained on the data of
wind speed, directs patterns of wind power generation, and predicts
power based on historical data and anticipated wind conditions.

In Zhao et al. (2023), a hybrid model named variable mode
decomposition convolutional neural network and gated recurrent
unit(VMD-CNN-GRU) is developed to predict wind power
forecasting in Shanxi, China. The VMD reduces the uncertainty
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of wind speed, CNN extracts the spatial parameter from wind
power data, and GRU extracts temporal features from the historical
data. Findings demonstrate that the proposed VMD-CNN-GRU
has better short-term forecasting performance when compared to
the other deep-learning models. The model reports the RMSE,
MAE, MAPE, and R-squared of 1.5651, 0.8161, 11.62%, and
0.9964, respectively. In Sheng et al. (2023), NWP-based feature
classification is achieved with an accurate deep clustering model
using a categorical generative adversarial network (CGAN). In
addition to providing an enhanced TCN prediction model, a gating
mechanism is introduced to increase residual block activation.
The empirical mode decomposition and random forest (EMD-
RF) model is implemented on wind farms in the US in Shen et al.
(2018). In contrast to RF and SVM, it generates better results and
minimizes forecasting errors. Findings indicate that the proposed
approach, RF, and SVM report the RMSE of 7.86, 11.23, and 10.97,
respectively. The authors in Liu et al. (2023) proposed a graph
attention convolutional recurrent (GACR) method that coupled
GCN and LSTMmodels. To train the model, high dimensional data
consisting of multivariate time series and geoinformation of wind
farms is collected. To extract the most relevant features, a double-
channel feature extraction algorithm is used in the study. Moreover,
the proposed model is also compared with different techniques
using RMSE, MAE, accept rate, symmetric MAPE (sMAPE), and
NMAE. In Abou Houran et al. (2023), a hybrid model of CNN and
LSTM networks is proposed for the short-term forecasting of solar
irradiance and wind power. The hyper-parameters of the CNN-
LSTM network are optimized using the swarm intelligence (SI)
algorithm. The performance of the optimized CNN-LSTM network
is compared with individual models of CNN and LSTM and also
with their hybrid architectures that are optimized by other meta-
heuristic algorithms using different error measurement techniques.
To overcome the data privacy issue in forecasting the renewable
power output, a bi-party engaged data-driven modelling framework
(BEDMF) is presented in Liu and Zhang (2022). In the first stage,
spatial and temporal data is collected from multiple sites. The
proposedBEDMF technique consists of two stages and involves local
and global models. In the pre-training stage, the local model learns
the local latent features and they are aggregated to form global latent
features. The fine-tuning stage involves learning local and global
latent features from local and global data of the previous iteration,
respectively.Thefindings of the study demonstrate that the proposed
approach records an average improvement of 3% over other state-
of-the-art techniques. Two different ANN networks optimized by
the PSO and GA algorithm are presented in Viet et al. (2020) for
wind power forecasting. In the study, the dataset is collected from
the Tuy Phong wind power plant in Binh Thuan, Vietnam. In the
first stage, the ANN network’s parameters are optimized by the PSO
then another PSO or GA algorithm is implemented to further tune
the hyper-parameters resulting in two different architectures: PSO-
PSO-ANN and GA-PSO-ANN. The metrics, MSE and MAPE, are
used to evaluate the forecasting performance of the models.

1.2 Motivation and contribution

It can be concluded from the above discussion that deep learning
networks perform better for short-term wind power forecasting

FIGURE 1
Major steps of the proposed Boost-LR.

than other techniques. The hidden layers feature of these networks
enables them to learn the data pattern effectively. Various hybrid
methodologies integrated into deep learning networks, have also
been proposed to enhance forecasting performance. However,
for wind power forecasting limited work is performed using
boosting algorithms. Therefore, in this study, we proposed a novel
integrated boosting algorithm, Boost-LR. The proposed Boost-
LR is implemented on four different wind farms’ datasets and
its performance is evaluated through different metrics. The main
contributions of the paper are listed as:

1. A novel integrated Boost-LR network is proposed for hour-
ahead wind power forecasting. The proposed Boost-LR is
a multi-step network and its first phase consists of three
boosting algorithms: RF, CatBoost, and XgBoost. These level
1 boosting algorithms process the input data and give
intermediary forecasts, individually.The LR is implemented as
a level 2 learner which extracts the data patterns by learning
intermediary forecast and input data and provides the final
hour-ahead wind power forecasting.

2. To demonstrate the robustness of the study, a comparative
analysis is performed for Boost-LR with the individual
models of RF, CatBoost, XgBoost, and state-of-the-art
deep learning networks, LSTM and GRU, Transformer and
Informer models.

3. For generalizability and scalability analysis, the proposed
Boost-LR is implemented ondifferent geographical wind farms
and its performance is also compared with the findings of
studies already reported in the literature.

1.3 Article layout

The rest of the paper is organized as follows, Section 2
describes the methodology, results and discussion are reported
in Section 3, and conclusions with future work are summarized
in Section 4. This paper is an extended version of our work
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FIGURE 2
The proposed Boost-LR methodology.

accepted as conference proceedings in the 7th International
Conference on Energy Conservation and Efficiency (ICECE), 2024
(Ahmed et al., 2024).

2 Methodology

The methodology implemented in this study consists of the
following steps and is depicted in Figure 1.

1. The first step involves the collection of datasets. Datasets of
different geographical locations are collected to demonstrate
the diversity and scalability of the study.

2. In the second step, we preprocess the data which includes
data cleaning, normalization, and splitting into training and
testing sets.

3. The third step involves models’ training and forecasting of
hour-ahead wind power.

4. In the last step, the performance of the models is evaluated
using different error measurement techniques, and key
findings are documented.

These steps are elaborated in the subsequent sections.

2.1 Categorical boosting

Prokhorenkova and Dorogush et al. introduced the sequential
gradient boosting technique called CatBoost. It has unique
characteristics including categorical features support with little loss
and sequentially building decision trees to eliminate gradient bias.
During the execution, the model’s performance is improved by
taking lessons fromprevious trees and applying them to the next one
(Zhang et al., 2023). The distinguished attribute that differentiates
CatBoost from other gradient-boosting algorithms is the sequential
development of oblivious trees. During the development of the
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oblivious tree, one feature is selected that governs all of the
splitting criteria (Wang and Qian, 2023).The oblivious tree prevents
the overfitting of the curve and improves model execution speed.

2.2 Extreme gradient boosting (XgBoost)

The XgBoost is also a variant of Gradient Boosting Decision
Tree (GBDT) technique used for regression problems. It builds
novice learners, primarily classification regression trees to train the
vulnerable ones. After training, it executes a weighted summation
resulting in the final regression model. A new learner is created
on the gradient and residual error of the previous learner to
reduce the overall network’s error (Asselman et al., 2023). Some
of the characteristics that distinguish XgBoost from other GBDT
algorithms are the incorporation of the L1 and L2 regularization
terms, second-order Taylor expansion on loss function, column
sampling, and allocating memory to leaf nodes (Li et al., 2022).
The XgBoost loss function can be calculated through second-order
Taylor expansion as described in Eqs 1–3.

L (t) ≈
n

∑
i=1
(L(yi,y

′
(i−1) + aiei (xi) + (1/2)bie

2
i (xi)) (1)

ai = e′ (t) =
∂L(yi,y

′(t−1))

∂y′(t−1)
(2)

bi = e″ (x) =
∂2L(yi,y

′(t−1))

∂y′(t−1)
(3)

Whereas, the first and second-order gradient statistics on loss
function are denoted by ai and bi, respectively.The y′(i−1) corresponds
to the prediction at the (i− 1) instance.

2.3 Random forest (RF)

The RF is an ensemble learning algorithm used for regression
and classification problems. It takes advantage of decision trees
in the model’s training. It labels test items using decision trees
compiled from a random training set. The votes from a lot of trees
are summedup to pick the final class (Malakouti, 2023).The bedrock
for forecasting is the individual feature and themean value of the top
area spanned by the training set (Gatera et al., 2023).

2.4 Long short-term memory (LSTM)

The LSTM network is an RNN variant that addresses vanishing
gradients or outburst issues by switching memory cells for hidden
nodes in the RNN architecture. Selective state alteration is made
feasible by the network through the configuration of three control
gate units: input, output, and forget (Berhich et al., 2023). The
dependency information is established by the input gate, unworthy
data is discarded by the forget gate, and stored information is sent
to the next neuron by the output gate (Xin et al., 2024). The Eqs 4–9
describe the working of LSTM.

f (τ) = σ[U fx (τ) +V fh (τ− 1) + a f] (4)

i (τ) = σ[Uix (τ) +Vih (τ− 1) + ai] (5)

co (τ) = φ[Ucx (τ) +Vch (τ− 1) + ac] (6)

o (τ) = σ[Uox (τ) +Voh (τ− 1) + ao] (7)

c (τ) = f (τ) ⊙ c (τ− 1) + i (τ) ⊙ co (τ) (8)

h (τ) = o (τ) ⊙φ [c (τ)] (9)

The symbols (Uf , Ui, Uo, Uc, Vf , Vi, Vo, Vc) and (af , ai,
ao, ac) represents the weights and biases, respectively. The Sigmoid
and tanh activation functionsaredenotedbyσandφ, correspondingly.
The ⊙ symbol is used to denote element-wise multiplication.

2.5 Gated recurrent unit (GRU)

Another RNN variant, the GRU was developed as a memory
cell in 2014. By combining the input and forget gates into a
single update gate, the number of gates and parameters of the
network is minimized to accelerate the convergence. This model
can handle abrupt changes in gradient during training and provide
better forecasting output by storing the information over a longer
period (Lafraxo et al., 2023). It also works very well for memorizing
temporal elements that have shifted in external historical data
(Thanh et al., 2022). The working of GRU network is explained
through Eqs 10–13 (Lafraxo et al., 2023).

mt = (1− nt ) mt−1 + nt m
′
t (10)

nt = σ(oz xt + pz (mt−1)) (11)

m′t = tanh(oh xt + p(qt ⊙mt−1)) (12)

qt = σ(or xt + pq mt−1) (13)

Themt andmt′denote output and candidate output, respectively.
The symbols oz , or , oh, pz and pr represent the metrics in
GRU. Whereas, nt and qt , correspondingly, represent update and
reset gates.

2.6 Transformer

The Transformer model is a transduction model with an
attention mechanism and parallel operating capabilities. The
encoder-decoder design is the basis of the Transformer. Six encoder
blocks make up the encoder portion of the Transformer model,
and each decoder’s input is determined by the output of the
final encoder. There is no way for them to communicate the
parameters. However, the encoders are identical in architecture.
The encoder block contains self-attention layers and feed-forward
neural networks (Zhao et al., 2021). First, the input data is fed to
the self-attention layer where a series of matrices, corresponding to
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TABLE 1 Datasets description and references.

Dataset location Duration (year) External parameters Ref

Texas, United States of America 1 Wind speed, wind direction, pressure, air temperature DOBREV (2021)

Bruska 2 Wind speed, wind direction, air density Zou et al. (2022b)

Jelinak 2 Wind speed, wind direction, air density Zou et al. (2022b)

Inland wind farm 1 Wind speed Ding (2019)

TABLE 2 Hyper-parameter tuning with search space and optimized values.

Models Hyper-parameter Search space Optimized values

XgBoost Tree method [“gpu hist”, “approx.”] “approx”

  No. of estimators [100,200,300] 300

  Maximum depth [6,9,12] 9

  Learning rate [0.01,0.03,0.1,0.5] 0.1

  Colsample bytree [0.6,0.8,0.9,1] 0.9

CatBoost No. of estimators [1000,1250,1,500] 1,000

  Maximum depth [2,4,6,8] 2

  Learning rate [0.1,0.3,0.01,0.001] 0.3

  L2 leaf regularization [0.2,0.5,1,3] 0.2

RF No. of estimators [20, 60, 100, 120] 120

  Minimum sample split [2, 5] 2

  Minimum sample leaf [1,2] 2

  Maximum samples [0.5, 0.75] 0.5

  Maximum features [0.2, 0.6, 1.0] 1

  Bootstrap [True, False] TRUE

LSTM No. of layers [1,2,3] 1

  Optimizers [“Adam”, “RMSprop”, “SDG”] Adam

  Learning rate [0.1, 0.005, 0.001, 0.0001] 0.001

  Drop out [0.1, 0.2, 0.3, 0.4, 0.5] 0.3

  No. of units [32, 64, 128, 256] 32

the source data, are generated. These matrices are then multiplied
by the weight matrix and the product is the final matrix which is
the output of of the self-attention layer and can be described by
Eq. 14 (Wen et al., 2022).

Attention (Q,K,V) = so ftmax((QKT)/√(dk))V (14)

Where, Q, K, and V represent query, key, and value vectors,
respectively.

The decoder layer has three sub-layers as compared to the
encoder layer which has two sub-layers. The additional sub-layer
of the decoder is used to map the relation between the current
forecasted value and the encoded feature vector. The feed-forward
neural network consists of two layers with linear and rectified
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linear activation functions which can be described by the Eqs 15,
16 (Zhao et al., 2021).

R (Attention (Q,K,V)) =max (0,Attention (Q,K,V)W1 +m1)
(15)

FeedNeural = R (Attention (Q,K,V)W2 +m2) (16)

2.7 Informer

The Informer network is a variant of the Transformer model,
developed especially for the time series forecasting problems
consisting of an encoder and decoder blocks.The distinctive feature
of the Informer model is the addition of positional encoding
information to vector inputs to address time correlation phenomena.
Its multi-head attention mechanism focuses on degradation trends
to solve long-termdependence problems.Thedecoder input consists
of hidden intermediate data features and the original vector. To pay
attention to the information of position which is to be anticipated in
the future and preventing prior positions, the value to be forecasted
is set to 0 (Wang et al., 2023).

2.8 Boost-LR

The proposed Boost-LR is a multi-step forecasting approach
as elaborated in Algorithm 1. In the first step, we have three
different boosting algorithms: XgBoost, CatBoost, and RF. These
boosting algorithms process the input data according to their tree
development mechanisms. Each of the models in step 1 provides
the intermediary forecast. In the next step, LR is used to process the
output of level 1 and input training data. The LR adjusts the weights
and biases by extracting the information from the intermediary
forecast and input training data. To effectively capture the non-linear
and complex patterns in the dataset, the Boost-LR leverages different
boosting algorithms and uses LR to optimally combine the output of
level 1 models and provide a more accurate hour-ahead wind power
forecast. Figure 2 illustrates the working of the proposed Boost-LR.

Integrating multiple models into the Boost-LRmakes it effective
in learning the nuanced and hidden patterns of the datasets. By
leveraging the strengths of individual models and overcoming the
weaknesses inherited in the single model, the ensemble structure
enables the Boost-LR to handle the variability of the datasets
accurately. The multilevel approach allows Boost-LR to effectively
handle the inherent variability and complexity, present in wind
power datasets, ultimately resulting in more accurate hour-ahead
forecasts.

2.9 Simulation setup

2.9.1 Dataset description
To demonstrate the diversity and generalizability of the

proposed Boost-LR network, wind power datasets of four different
geographical locations are used in this study. All these datasets
contain external weather parameters, vary in length, and are
recorded at the resolution of 1 h. Further description of each dataset

Importing functions for data reading, regressors,

neural network, and mathematical operations

Level 1 Models: CatBoost, XgBoost, RF

for each model in [CatBoost, XgBoost, RF]:

model.fit(trainingdata)

intermediaryforecasts = []

for each model in [CatBoost, XgBoost, RF]:

intermediaryforecasts.Append(model.predict(trainingdata))

Level2Model:LinearRegression

level2model.fit(intermediaryforecasts,trainingdata)

newintermediaryforecasts = []

foreachmodelin[CatBoost,XgBoost,RF]:

newintermediaryforecasts.append(model.predict(newdata))

finalprediction = level2model.predict(newintermediaryforecasts)

Algorithm 1. Proposed Boost-LR

is provided in Table 1. In the data preprocessing steps, we first clean
the data by removing the missing values then the MinMax scaler is
applied to normalize the data in the range of 0 and 1. The highest
value of the data transforms to 1, the lowest to 0 and the remaining
values are adjusted between 0 and one accordingly. For splitting the
data into training and testing sets, we use the 80, 20 ratio splitting
principle where 80% of the data is dedicated to the model’s training
while 20% is for its evaluation.

2.9.2 Hyper-parameter tuning
The performance of machine learning models is usually

dependenton itshyper-parameter settings.Choosing theappropriate
values for the hyper-parameters not only improves the forecasting
performance of the model but the computational burden is
also reduced which enhances the execution speed of the model.
Therefore, we tune the hyper-parameters for different models in
this proposed study. In Table 2, the hyper-parameters with search
space and optimized values are presented. ForXgBoost, treemethod,
number of estimators,maximumdepth, learning rate, and colsample
bytree are the hyper-parameters that are tuned. For CatBoost,
learning rate, number of iterations, L2 lead regularization, and
maximumdepthare the tunedhyper-parameters. ForRF, thenumber
of estimators, maximum depth, minimum sample leaf, minimum
sample split, maximum sample, maximum features, and bootstrap
are key parameters that are tuned. In the case of deep learning
networks, number of layers, units, dropout, batch size, learning rate,
and optimizers are tuned parameters. All the hyper-parameters are
tunedon theTexas turbinedatasetbya randomized searchalgorithm.
Moreover, the optimized values are also used on other datasets.

2.9.3 Performance indicators
Four errormetrics: RMSE,MSE,MAE, andNRMSE, are used for

the evaluation of models’ performances. These metrics are defined
by the Eqs 17–20 (Wang et al., 2021):

ERMSE = √
1
O

O

∑
I=1
(AI −BI)2 (17)

ENRMSE =
RMSE

max (BI) −min (BI)
∗ 100 (18)
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TABLE 3 Model’s performance evaluation.

Location Models RMSE
(kW)

MAE
(kW)

MSE
(kW)2

NRMSE
(%)

  CatBoost 5.23 3.66 27.55 0.17

  XgBoost 3.74 2.52 14 0.12

  RF 87.88 66.1 7,724.39 3.14

Texas LSTM 21.16 17.85 447.96 0.67

  GRU 44.78 40.33 2005.98 1.43

  Transformer 29.01 18.2 841.58 1.01

Informer 29.85 18.97 891.02 1.03

  Boost-LR 3.22 2.23 10.38 0.11

  CatBoost 0.052 0.035 0.003 0.144

  XgBoost 0.27 0.095 0.073 0.752

  RF 1.52 1.07 2.3 4.57

Bruska LSTM 0.47 0.37 0.23 1.28

  GRU 0.32 0.22 0.1 0.84

  Transformer 3.9 2.4 15.21 1.13

  Informer 3.7 2.3 13.69 1.4

  Boost-LR 0.037 0.024 0.001 0.103

  CatBoost 0.045 0.028 0.002 0.152

  XgBoost 0.396 0.181 0.158 1.34

  RF 1.24 0.92 1.53 4.49

Jelinak LSTM 0.46 0.366 0.214 1.55

  GRU 0.34 0.23 0.19 1.18

  Transformer 3.7 2.6 13.69 1.21

  Informer 3.4 2.1 11.56 1.19

  Boost-LR 0.034 0.019 0.001 0.113

  CatBoost 0.144 0.098 0.021 0.146

  XgBoost 1.45 1.03 2.11 1.48

  RF 0.415 0.258 0.172 0.42

Inland
farm

LSTM 0.306 0.265 0.094 0.308

  GRU 0.69 0.498 0.485 0.72

  Transformer 2.2 1.7 4.84 0.86

  Informer 1.5 1.23 2.25 0.35

  Boost-LR 0.119 0.071 0.014 0.021

Bold values shows results of the proposed model.

FIGURE 3
Bar plot representation of error among Boost-LR, XgBoost, and
CatBoost. (A) RMSE bar plot, (B) MAE bar plot.

EMAE =
1
O

O

∑
I=1
|AI −BI| (19)

EMSE =
1
O

O

∑
I=1
(AI −BI)2 (20)

Whereas, the measured and predictive values are denoted by A
and B, respectively.

3 Results and discussion

In this section, the results of the proposed study are presented.
The Boost-LR network is implemented on four different wind power
datasets and compared with CatBoost, XgBoost, RF, LSTM, GRU,
Transformer, and Informer models. In Table 3, the performance
evaluation of each model is presented. The findings of Table 3 report
that the proposed Boost-LR outperforms other models on every
dataset. The Boost-LR records the RMSE, MAE, MSE, and NRMSE
of 3.22, 2.23, 10.38, and 0.11, respectively, for the dataset of Texas
Turbine.ForBruskadataset, theRMSE,MAE,MSE,andNRMSEof the
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FIGURE 4
Graphical comparison among the measured and Boost-LR predictive curves. (A) Graphical comparison for Texas dataset, (B) Graphical comparison for
Bruska dataset, (C) Graphical comparison for Jelinak dataset, (D) Graphical comparison for Inland wind farm dataset.

Boost-LR are found to be 0.037, 0.024, 0.001, and, 0.103, respectively.
For the dataset of Jelinak, the Boost-LR records the RMSE, MAE,
MSE, and NRMSE of 0.034, 0.019, 0.001, and 0.113, respectively. In
the case of inland wind farm, the proposed Boost-LR produces better
forecasting results thanother techniques andrecords theRMSE,MAE,
MSE, and NRMSE of 0.119, 0.071, 0.014, and 0.021, respectively. The
findings also demonstrate that the second-best performing model in
comparative analysis is CatBoost for Bruska, Jelinak, and inland wind
farm. In the case of the Texas turbine dataset, XgBoost is the second-
best-performingmodel. InFigure 3, theRMSEandMAEofBoost-LR,
XgBoost, and CatBoost are illustrated as bar plots.

In Figure 4, the measured curves of wind power are compared
with the forecasted curves of the proposed Boost-LR network. This
further demonstrates the superiority of the proposed Boost-LR as its
prediction curves accurately fit the measured curves.

3.1 Literature comparison

To demonstrate the scalability and generalizability of the
proposed Boost-LR, we compare the findings of the proposed
study with the work already reported in the literature. Different
machine learning and deep learning methodologies are used in
(Zou et al., 2022a; Malakouti, 2023) for wind power forecasting on
the datasets of the Texas, Bruska, and Jelinak. The comparison
of the proposed Boost-LR with the techniques reported in
(Zou et al., 2022a; Malakouti, 2023) is presented in Table 4.
The findings of Table 4 illustrate the superior performance of
Boost-LR as it produces the least forecasting errors. In this
study, we propose an integrated network Boost-LR for hour-
ahead forecasting of wind power. The Boost-LR’s superior
performance is due to its two-stage forecasting mechanism.
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TABLE 4 Literature comparison of Boost-LR with reported work.

Ref Journal Methodology Dataset RMSE MAE

Malakouti (2023) Case Studies in Chemical
and Environmental Engineering

Random forest Texas 4.64 2.56

// // Boost-LR Texas 3.22 2.23

Zou et al. (2022a) IEEE Transactions
on Sustainable Energy

CNN-BiLSTM and Bruska 0.133 0.07

// // Boost-LR Bruska 0.037 0.024

Zou et al. (2022a) IEEE Transactions
on Sustainable Energy

CNN-BiLSTM Jelinak 0.126 0.08

// // Boost-LR Jelinak 0.034 0.019

Bold values shows results of the proposed model.

In the first stage, Boost-LR has multiple tree-based learners:
CatBoost, XgBoost, and RF. Each learner provides an intermediary
forecast by learning the pattern in the dataset. In the second
stage, LR is implemented which measures the linear relationship
between the intermediary forecasts and training data. The
integration of multiple models makes the Boost-LR effective in
learning the nuanced and hidden patterns of the datasets. By
leveraging the strengths of individual models and overcoming
the weaknesses inherited in the single model, the ensemble
structure enables the Boost-LR to handle the variability of
the datasets accurately. The superior performance of Boost-
LR across five different geographical datasets demonstrates
its generalizability and robustness. However, our study has
some limitations. First, the performance of Boost-LR is not
evaluated for offshore wind turbine datasets. Second, the hyper-
parameters are tuned on one dataset and the optimized values
are used for other datasets as well. Further exploration of hyper-
parameters can improve the performance of the model. Despite
the limitations, the proposed Boost-LR provides a significant
advancement in wind power forecasting by providing more
accurate results.

4 Conclusion

In this proposed study, we have presented a novel integrated
Boost-LR network for hour-ahead wind power forecasting. The
proposed approach is an ensemble of CatBoost, XgBoost, RF, and LR
techniques. Level 1 of Boost-LR consists of boosting algorithms that
process the input data and provide the intermediary forecast.The LR
model is fused in level 2 of the Boost-LR which interprets the data
and intermediary forecast of level 1 models and provides the final
hour-ahead wind power’s forecasted value. Wind power datasets of
four different geographical locations are tested on Boost-LR and its
performance is compared with the individual models of XgBoost,
CatBoost, RF, LSTM, GRU Transformer, and Informer networks
for the robustness analysis. Findings demonstrate that the proposed
approach outperforms other techniques on each of the datasets.
The MAE of Boost-LR for the datasets of Bruska, Jelinak, and
Inlandwind farm is 31.42%, 32.14%, and 27.55%, respectively, better

than the MAE of CatBoost which is the second-best performing
model. For the dataset of the Texas turbine, the MAE of Boost-LR
is 11.51% better than that of the XgBoost model which is found
to be the second-best performing model in comparative analysis.
In future work, we aim to integrate Boost-LR with neural network
architectures and evaluate the model’s performance. We also
envision implementing some dimensionality reduction algorithms
that highlight the important external features regarding wind power
forecasting.
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